
Parallax Inc. - PBASIC48W/PX24 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type Surface Mount

Package / Case 48-LQFP

Supplier Device Package 48-TQFP

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic48w-px24

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic48w-px24-4440639
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Preface

Page 6 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 Availability

Book Part # Author and Publisher PDF In Print

What’s a Microcontroller? 28123 Andy Lindsay; Parallax Inc.;
ISBN 1-928982-02-6

Yes Yes

Robotics with the
Boe-Bot

28125 Andy Lindsay; Parallax Inc.;
 ISBN 1-928982-03-4

Yes Yes

IR Remote for the
Boe-Bot

70016 Andy Lindsay; Parallax Inc.;
 ISBN 1-928982-31-X

Yes Yes

Basic Analog and Digital 28129 Andy Lindsay; Parallax Inc.;
 ISBN 1-928982-04-2

Yes Yes

Applied Sensors 28127 Tracy Allen, PhD.; Parallax Inc.; ISBN 1-
928982-21-2

Yes Yes

Understanding Signals 28119
(With Full Kit)

Doug Pientak; Parallax Inc.;
ISBN 1-928982-23-9

Yes Yes

Industrial Control 27341 Marty Hebel / Will Devenport;
Parallax Inc.; ISBN 1-928982-08-5

Yes Yes

Elements of Digital Logic 70008 John Barrowman; Parallax Inc.; ISBN 1-
928982-20-4

Yes Yes

The Microcontroller Application
Cookbook Volumes 1 and 2

Vol. 1&2: 28113
Vol. 2: 28112

Matt Gilliland; Woodglen Press;
ISBN 0-616-11552-7 and 0-972-01590-6

No Yes

Al’s “World Famous” Stamp Project
of the Month Anthology

70013 Al Williams; Parallax Inc.;
ISBN 1-928982-25-5

Portions Yes

The Nuts and Volts of BASIC Stamps
Volumes 1, 2, 3, 4, and 5

Vol. 4: 70010
Vol. 5: 70015

Jon Williams, Scott Edwards and Lon
Glazner; Parallax, Inc.;

ISBN 1-928982-10-7, 1-928982-11-5,
1-928982-17-4, 1-928982-24-7

and 1-928982-30-1

Yes
(all)

Yes
(Vol 4 and

Vol 5)

StampWorks 27220 Jon Williams; Parallax, Inc.;
ISBN 1-928982-07-7

Yes Yes

Stamp 2 Communication and Control
Projects

70004 Thomas Petruzzellis; McGraw-Hill;
ISBN 0-071411-97-6

No Yes

Programming and Customizing the
BASIC Stamp Computer

27956 Scott Edwards; McGraw-Hill;
ISBN 0-071371-92-3

No Yes

BASIC Stamp 2p 70001 Claus Kuehnel and Klaus Zahnert;
Parallax, Inc.; ISBN 1-928982-19-0

Yes No

Introduction to the BASIC Stamp

Page 18 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25
pin 2) for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS
System ground: (same as pin 23) connects to PC serial port
GND pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source
or sink) if using the internal 5-volt regulator. The total per 8-pin
groups (P0 – P7 or P8 – 15) should not exceed 100 mA (source
or sink) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to
the VIN pin, then this pin will output 5 volts. If no voltage is
applied to the VIN pin, then a regulated voltage between 4.5V
and 5.5V should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset.
Can be driven low to force a reset. This pin is internally pulled
high and may be left disconnected if not needed. Do not drive
high.

23 VSS
System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN

Unregulated power in: accepts 5.5 - 12 VDC (7.5
recommended), which is then internally regulated to 5 volts.
Must be left unconnected if 5 volts is applied to the VDD (+5V)
pin.

Table 1.4: BASIC Stamp 2sx Pin
Descriptions

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 25

Guidelines and Precautions
When using the BASIC Stamp, or any IC chip, please follow the
guidelines below.

1. Be alert to static sensitive devices and static-prone situations.
a. The BASIC Stamp, like other IC’s, can be damaged by

static discharge that commonly occurs touching
grounded surfaces or other conductors. Environmental
conditions (humidity changes, wind, static prone
surfaces, etc) play a major role in the presence of random
static charges. It is always recommended to use
grounding straps and anti-static or static dissipative mats
when handling devices like the BASIC Stamp. If the
items above are not available, be sure to touch a
grounded surface after you have approached the work
area and before you handle static sensitive devices.

2. Verify that all power is off before connecting/disconnecting.
a. If power is connected to the BASIC Stamp or any device it

is connected to while inserting or removing it from a
circuit, damage to the BASIC Stamp or circuit could
result.

3. Verify BASIC Stamp orientation before connection to
development boards and other circuits.

a. Like other IC’s, the BASIC Stamp should be inserted in a
specific orientation in relation to the development board
or circuit. Powering the circuit with an IC connected
backwards will likely damage the IC and/or other
components in the circuit. Most IC’s have some form of a
“pin 1 indicator” as do most IC sockets. This indicator
usually takes the form of a dot, a half-circle, or the
number 1 placed at or near pin 1 of the device.

The BS1-IC has a “1” and a half-circle indicator on the
backside of the module. Additionally, Figure 1.1 above
indicates the pin numbering and labels.

All BS2 series modules have a half-circle indicator on the
topside of the module (see Figure 1.13). This indicates
that pin number one is the first pin counterclockwise from
the notch. The socket that accepts this 24-pin module also

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 35

Introducing the BASIC Stamp Editor

This section describes the BASIC Stamp Editor for Windows version 2.2.
This software supports all 7 BASIC Stamp modules available as of
February 2005, and all 3 versions of the PBASIC programming language,
PBASIC 1.0, PBASIC 2.0, and PBASIC 2.5.

The Programming Environment

The BASIC Stamp Windows Editor, shown in Figure 3.1, was designed to
be easy to use and mostly intuitive. Those that are familiar with standard
Windows software should feel comfortable using the BASIC Stamp
Windows Editor.

Figure 3.1: BASIC Stamp Windows
Editor.

The editor window consists of the main edit pane with an integrated
explorer panel to its left, as shown above.

The main edit pane can be used to view and modify up to 16 different
source code files at once. Each source code file that is loaded into the

THE EDITOR WINDOW.

THE MAIN EDIT PANE.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 59

make the Tab key move the cursor to positions, 3, 5, 7, 9 and 11, then
afterwards, 13, 15, 17, 19, etc. (a multiple of two (11 – 9 = 2) after the last
listed position.

The last option is a mixture of the first two, Fixed plus Smart Tabs
(Figure 3.22); it is the default and recommended setting. Fixed plus Smart
Tabs will cause the tab key to move the cursor to the position indicated by
the Fixed Tab Positions field, or if the position is already beyond the end
of that list, it reverts to Smart Tabs behavior. This setting, combined with
a carefully configured Fixed Tab Positions field, allows for a fixed level of
indenting on the left side of the source code (for executable code blocks),
with very flexible indenting to the right of executable code (for comments
that appear to the right of code). The default settings provide a quick,
single-key method of indenting up to five (5) levels of executable code and
easy alignment of multiple lines of comments to the right of that code.

Figure 3.20: Smart Tabs.

Figure 3.21: Fixed Tabs.

Figure 3.22: Fixed plus Smart Tabs.

FIXED PLUS SMART TABS.

Using the BASIC Stamp Editor

Page 66 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Under the Debug Function tab (Figure 3.25), checkboxes allow enabling or
disabling of special processing for 16 different control characters. The
default is for all 16 control characters to be processed, but you may disable
one or more of them if you are using the Debug Terminal to view data
coming from a device other than a BASIC Stamp.

Figure 3.25: The Debug Function
Tab under Edit → Preferences.

For example, a device that sends out a 0 to indicate something other than
Clear Screen will cause unintentional clearing of the Receive pane;
unchecking the checkbox for “(0) = Clear Screen” will prevent this from
happening.

DEBUG FUNCTION PREFERENCES.

Using the BASIC Stamp Editor

Page 68 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Advanced Compilation Techniques

For BS2e, BS2sx, BS2p, BS2pe and BS2px modules, each editor page can be
a separate project, or part of a single project. A project is a set of up to
eight files that should all be downloaded to the BASIC Stamp for a single
application. Each of the files within the project is downloaded into a
separate "program slot". Only the BASIC Stamp 2e, 2sx, 2p, 2pe, and 2px
modules support multi-file projects.

For BASIC Stamp projects (consisting of multiple programs), the $STAMP
directive has an option to specify additional filenames. The syntax below
demonstrates this form of the $STAMP directive:

' { $STAMP BS2e, file2, file3, …, file8 }

Use this form of the $STAMP directive if a project, consisting of multiple
files, is desired. This form of the directive must be entered only into the
first program (to be downloaded into program slot 0). The file2, file3, etc.
items should be the actual name (and optionally the path) of the other files
in the project. File2 refers to the program that should be downloaded into
program slot 1, file3 is the program that should be downloaded into
program slot 2, etc. If no path is given, the filename is given the path of
program 0 when loading them into the editor.

Up to seven filenames can be included, bringing the total to eight files in
the project all together. Upon loading, tokenizing, running or viewing
program 0 in the Memory Map, the editor will read the $STAMP directive,
determine if the indicated files exist, will load them if necessary and
change their captions to indicate the project they belong to and their
associated program number. After the directive is tokenized properly,
and all associated files are labeled properly, tokenizing, running or
viewing any program in the Memory Map will result in that program’s
entire project being tokenized, downloaded or viewed.

When program #0 of a multi-file project is opened from diskette, the entire
project will be loaded (all referenced files) as well. When a file that is part
of a multi-file project is closed, the entire project (all the associated files)
will be closed as well.

INTRODUCTION TO BASIC STAMP

PROJECTS.

USING THE $STAMP DIRECTIVE TO

DEFINE MULTI-FILE PROJECTS.

4: BASIC Stamp Architecture – Aliases and Modifiers

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 89

This feature is how the "string" capabilities of the DEBUG and SEROUT
command expect to work. A string is simply a byte array used to store
text. See "Displaying Strings (Byte Arrays)" in the DEBUG command
description on page 166 for more information.

An alias is an alternative name for an existing variable. For example:

SYMBOL cat = B0 ' Create a byte-sized variable
SYMBOL tabby = cat ' Create alias for cat

-- or --

cat VAR Byte ' Create a byte-sized variable
tabby VAR cat ' Create alias for cat

In this example, tabby is an alias to the variable cat. Anything stored in cat
shows up in tabby and vice versa. Both names refer to the same physical
piece of RAM. This kind of alias can be useful when you want to reuse a
temporary variable in different places in your program, but also want the
variable’s name to reflect its function in each place. Use caution, because it
is easy to forget about the aliases; during debugging, you might end up
asking ‘How did that value get here?!’ The answer is that it was stored in
the variable’s alias.

On all the BS2 models, an alias can also serve as a window into a portion
of another variable. This is done using "modifiers." Here the alias is
assigned with a modifier that specifies what part to reference:

rhino VAR Word ' A 16-bit variable
head VAR rhino.HIGHBYTE ' Highest 8 bits of rhino
tail VAR rhino.LOWBYTE ' Lowest 8 bits of rhino

Given that example, if you write the value %1011000011111101 to rhino,
then head would contain %10110000 and tail would contain %11111101.

Table 4.3 lists all the variable modifiers. PBASIC 2.0 and 2.5 lets you apply
these modifiers to any variable name and to combine them in any fashion
that makes sense. For example, it will allow:

rhino VAR Word ' A 16-bit variable
eye VAR rhino.HIGHBYTE.LOWNIB.BIT1 ' A bit

ALIASES AND VARIABLE MODIFIERS.

1

All 2

All 2

BASIC Stamp Architecture – Math and Operators

Page 104 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

All BS2 models can interpret twos complement negative numbers correctly
in DEBUG and SEROUT instructions using formatters like SDEC (for
signed decimal). In calculations, however, it assumes that all values are
positive. This yields correct results with two’s complement negative
numbers for addition, subtraction, and multiplication, but not for division.

The standard operators we just discussed: +, - ,* and / all work on two
values; as in 1 + 3 or 26 * 144. The values that operators process are
referred to as arguments. So we say that the add, subtract, multiply and
divide operators take two arguments.

Operators that take two arguments are called “binary” operators, and
those that take only one argument are called “unary” operators. Please
note that the term “binary operator” has nothing to do with binary
numbers; it’s just an inconvenient coincidence that the same word,
meaning ‘involving two things’ is used in both cases.

The minus sign (-) is a bit of a hybrid. It can be used as a binary operator,
as in 8-2 = 6, or it can be used as a unary operator to represent negative
numbers, such as -4.

Unary operators take precedence over binary operators; the unary
operation is always performed first. For example, on all BS2 models, SQR
is the unary operator for square root. In the expression 10 - SQR 16, the
BASIC Stamp first takes the square root of 16, then subtracts it from 10.

Most of the descriptions that follow say something like “computes (some
function) of a 16-bit value.” This does not mean that the operator does not
work on smaller byte or nibble values, but rather that the computation is
done in a 16-bit workspace. If the value is smaller than 16 bits, the BASIC
Stamp pads it with leading 0s to make a 16-bit value. If the 16-bit result of
a calculation is to be packed into a smaller variable, the higher-order bits
are discarded (truncated).

Keep this in mind, especially when you are working with two’s
complement negative numbers, or moving values from a larger variable to
a smaller one. For example, look at what happens when you move a two’s
complement negative number into a byte (rather than a word):

UNARY AND BINARY OPERATORS.

NOTES ABOUT THE 16-BIT WORKSPACE.

All 2

BASIC Stamp Architecture – +, -, *

Page 110 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

For example:

SYMBOL value1 = W0
SYMBOL value2 = W1

value1 = - 99
value2 = 100
value1 = value1 + value2 ' Add the numbers
DEBUG value1 ' Show the result (1)

-- or --

value1 VAR Word
value2 VAR Word

value1 = - 1575
value2 = 976
value1 = value1 + value2 ' Add the numbers
DEBUG SDEC ? value1 ' Show the result (-599)

The Subtraction operator (-) subtracts variables and/or constants,
returning a 16-bit result. It works exactly as you would expect with
unsigned integers from 0 to 65535. If the result is negative, it will be
correctly expressed as a signed 16-bit number. For example:

SYMBOL value1 = W0
SYMBOL value2 = W1

value1 = 199
value2 = 100
value1 = value1 - value2 ' Subtract the numbers
DEBUG value1 ' Show the result (99)

-- or --

value1 VAR Word
value2 VAR Word

value1 = 1000
value2 = 1999
value1 = value1 - value2 ' Subtract the numbers
DEBUG SDEC ? value1 ' Show the result (-999)

The Multiply operator (*) multiplies variables and/or constants, returning
the low 16 bits of the result. It works exactly as you would expect with
unsigned integers from 0 to 65535. If the result of multiplication is larger
than 65535, the excess bits will be lost. Multiplication of signed variables
will be correct in both number and sign, provided that the result is in the
range -32767 to +32767.

SUBTRACT: -

MULTIPLY: *

1

All 2

1

All 2

1 All 2

1 All 2

DEBUG – BASIC Stamp Command Reference

Page 164 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

hexadecimal, you might think it was 41, in decimal… a totally different
number. To help avoid this, use the IHEX formatter (the "I" stands for
indicated). Changing the DEBUG line to read: DEBUG IHEX x would
print "$41" on the screen. A similar formatter for binary also exists, IBIN,
which prints a "%" before the number.

Signed numbers are preceded with a space () or a minus sign (-) to
indicate a positive or negative number, respectively. Normally, any
number displayed by the BASIC Stamp is shown in its unsigned (positive)
form without any indicator. The signed formatters allow you to display
the number as a signed (rather than unsigned) value. NOTE: Only Word-
sized variables can be used for signed number display. The code below
demonstrates the difference in all three numbering schemes.

x VAR Word

x = -65
DEBUG "Signed: ", SDEC x, " ", ISHEX x, " ", ISBIN x, CR
DEBUG "Unsigned: ", DEC x, " ", IHEX x, " ", IBIN x

This code will generate the display shown below:

Signed: -65 -$41 -%1000001
Unsigned: 65471 $FFBF %1111111110111111

The signed form of the number –65 is shown in decimal, hexadecimal and
then in binary on the top line. The unsigned form, in all three number
systems, is shown on the bottom line. If the unsigned form looks strange
to you, it's because negative numbers are stored in twos complement
format within the BASIC Stamp.

Suppose that your program contained several DEBUG instructions
showing the contents of different variables. You would want some way to
tell them apart. One possible way is to do the following:

x VAR Byte
y VAR Byte

x = 100
y = 250
DEBUG "X = ", DEC x, CR ' Show decimal value of x
DEBUG "Y = ", DEC y, CR ' Show decimal value of y

DISPLAYING SIGNED VS. UNSIGNED
NUMBERS.

AUTOMATIC NAMES IN THE DISPLAY.

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 169

On all the BS2 models, DEBUG is actually a special case of the SEROUT
instruction. It is set for inverted (RS-232-compatible) serial output through
the programming connector (the SOUT pin) at 9600 baud, no parity, 8 data
bits, and 1 stop bit. For example,

DEBUG "Hello"

is exactly like:

' {$STAMP BS2}

SEROUT 16, $4054, ["Hello"]

in terms of function on a BS2. The DEBUG line actually takes less
program space, and is obviously easier to type.

Another method to decrease program space is to reduce the number of
DEBUG instructions by spreading DEBUG data across multiple lines. To
do this, each line that wraps around must end with a comma as in the
example below:

' {$PBASIC 2.5}

DEBUG "This is line 1", CR,
 "This is line 2"

The example above works identically to, but uses less program space than
this version:

DEBUG "This is line 1", CR
DEBUG "This is line 2"

Note that spreading a DEBUG statement across multiple lines requires the
declaration of PBASIC 2.5 syntax.

You may view DEBUG's output using a terminal program set to the above
parameters, but you may have to modify either your development board
or the serial cable to temporarily disconnect pin 3 of the BASIC Stamp (pin
4 of the DB-9 connector). See the SEROUT command for more detail.

A demo program for all BS2 models that uses DEBUG and DEBUGIN
commands can be found at the end of the DEBUGIN section, next.

TECHNICAL BACKGROUND

All 2

FOR…NEXT – BASIC Stamp Command Reference

Page 198 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

INPUT – BASIC Stamp Command Reference

Page 244 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

on the BS1) will appear on the pin. The demo program shows how this
works.

Demo Program (INPUT.bs1)

' INPUT.bs1
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of PINS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of OUTS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor
' to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp
' can override this state by writing a low (0) to bit 7 of OUTS and
' changing the pin to output.

' {$STAMP BS1}
' {$PBASIC 1.0}

Main:
 INPUT 7 ' Make P7 an input
 DEBUG "State of P7: ", #PIN7, CR

 PIN7 = 0 ' Write 0 to output latch
 DEBUG "After 0 written to OUT7: "
 DEBUG #PIN7, CR

 OUTPUT 7 ' Make P7 an output
 DEBUG "After P7 changed to output: "
 DEBUG #PIN7

Demo Program (INPUT.bs2)

' INPUT.bs2
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of INS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of OUTS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor
' to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp
' can override this state by writing a low (0) to bit 7 of OUTS and
' changing the pin to output.

' {$STAMP BS2}
' {$PBASIC 2.5}

Main:
 INPUT 7 ' Make P7 an input
 DEBUG "State of P7: ",

1

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

LCDOUT – BASIC Stamp Command Reference

Page 268 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 LCDCMD Lcd, %00110000 ' send wakeup sequence to LCD
 PAUSE 5 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00100000 ' set data bus to 4-bit mode
 LCDCMD Lcd, %00101000 ' set to 2-line mode with 5x8 font
 LCDCMD Lcd, %00001100 ' display on without cursor
 LCDCMD Lcd, %00000110 ' auto-increment cursor

 LCDOUT Lcd, LcdCGRam, ' load custom character map
 [$00, $0A, $0A, $00, $11, $0E, $06, $00]

Main:
 DO
 LCDOUT Lcd, LcdCls, ["Hello my friend."]
 PAUSE 750
 LCDOUT Lcd, LcdLine2, ["How are you?"]
 PAUSE 1500
 LCDCMD Lcd, LcdCls
 LCDOUT Lcd, LcdLine1 + 1, ["I'm doing just"]
 LCDOUT Lcd, LcdLine2 + 4, ["fine! ", 0]
 PAUSE 2000
 LOOP
 END

5: BASIC Stamp Command Reference – POLLIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 313

POLLIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

POLLIN Pin, State

Function
Specify a polled-input pin and active state.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This I/O pin will be set to input mode.

• State is a variable/constant/expression (0 – 1) that specifies
whether to poll the I/O pin for a low (0) or a high (1) level.

Quick Facts
Table 5.73: POLLIN Quick Facts. BS2p, BS2pe, and BS2px

Available
actions in

response to
reaching the
desired State

1) Nothing,
2) Set polled-output pins to a specified state,
3) Run another program (in a specified program-slot),
4) Wait (pause program execution) until desired State is reached,
5) Any combination of 2, 3 and 4, above.

Special notes

• The polled-input pins are monitored (polled) in-between each command
within the PBASIC code.

• On the BS2p40, polled-input pins can be defined on both Main I/O and
Auxiliary I/O pins. These are all active regardless of which group the
program happens to be using at the time of a polling event.

Useful SPRAM
locations

Locations 128 – 135 hold polled interrupt status. See Table 5.77 in the
POLLMODE command section for more information.

Related
commands

POLLMODE, POLLOUT, POLLRUN and POLLWAIT

Explanation
The POLLIN command is used to specify an input pin to monitor, or
"poll", in-between instructions during the rest of the PBASIC program.
The BASIC Stamp will then perform some activity (in-between
instructions) when the specified State is detected. The activity performed
depends on the POLLMODE, POLLOUT and POLLRUN commands.

The "polling" commands allow the BASIC Stamp to respond to certain I/O
pin events at a faster rate than what is normally possible through manual
PBASIC programming. The term "poll" comes from the fact that the
BASIC Stamp module’s interpreter periodically checks the state of the
designated polled-input pins. It "polls" these pins after the end of each
PBASIC command and before it reads the next PBASIC command from the

SHIFTIN – BASIC Stamp Command Reference

Page 432 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

At their heart, synchronous-serial devices are essentially shift-registers;
trains of flip-flops that pass data bits along in a bucket brigade fashion to a
single data output pin. Another bit is output each time the appropriate
edge (rising or falling, depending on the device) appears on the clock line.

The SHIFTIN instruction first causes the clock pin to output low and the
data pin to switch to input mode. Then, SHIFTIN either reads the data pin
and generates a clock pulse (PRE mode) or generates a clock pulse then
reads the data pin (POST mode). SHIFTIN continues to generate clock
pulses and read the data pin for as many data bits as are required.

Making SHIFTIN work with a particular device is a matter of matching the
mode and number of bits to that device’s protocol. Most manufacturers
use a timing diagram to illustrate the relationship of clock and data. Items
to look for include: 1) which bit of the data arrives first; most significant bit
(MSB) or least significant bit (LSB) and 2) is the first data bit ready before
the first clock pulse (PRE) or after the first clock pulse (POST). Table 5.115
shows the values and symbols available for Mode, and Figure 5.42 shows
SHIFTIN’s timing.

Symbol Value Meaning
MSBPRE 0 Data is msb-first; sample bits before clock pulse
LSBPRE 1 Data is lsb-first; sample bits before clock pulse

MSBPOST 2 Data is msb-first; sample bits after clock pulse
LSBPOST 3 Data is lsb-first; sample bits after clock pulse

Table 5.115: SHIFTIN Mode Values
and Symbols.

(Msb is most-significant bit; the highest or leftmost bit of a nibble, byte, or word. Lsb is the
least-significant bit; the lowest or rightmost bit of a nibble, byte, or word.)

Figure 5.42: SHIFTIN Timing
Diagram. Refer to the SHIFTIN
Quick Facts table for timing
information on th (t high) and
tl (t low).

th

Cloc k
(Cpin)

Data
(Dpin)

- tl -

-pre modes
sample data
before
clock pulse

1st

-post modes
sample data
before
clock pulse

2nd

SHIFTIN OPERATION.

5: BASIC Stamp Command Reference – SOUND

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 445

SOUND BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SOUND Pin, (Note, Duration { , Note, Duration…})
(See FREQOUT)

Function
Generate square-wave tones for a specified period.

• Pin is a variable/constant (0 – 7) that specifies the I/O pin to use.
This pin will be set to output mode.

• Note is a variable/constant (0 – 255) specifying the type and
frequency of the tone. 1 – 127 are ascending tones and 128 – 255 are
ascending white noises ranging from buzzing (128) to hissing (255).

• Duration is a variable/constant (1 - 255) specifying the amount of
time to generate the tone(s). The unit of time for Duration is 12 ms.

Quick Facts
Table 5.119: SOUND Quick
Facts.

 BS1
Units in Duration 12 ms
Available Sounds 256
Frequency Range 94.8 Hz to 10,550 Hz

Explanation
SOUND generates one of 256 square-wave frequencies on an I/O pin. The
output pin should be connected as shown in Figure 5.46.

The tones produced by SOUND can vary in frequency from 94.8 Hz (1) to
10,550 Hz (127). If you need to determine the frequency corresponding to a
given note value, or need to find the note value that will give you best
approximation for a given frequency, use the equations below.

Note = 127 – (((1/Frequency)-0.000095)/0.000083)

--and--

Frequency = (1/(0.000095 + ((127–Note)*0.000083))

In the above equations, Frequency is in Hertz (Hz).

All 2

1

STORE – BASIC Stamp Command Reference

Page 450 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (STORE0.bsp)

' STORE0.bsp
' This program demonstrates the STORE command and how it affects the READ
' and WRITE commands. This program "STORE0.BSP" is intended to be down-
' loaded into program slot 0. It is meant to work with STORE1.BSP and
' STORE2.BSP. Each program is very similar (they display the current
' Program Slot and READ/WRITE Slot numbers and the values contained in the
' first five EEPROM locations. Each program slot will have different data
' due to different DATA commands in each of the programs downloaded.

' {$STAMP BS2p, STORE1.BSP, STORE2.BSP}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "This program requires BS2p, BS2pe, or BS2px."
#ENDIF

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 1, 2, 3, 4, 5

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 1 ' point READ/WRITE to Slot 1
 GOSUB Show_Slot_Info
 PAUSE 2000
 RUN 1 ' run program in Slot 1
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 493

— F —
Favorite Directories, 63
Features for Developers, 75
File Associations, 42, 61
File List, 40, 41
File Management

.obj file, 76
Backup Copy, 61
Directory List, 41
Favorite Directories, 63
File Associations, 42, 61
File List, 41
Files and Directories Preferences, 63
Filter List, 40, 41
Initial Directory, 62
Keyboard Shortcuts, 42
Module Directories, 62
Open From, 41
Recent List, 40
Save To, 41
Single Executable File, 76
Templates, 62

Filter List, 40, 41
Find/Replace Function, 39
Firmware, 3
Fixed plus Smart Tabs, 59
Fixed Tabs, 58
Flow Control, 409, 423
Font Size

Debug Terminal, 63
Editor Pane, 56

FOR...NEXT, 189
Increment/Decrement, 193
Variables as Arguments, 194

FOR…NEXT, 191–97
Formatters, Conversion. See

Conversion Formatters
Formatters, DEBUG. See DEBUG

Formatters
Formatters, Special. See Special

Formatters
FPin, 409, 423

FREQOUT, 199–201

— G —
Generating Pulses, 347–49
Generating Random Numbers, 359–61
Generating Sound (BS1), 445–46
Generating Sound (Non-BS1), 199–201
GET, 203–6
GOSUB, 209–12, 289, 375
GOTO, 209, 213–14, 213, 289
GUI Interface Development, 78
Guidelines and Precautions, 25

— H —
Hardware

BASIC Stamp, 7
BS1, 10
BS2, 13
BS2e, 15
BS2p, 19
BS2pe, 21
BS2px, 23
BS2sx, 17

Help Files, 53–54
HEX, 162, 163, 173, 220, 227, 260,

265, 298, 306, 403, 422
Hex to BCD Conversion, 97
Hexadecimal Notation, 96
HIGH, 215–16, 281, 455
Hitachi 44780 Controller, 249, 258, 263
HOME, 168
HYP, 109, 115
Hypotenuse (HYP), 109, 115

— I —
I/O pin

Voltage comparator (BS2px), 141
I/O pin properties (BS2px), 143
I/O Pins

