

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	V850E1
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 12x10b, 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3916gf-r-gat-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Features

O Minimum instruction execution time:

10 ns (at internal 100 MHz operation)

O General-purpose registers: 32 bits $\times\,32$

O CPU features:	Signed multiplication (16 bits \times 16 bits \rightarrow 32 bits or 32 bits \times 32 bits \rightarrow 64 bit 1 to 2 clocks Saturated operation instructions (with overflow/underflow detection function) 32-bit shift instructions: 1 clock Bit manipulation instructions Load/store instructions with long/short format Signed load instructions								
O Internal memory:	RAM: 24 K	B (See Table 1-1)							
	Flash memory: 256/	384/480 KB (See Table 1-1)							
O On-chip debug function:	Supports MINICUBE®	, MINICUBE2.							
O Interrupts/exceptions:	Non-maskable interru	pts: 1 source (external: none, internal: 1)							
	Maskable interrupts:	103 sources (external: 22, internal: 81)							
	Software exceptions:	32 sources							
	Exception traps:	2 sources							
O DMA controller:	7 channels								
	Transfer unit:	8 bits/16 bits/32 bits							
	Maximum transfer co	ınt: 4096 (2 ¹²)							
	Transfer type:	2-cycle							
	Transfer modes:	Single/single step							
	Transfer targets:	On-chip peripheral I/O \leftrightarrow Internal RAM							
	Transfer request:	On-chip peripheral I/O/software							
	Next address setting	unction							
O I/O lines:	V850E/IG4: Total: 67	(Input ports: 12, I/O ports: 55)							
	V850E/IH4: Total: 80	(Input ports: 12, I/O ports: 68)							

(9) TAAn counter read buffer register (TAAnCNT)

The TAAnCNT register is a read buffer register that can read the count value of the 16-bit counter. If this register is read when the TAAnCTL0.TAAnCE bit = 1, the count value of the 16-bit timer can be read. This register is read-only, in 16-bit units.

The value of the TAAnCNT register is cleared to 0000H when the TAAnCE bit = 0. If the TAAnCNT register is read at this time, the value of the 16-bit counter (FFFFH) is not read, but 0000H is read.

The value of the TAAnCNT register is cleared to 0000H after reset, and the TAAnCE bit is cleared to 0.

6.5 Timer Output Operations

The following table shows the operations and output levels of the TOAn0 and TOAn1 pins.

Operation Mode	TOAn1 Pin	TOAn0 Pin				
Interval timer mode	PWM output					
External event count mode	None					
External trigger pulse output mode	External trigger pulse output	PWM output				
One-shot pulse output mode	One-shot pulse output					
PWM output mode	PWM output					
Free-running timer mode	PWM output (only when compare function is used)					
Pulse width measurement mode	None					

Table 6-6. Timer Output Control in Each Mode

Remark n = 0 to 2

Figure 6-23. Configuration of TAA2 in External Trigger Pulse Output Mode

(1) Operation flow in one-shot pulse output mode

Figure 6-31. Software Processing Flow in One-Shot Pulse Output Mode (1/2)

Figure 6-35. Register Setting in PWM Output Mode (2/2)

(d)	TAA2 I/O c	ontrol reg	gister 2 (1	FAA2IOC	2)				
					TAA2EES1	TAA2EES0	TAA2ETS1	TAA2ETS0)
TAA2IOC	2 0	0	0	0	0/1	0/1	0	0	
									Select valid edge of external event count input (TIA20 pin).
(e)	TAAn cour The value o	n ter read I of the 16-b	buffer reg it counter	gister (TA can be r	AnCNT) ead by rea	ading the 1	ſAAnCNT	register.	
(f)	TAAn capt	ure/comp	are regis	ters 0 an	nd 1 (TAAi	nCCR0 ar	nd TAAnC	CR1)	
	If D₀ is set	to the TA	AnCCR0	register a	and D1 to t	he TAAnC	CR1 regi	ster, the	cycle and active level of
	the PWM w	aveform a	are as follo	ows.					
	Cycle = (Active lev	Do + 1) × (vel width =	Count clo : D1 × Cou	ck cycle unt clock (cycle				
	Remarks	1. TAA2 I, used ir	/O contro n the PWN	l register ⁄I output r	1 (TAA2IC mode.	OC1) and ⁻	TAAn opti	on registe	er 0 (TAAnOPT0) are not
		2. n = 0 to	o 2						
		a = 0, ⁻	1						

8.4 Registers

(1) TMTn control register 0 (TTnCTL0)

The TTnCTL0 register is an 8-bit register that controls the operation of TMTn.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

The same value can always be written to the TTnCTL0 register by software.

After r	eset: 00H	R/W	Address:	TT0CTLC TT2CTLC	FFFFF	580H, TT1C1 780H, TT3C1	LO FFFF LO FFFF	F5C0H, F7C0H			
	<7>	6	5	4	3	2	1	0			
TTnCTL0	TTnCE	0	0	0	0	TTnCKS2	TTnCKS1	TTnCKS0			
(n = 0 to 3)											
	TTnCE			TMTn	operation	n control					
	0	0 TMTn operation disabled (TMTn reset asynchronously ^{Note})									
	1	1 TMTn operation enabled. TMTn operation start									
		1		1							
	TTnCKS2	TTnCKS1	TTnCKS0		Interna	I count clock	selection				
	0	0	0	fxx/2							
	0	0	1	fxx/4							
	0	1	0	fxx/8							
	0	1	1	fxx/32							
	1	0	0	fxx/256							
	1	0	1	fxx/1024							
	1	1	0	fxx/2048							
	1	1	1	fxx/4096							
 Note The TTnOPT0.TTnOVF bit and the 16-bit counter are reset simultaneously. Moreover, timer outputs (TOTn0 and TOTn1 pins) are reset to the TTnIOC0 register set status at the same time as the 16-bit counter is reset. Cautions 1. Set the TTnCKS2 to TTnCKS0 bits when the TTnCE bit = 0. When the value of the TTnCE bit is changed from 0 to 1, the TTnCKS2 to TTnCKS0 bits can be set simultaneously. 2. Be sure to set bits 3 to 6 to "0". 											

Remark fxx: Peripheral clock

(11) TMTn capture/compare register 0 (TTnCCR0)

The TTnCCR0 register is a 16-bit register that can be used as a capture register or compare register depending on the mode.

This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TTnOPT0.TTnCCS0 bit. In the pulse width measurement mode, the TTnCCR0 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TTnCCR0 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Remark n = 0 to 3

Afte	er rese	et: 000	00H	R/V	N	Addre	ess: T T	TOCO	CR0 F CR0 F	FFFF	58AH 78AH	1, TT [.] 1, TT:	ICCR 3CCF	IO FFF RO FFF	FFF50	CAH, CAH
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TTnCCR0 n = 0 to 3																

8.6.7 Pulse width measurement mode (TTnMD3 to TTnMD0 bits = 0110)

In the pulse width measurement mode, 16-bit timer/event counter T starts counting when the TTnCTL0.TTnCE bit is set to 1. Each time the valid edge input to the TITna pin has been detected, the count value of the 16-bit counter is stored in the TTnCCRa register, and the 16-bit counter is cleared to 0000H.

The interval of the valid edge can be measured by reading the TTnCCRa register after a capture interrupt request signal (INTTTEQCna) occurs.

As shown in Figure 8-46, select either the TITn0 or TITn1 pin as the capture trigger input pin and set the unused pins to "No edge detection" by using the TTnIOC1 register.

Remark n = 0 to 3 a = 0, 1

Figure 8-44. Configuration of TMT0 and TMT1 in Pulse Width Measurement Mode

11.3 Control Registers

(1) Watchdog timer mode register (WDTM)

The WDTM register sets the overflow time and operation clock of the watchdog timer. This register can be read or written in 8-bit units. This register can be read any number of times, but can be written only once following reset release; it cannot then be written a second or subsequent time. Reset sets this register to 67H.

3. Be sure to clear bits 3, 4, and 7 to "0".

WDCS2	WDCS1	WDCS0	Overflow Time	fxx = 100 MHz
0	0	0	2 ¹⁹ /fxx	5.2 ms
0	0	1	2 ²⁰ /fxx	10.5 ms
0	1	0	2 ²¹ /fxx	21.0 ms
0	1	1	2 ²² /fxx	41.9 ms
1	0	0	2 ²³ /fxx	83.9 ms
1	0	1	2 ²⁴ /fxx	167.8 ms
1	1	0	2 ²⁵ /fxx	335.5 ms
1	1	1	2 ²⁶ /fxx	671.1 ms

Table 11-2. Overflow Time

14.2.1 Pin functions of each channel

The input and output pins used by UARTA in the V850E/IG4 and V850E/IH4 are alternately used for other functions as shown in Table 14-2. To use these pins for UARTA, set up the related registers as described in **Table 4-16 Settings When Pins Are Used for Alternate Functions**.

Channel		Pin No	No. Port		UARTA	UARTA	Other Functions				
	10	IG4 IH4			Reception Input	Transmission					
	GC	GF	GC			Output					
UARTA0	46	74	96	P40	RXDA0	_	SIF0/DDI/TOA00				
	47	75	97	P41	—	TXDA0	SOF0				
UARTA1	54	82	106	P30	RXDA1	_	SCL				
	55	83	107	P31	_	TXDA1	SDA				
UARTA2	56	84	108	P32	RXDA2	_	SIF1				
	57	85	109	P33	_	TXDA2	SOF1				

Table 14-2. Pins Used by UARTA

Remark IG4: V850E/IG4

IH4: V850E/IH4

GC (V850E/IG4): 100-pin plastic LQFP (fine pitch) (14 \times 14)

GF (V850E/IG4): 100-pin plastic LQFP (14 \times 20)

GF (V850E/IH4): 128-pin plastic LQFP (fine pitch) (14 × 20)

16.3 Mode Switching Between CSIF and Other Serial Interface

16.3.1 Mode switching between CSIF0 and UARTA0

In the V850E/IG4 and V850E/IH4, CSIF0 and UARTA0 share a pin, and these functions cannot be used at the same time. To use the pin for the CSIF0 function, set up the PMC4, PFC4, and PFCE4 registers in advance. Switching the operation mode between CSIF0 and UARTA0, the serial interfaces, is described below.

Caution The operations related to transmission and reception of CSIF0 or UARTA0 are not guaranteed if the operation mode is switched during transmission or reception. Be sure to disable the unit that is not used.

After res	set: 00H	R/W	Address: F	FFFF448F	ł				
	7	6	5	4	3	2	1	0	
PMC4	0	0	0	PMC44	PMC43	PMC42	PMC41	PMC40	
After res	set: 00H	R/W	Address: F	FFFF468F	ł				
	7	6	5	4	3	2	1	0	
PFC4	0	0	0	0	PFC43	0	PFC41	PFC40	
After res	After reset: 00H R/W Address: FFFF708H								
	7	6	5	4	3	2	1	0	
PFCE4	0	0	0	0	0	PFCE42	0	PFCE40	
	PMC42	PFCE42			Operatio	n mode			
	0	×	Port I/O r	node					
	1	0	SCKF0						
	PMC4n	PFC4n			Operatio	n mode			
	0	×	Port I/O r	node					
	1	0	CSIF0 m	ode					
	1	1	UARTA0	mode					
	Remarks	1. n = 0), 1 						
		2. × = 0	or 1						

Figure 16-2. Operation Mode Switch Settings of CSIF0 and UARTA0

(1) IIC control register 0 (IICC0)

The IICC0 register is used to enable/stop I^2C operations, set wait timing, and set other I^2C operations. The IICC0 register can be read or written in 8-bit or 1-bit units. However, set the SPIE0, WTIM0, and ACKE0 bits when the IICE0 bit is 0 or during the wait period. When setting the IICE0 bit from "0" to "1", these bits can also be set at the same time.

Reset sets this register to 00H.

									(1/4	
After reset:	00H	R/W	Address: FF	FFFD82H						
	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
IICC0	IICE0	LREL0	WREL0	SPIE0	WTIM0	ACKE0	STT0	SPT0		
IICE0				I ² C operat	ion enable/di	isable specifi	cation			
0 Stop operation. Reset the IICS0 register ^{Note 1} . Stop internal operation.										
1 Enable operation.										
Be sure to	set this bit	to 1 when the	e SCL and SI	DA lines are	high level.					
Condition for clearing (IICE0 bit = 0) Condition for setting (IICE0 bit = 1)										
Cleared by instruction Reset Set by instruction										
REL0 ^{Note 2}				Exit f	rom commun	nications				
0 Normal operation										
1	This exits fr being execu Its uses incl The SCL an The STT0, \$ cleared to 0	om the curre ited. ude cases in d SDA lines SPT0, IICS0.	nt communic which a loca are set to hig MSTS0, IICS	ations and s Ily irrelevant h impedance 0.EXC0, IIC	ets standby r extension co 9. 50.COI0, IIC	node. This s ode has been S0.TRC0, IIC	etting is aut received. S0.ACKD0,	omatically cle	ared to 0 after D0 bits are	
The stand are met. • After a s • An addre	lby mode fo top conditioness match o	llowing exit f n is detected r extension c	rom commun , restart is in ode receptior	ications rem master mode n occurs afte	ains in effect a. r the start co	t until the foll ndition.	owing comn	nunications e	ntry conditions	
Condition	for clearing	(LREL0 bit =	0)		Conditi	on for setting	(LREL0 bit	= 1)		
Automatically cleared after execution Reset										

2. This flag's signal is invalid when the IICE0 bit = 0.

Caution If the l^2 C operation is enabled (IICE0 bit = 1) when the SCL line is high level and the SDA line is low level, the start condition is detected immediately. To avoid this, after enabling the l^2 C operation, immediately set the LREL0 bit to 1 with a bit manipulation instruction.

The following shows an example of the processing of the slave device by an INTIIC interrupt (it is assumed that no extension codes are used here). During an INTIIC interrupt, the status is confirmed and the following steps are executed.

- <1> When a stop condition is detected, communication is terminated.
- <2> When a start condition is detected, the address is confirmed. If the address does not match, communication is terminated. If the address matches, the communication mode is set and wait is released, and operation returns from the interrupt (the ready flag is cleared).
- <3> For data transmission/reception, when the ready flag is set, operation returns from the interrupt while the I²C bus remains in the wait status.

Remark <1> to <3> in the above correspond to <1> to <3> in Figure 17-20 Slave Operation Flowchart (2).

Figure 17-20. Slave Operation Flowchart (2)

17.17 Timing of Data Communication

When using I^2C bus mode, the master device generates an address via the serial bus to select one of several slave devices as its communication partner.

After outputting the slave address, the master device transmits the IICS0.TRC0 bit that specifies the data transfer direction and then starts serial communication with the slave device.

The IIC0 register's shift operation is synchronized with the falling edge of the serial clock (SCL pin). The transmit data is transferred to the SO latch and is output (MSB first) via the SDA pin.

Data input via the SDA pin is captured by the IIC0 register at the rising edge of the SCL pin.

The data communication timing is shown below.

CHAPTER 23 POWER-ON CLEAR CIRCUIT

23.1 Function

Functions of the power-on-clear circuit (POC) are shown below.

- Generates a reset signal (POCRES) upon power application.
- Compares the supply voltage (V850E/IG4: EVDD0, EVDD1, EVDD2, V850E/IH4: FVDD) and detection voltage (VPOC0), and generates a reset signal when the supply voltage drops below the detection voltage (detection voltage (VPOC0): 3.7 V ±0.2 V).
- **Remark** The V850E/IG4 and V850E/IH4 have the reset source flag register (RESF) that indicates generation of a reset signal (WDTRES) by watchdog timer overflow and a reset signal (LVIRES) by low-voltage detector (LVI).

The RESF register is not cleared to 00H when a reset signal (WDTRES or LVIRES) is generated, and its flag corresponding to the reset source is set to 1.

The RESF register is cleared (00H) when a reset signal (POCRES) by power-on-clear circuit (POC) is generated.

For details of the RESF register, see CHAPTER 21 RESET FUNCTIONS.

Table 25-8. Wiring Correspondence Between Dedicated Flash Memory Programmer and V850E/IG4, V850E/IH4 (1/2)

Pin No.	Dedicated Flash	I/O	V850E/IG4, V850E/IH4							
	Memory Programmer	(PG-FP4 or	Pin Name		Pin No.					
	(PG-FP4 or PG-FP5)	PG-FP5 Side)		IG	3 4	IH4				
				GC	GF	GF				
1	GND	-	Vsso	38	66	81				
			V _{SS1}	64	92	117				
			V _{SS2}	91	19	28				
			EVsso	41	69	85				
			EVss1	63	91	116				
			EVss2	100	28	38				
			EVss3	—	-	8				
			EVss4	—	-	74				
			AV _{SS0}	5	33	43				
			AV _{SS1}	10	38	48				
			AV _{SS2}	27	55	66				
2	RESET	Output	RESET	39	67	82				
3	SI/RxD	Input	SOF0	47	75	97				
4	Vdd	_	EVDD0	40	68	83				
			EV _{DD1}	62	90	115				
			EV _{DD2}	99	27	37				
			EVDD3	_	-	7				
			FVDD	_	_	114				
			AVDD0	7	35	45				
			AV _{DD1}	8	36	46				
			AV _{DD2}	26	54	65				
			AV _{REFP0}	6	34	44				
			AV _{REFP1}	9	37	47				
5	SO/TxD	Output	SIF0	46	74	96				
6	Vpp	×	NC	_	_	_				
7	SCK	Output	SCKF0	48	76	98				
8	H/S	Input	P44	50	78	100				
9	CLK ^{Note}	Output	X1 ^{Note}	36	64	79				
10	VDE	×	NC	_	-	_				

Note In the V850E/IG4 and V850E/IH4, external clock input is prohibited. Mount the resonator on board.

Remark NC: No Connection

IG4: V850E/IG4 IH4: V850E/IH4 GC (V850E/IG4): 100-pin plastic LQFP (fine pitch) (14×14) GF (V850E/IG4): 100-pin plastic LQFP (14×20) GF (V850E/IH4): 128-pin plastic LQFP (fine pitch) (14×20)

25.8.3 Communication commands

The V850E/IG4 and V850E/IH4 communicate with a flash memory programmer by means of commands. The commands sent from the flash memory programmer to the V850E/IG4 or V850E/IH4 are called "commands". The response signals sent from the V850E/IG4 or V850E/IH4 to the flash memory programmer are called "response commands".

The following shows the commands for flash memory control in the V850E/IG4 and V850E/IH4. All of these commands are issued from the dedicated flash memory programmer, and the V850E/IG4 and V850E/IH4 perform the processing corresponding to the commands.

Classification	Command Name	Support			Function
		UARTA0	CSIF0	Note	
Blank check	Block blank check command	\checkmark	\checkmark	\checkmark	Checks if the contents of the memory in the specified block have been correctly erased.
Erase	Chip erase command	\checkmark	\checkmark	\checkmark	Erases the contents of the entire memory.
	Block erase command	\checkmark	\checkmark	\checkmark	Erases the contents of the memory of the specified block.
Write	Program command	\checkmark	\checkmark	\checkmark	Writes the specified address range, and executes a contents verify check.
Verify	Verify command	\checkmark	\checkmark	\checkmark	Compares the contents of memory in the specified address range with data transferred from the flash memory programmer.
	Checksum command	V	\checkmark	\checkmark	Reads the checksum in the specified address range.
System setting	Silicon signature command	\checkmark	\checkmark	\checkmark	Reads silicon signature information.
and control	Security setting command	V	\checkmark	\checkmark	Prohibits the chip erase command, block erase command, program command, read command, and boot area rewrite.

Table 25-10. Flash Memory Control Commands

Note CSIF0 supporting handshake

The V850E/IG4 and V850E/IH4 send back response commands for the commands issued from the flash memory programmer. The response commands sent from the V850E/IG4 and V850E/IH4 are listed below.

Response Command Name	Function
ACK (Acknowledge)	Acknowledges command/data, etc.
NAK (Not acknowledge)	Acknowledges illegal frame, etc.
Command number error	Acknowledges illegal command/data, etc.
Parameter error	Acknowledges illegal parameter, etc.
Checksum error	Acknowledges checksum of frame
Protect error	Acknowledges when protection is in effect
During processing (BUSY)	Acknowledges during processing
Other than above	Error

(6) CSIF timing

(a) Master mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD0} = V_{DD1} = V_{DD2} = 1.35 \text{ to } 1.65 \text{ V},$

 $EV_{DD0} = EV_{DD1} = EV_{DD2} = AV_{DD0} = AV_{DD1} = AV_{DD2} = 4.0 \text{ to } 5.5 \text{ V},$

Vsso = Vss1 = Vss2 = EVss0 = EVss1 = EVss2 = AVss0 = AVss1 = AVss2 = 0 V, CL = 50 pF)

Parameter	Symb	ool	Conditions	MIN.	MAX.	Unit
SCKFn cycle	tксум	<22>		125		ns
SCKFn high-/low-level width	tкwнм,	<23>		tксүм/2 – 10		ns
	tкwlм					
SIFn setup time (to SCKFn↑)	tssim	<24>		30		ns
SIFn setup time (to $\overline{\text{SCKFn}}\downarrow$)				30		ns
SIFn hold time (from $\overline{\text{SCKFn}}$)	tнsiм	<25>		30		ns
SIFn hold time (from $\overline{\text{SCKFn}}\downarrow$)				30		ns
SOFn output delay time (from $\overline{\mathrm{SCKFn}} \downarrow$)	tdsom	<26>			30	ns
SOFn output delay time (from $\overline{\text{SCKFn}}$)					30	ns
SOFn output hold time (from $\overline{\text{SCKFn}}^{\uparrow}$)	tнsoм	<27>		tксүм/2 – 10		ns
SOFn output hold time (from $\overline{\text{SCKFn}}\downarrow$)				tксүм/2 – 10		ns

Remark n = 0 to 2

(b) Slave mode

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{DD0} = V_{DD1} = V_{DD2} = 1.35 \text{ to } 1.65 \text{ V},$

 $EV_{DD0} = EV_{DD1} = EV_{DD2} = AV_{DD0} = AV_{DD1} = AV_{DD2} = 4.0 \text{ to } 5.5 \text{ V},$

Vsso = Vss1 = Vss2 = EVss0 = EVss1 = EVss2 = AVss0 = AVss1 = AVss2 = 0 V, CL = 50 pF)

Parameter	Symt	loc	Conditions	MIN.	MAX.	Unit
SCKFn cycle	tĸcys	<28>		125		ns
SCKFn high-/low-level width	tкwнs,	<29>		tксүs/2 – 10		ns
	IKWLS					
SIFn setup time (to SCKFn↑)	tssis	<30>		30		ns
SIFn setup time (to $\overline{\text{SCKFn}}\downarrow$)				30		ns
SIFn hold time (from SCKFn↑)	tHSIS	<31>		30		ns
SIFn hold time (from $\overline{\text{SCKFn}}\downarrow$)				30		ns
SOFn output delay time (from $\overline{\text{SCKFn}}\downarrow$)	tosos	<32>			30	ns
SOFn output delay time (from $\overline{\text{SCKFn}}$)					30	ns
SOFn output hold time (from $\overline{\text{SCKFn}}^\uparrow$)	t HSOS	<33>		tксүs/2 – 10		ns
SOFn output hold time (from $\overline{\text{SCKFn}}\downarrow$)				tксүs/2 – 10		ns

Remark n = 0 to 2

26.1.14 Supply voltage application/cutoff timing

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD0} = V_{DD1} = V_{DD2} = 1.35 \text{ to } 1.65 \text{ V}, EV_{DD0} = EV_{DD1} = EV_{DD2} = AV_{DD0} = AV_{DD1} = AV_{DD2} = 3.5 \text{ to } 5.5 \text{ V}, V_{SS0} = V_{SS1} = V_{SS2} = EV_{SS1} = EV_{SS2} = AV_{SS0} = AV_{SS1} = AV_{SS2} = 0 \text{ V}, C_L = 50 \text{ pF}$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Delay time from EV_DD rise to V_DD rise	t RVR	When using an external reset	-50	50	ms
		When using an internal reset	-50	0	ms
Delay time from EVDD rise to AVDD rise	t RAR	When using an external reset	-50	50	ms
		When using an internal reset	-50	0	ms
Delay time from EVDD rise to RESET rise	trrr	When using an external reset	T _{osc} + 0.5		ms
Delay time from EVDD fall to VDD fall	teve		0	50	ms
Delay time from EVDD fall to AVDD fall	t FAF		0	50	ms

Remark Tosc: Oscillation stabilization time

Supply voltage application/cutoff timing

2. Apply all of the EVDD0, EVDD1, EVDD2, VDD0, VDD1, VDD2, AVDD0, AVDD1, and AVDD2 power supplies. It is prohibited to apply one of these power supplies without supplying them all.

(a) External RESET (recommended conditions)

(b) Internal RESET (recommended conditions)

<R> Cautions 1. There are no regulations for the voltage level and time of EVDD0, EVDD1, EVDD2, VDD0, VDD1, VDD2, AVDD0, AVDD1, and AVDD2 in the process of natural discharge after power supply cutoff.