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Introduction
1.3 MCU Block Diagram
This block diagram shows the structure of the MC9S08RC/RD/RE/RG MCUs

Figure 1-1. MC9S08RC/RD/RE/RG Block Diagram

Table 1-2 lists the functional versions of the on-chip modules.
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Chapter 2
Pins and Connections

2.1 Introduction
This section describes signals that connect to package pins. It includes a pinout diagram, a table of signal
properties, and detailed discussion of signals.

2.2 Device Pin Assignment

Figure 2-1. MC9S08RC/RD/RE/RG in 44-Pin LQFP Package
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Pins and Connections
When an on-chip peripheral system is controlling a pin, data direction control bits still determine what is
read from port data registers even though the peripheral module controls the pin direction by controlling
the enable for the pin’s output buffer. See the Chapter 6, “Parallel Input/Output,” for more details.

Pullup enable bits for each input pin control whether on-chip pullup devices are enabled whenever the pin
is acting as an input even if it is being controlled by an on-chip peripheral module. When the PTA7–PTA4
pins are controlled by the KBI module and are configured for rising-edge/high-level sensitivity, the pullup
enable control bits enable pulldown devices rather than pullup devices. Similarly, when PTD2 is
configured as the IRQ input and is set to detect rising edges, the pullup enable control bit enables a
pulldown device rather than a pullup device.

2.3.7 Signal Properties Summary

Table 2-2 summarizes I/O pin characteristics. These characteristics are determined by the way the
common pin interfaces are hardwired to internal circuits.

Table 2-1. Pin Sharing References

Port Pins
Alternate
Function

Reference(1)

1. See this chapter for information about modules that share these pins.

PTA7–PTA0 KBI1P7–KBI1P0 Chapter 9, “Keyboard Interrupt (S08KBIV1)”

PTB7 TPM1CH1 Chapter 10, “Timer/PWM Module (S08TPMV1)”

PTB6–PTB2 — Chapter 6, “Parallel Input/Output”

PTB1
PTB0

RxD1
TxD1

Chapter 11, “Serial Communications Interface (S08SCIV1)”

PTC7
PTC6
PTC5
PTC4

SS1
SPSCK1
MISO1
MOSI1

Chapter 13, “Serial Peripheral Interface (S08SPIV3)”

PTC3–PTC0 KBI2P3–KBI2P0 Chapter 9, “Keyboard Interrupt (S08KBIV1)”

PTD6 TPM1CH0 Chapter 10, “Timer/PWM Module (S08TPMV1)”

PTD5
PTD4

ACMP1+
ACMP1–

Chapter 14, “Analog Comparator (S08ACMPV1)”

PTD2 IRQ Chapter 5, “Resets, Interrupts, and System Configuration”

PTD1 RESET

PTD0 BKGD/MS

PTE7–PTE0 — Chapter 6, “Parallel Input/Output”
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Chapter 3
Modes of Operation

3.1 Introduction
The operating modes of the MC9S08RC/RD/RE/RG are described in this section. Entry into each mode,
exit from each mode, and functionality while in each of the modes are described.

3.2 Features
• Active background mode for code development

• Wait mode:

— CPU shuts down to conserve power
— System clocks running
— Full voltage regulation maintained

• Stop modes:

— System clocks stopped; voltage regulator in standby
— Stop1 — Full power down of internal circuits for maximum power savings
— Stop2 — Partial power down of internal circuits, RAM remains operational
— Stop3 — All internal circuits powered for fast recovery

3.3 Run Mode

This is the normal operating mode for the MC9S08RC/RD/RE/RG. This mode is selected when the
BKGD/MS pin is high at the rising edge of reset. In this mode, the CPU executes code from internal
memory with execution beginning at the address fetched from memory at $FFFE:$FFFF after reset.

3.4 Active Background Mode
The active background mode functions are managed through the background debug controller (BDC) in
the HCS08 core. The BDC, together with the on-chip debug module (DBG), provide the means for
analyzing MCU operation during software development.

Active background mode is entered in any of five ways:

• When the BKGD/MS pin is low at the rising edge of reset

• When a BACKGROUND command is received through the BKGD pin

• When a BGND instruction is executed

• When encountering a BDC breakpoint

• When encountering a DBG breakpoint
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Modes of Operation
After active background mode is entered, the CPU is held in a suspended state waiting for serial
background commands rather than executing instructions from the user’s application program.

Background commands are of two types:

• Non-intrusive commands, defined as commands that can be issued while the user program is
running. Non-intrusive commands can be issued through the BKGD pin while the MCU is in run
mode; non-intrusive commands can also be executed when the MCU is in the active background
mode. Non-intrusive commands include:

— Memory access commands

— Memory-access-with-status commands

— BDC register access commands

— BACKGROUND command

• Active background commands, which can only be executed while the MCU is in active background
mode, include commands to:

— Read or write CPU registers

— Trace one user program instruction at a time

— Leave active background mode to return to the user’s application program (GO)

The active background mode is used to program a bootloader or user application program into the FLASH
program memory before the MCU is operated in run mode for the first time. When the
MC9S08RC/RD/RE/RG is shipped from the Freescale Semiconductor factory, the FLASH program
memory is usually erased so there is no program that could be executed in run mode until the FLASH
memory is initially programmed. The active background mode can also be used to erase and reprogram
the FLASH memory after it has been previously programmed.

For additional information about the active background mode, refer to the Development Support chapter.

3.5 Wait Mode
Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU
enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the
wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and
resumes processing, beginning with the stacking operations leading to the interrupt service routine.

Only the BACKGROUND command and memory-access-with-status commands are available when the
MCU is in wait mode. The memory-access-with-status commands do not allow memory access, but they
report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND command can
be used to wake the MCU from wait mode and enter active background mode.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Memory
4.4.1 Features

Features of the FLASH memory include:

• FLASH Size

— MC9S08RC/RD/RE/RG60 — 63374 bytes (124 pages of 512 bytes each)

— MC9S08RC/RD/RE/RG32 — 32768 bytes (64 pages of 512 bytes each)

— MC9S08RC/RD/RE16 — 16384 bytes (32 pages of 512 bytes each)

— MC9S08RC/RD/RE8 — 8192 bytes (16 pages of 512 bytes each)

• Single power supply program and erase

• Command interface for fast program and erase operation

• Up to 100,000 program/erase cycles at typical voltage and temperature

• Flexible block protection

• Security feature for FLASH and RAM

• Auto power-down for low-frequency read accesses

4.4.2 Program and Erase Times

Before any program or erase command can be accepted, the FLASH clock divider register (FCDIV) must
be written to set the internal clock for the FLASH module to a frequency (fFCLK) between 150 kHz and
200 kHz (see Section 4.6.1, “FLASH Clock Divider Register (FCDIV)”). This register can be written only
once, so normally this write is done during reset initialization. FCDIV cannot be written if the access error
flag, FACCERR in FSTAT, is set. The user must ensure that FACCERR is not set before writing to the
FCDIV register. One period of the resulting clock (1/fFCLK) is used by the command processor to time
program and erase pulses. An integer number of these timing pulses are used by the command processor
to complete a program or erase command.

Table 4-4 shows program and erase times. The bus clock frequency and FCDIV determine the frequency
of FCLK (fFCLK). The time for one cycle of FCLK is tFCLK = 1/fFCLK. The times are shown as a number
of cycles of FCLK and as an absolute time for the case where tFCLK = 5 µs. Program and erase times
shown include overhead for the command state machine and enabling and disabling of program and erase
voltages.

Table 4-4. Program and Erase Times

Parameter Cycles of FCLK Time if FCLK = 200 kHz

Byte program 9 45 µs

Byte program (burst) 4 20 µs(1)

1. Excluding start/end overhead

Page erase 4000 20 ms

Mass erase 20,000 100 ms
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Memory
2. Writing the user-entered key values to the NVBACKKEY through NVBACKKEY+7 locations.
These writes must be done in order starting with the value for NVBACKKEY and ending with
NVBACKKEY+7. STHX must not be used for these writes because these writes cannot be done
on adjacent bus cycles. User software normally would get the key codes from outside the MCU
system through a communication interface such as a serial I/O.

3. Writing 0 to KEYACC in the FCNFG register. If the 8-byte key that was just written matches the
key stored in the FLASH locations, SEC01:SEC00 are automatically changed to 1:0 and security
will be disengaged until the next reset.

The security key can be written only from RAM, so it cannot be entered through background commands
without the cooperation of a secure user program. The FLASH memory cannot be accessed by read
operations while KEYACC is set.

The backdoor comparison key (NVBACKKEY through NVBACKKEY+7) is located in FLASH memory
locations in the nonvolatile register space so users can program these locations exactly as they would
program any other FLASH memory location. The nonvolatile registers are in the same 512-byte block of
FLASH as the reset and interrupt vectors, so block protecting that space also block protects the backdoor
comparison key. Block protects cannot be changed from user application programs, so if the vector space
is block protected, the backdoor security key mechanism cannot permanently change the block protect,
security settings, or the backdoor key.

Security can always be disengaged through the background debug interface by performing these steps:

1. Disable any block protections by writing FPROT. FPROT can be written only with background
debug commands, not from application software.

2. Mass erase FLASH if necessary.

3. Blank check FLASH. Provided FLASH is completely erased, security is disengaged until the next
reset.

To avoid returning to secure mode after the next reset, program NVOPT so SEC01:SEC00 = 1:0.

4.6 FLASH Registers and Control Bits
The FLASH module has nine 8-bit registers in the high-page register space, three locations in the
nonvolatile register space in FLASH memory that are copied into three corresponding high-page control
registers at reset. There is also an 8-byte comparison key in FLASH memory. Refer to Table 4-2 and
Table 4-3 for the absolute address assignments for all FLASH registers. This section refers to registers and
control bits only by their names. A Freescale-provided equate or header file normally is used to translate
these names into the appropriate absolute addresses.

4.6.1 FLASH Clock Divider Register (FCDIV)

Bit 7 of this register is a read-only status flag. Bits 6 through 0 may be read at any time but can be written
only one time. Before any erase or programming operations are possible, write to this register to set the
frequency of the clock for the nonvolatile memory system within acceptable limits.
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Resets, Interrupts, and System Configuration
The MC9S08RC/RD/RE/RG has these sources for reset:

• Power-on reset (POR)

• Low-voltage detect (LVD)

• Computer operating properly (COP) timer

• Illegal opcode detect

• Illegal address (16K and 8K devices only)

• Background debug forced reset

• The reset pin (RESET)

Each of these sources, with the exception of the background debug forced reset, has an associated bit in
the system reset status register. Whenever the MCU enters reset, the reset pin is driven low for 34 internal
bus cycles where the internal bus frequency is one-half the OSC frequency. After the 34 cycles are
completed, the pin is released and will be pulled up by the internal pullup resistor, unless it is held low
externally. After the pin is released, it is sampled after another 38 cycles to determine whether the reset pin
is the cause of the MCU reset.

5.4 Computer Operating Properly (COP) Watchdog
The COP watchdog is intended to force a system reset when the application software fails to execute as
expected. To prevent a system reset from the COP timer (when it is enabled), application software must
reset the COP timer periodically. If the application program gets lost and fails to reset the COP before it
times out, a system reset is generated to force the system back to a known starting point. The COP
watchdog is enabled by the COPE bit in SOPT (see Section 5.8.4, “System Options Register (SOPT),” for
additional information). The COP timer is reset by writing any value to the address of SRS. This write does
not affect the data in the read-only SRS. Instead, the act of writing to this address is decoded and sends a
reset signal to the COP timer.

After any reset, the COP timer is enabled. This provides a reliable way to detect code that is not executing
as intended. If the COP watchdog is not used in an application, it can be disabled by clearing the COPE
bit in the write-once SOPT register. Also, the COPT bit can be used to choose one of two timeout periods
(218 or 220 cycles of the bus rate clock). Even if the application will use the reset default settings in COPE
and COPT, the user must write to write-once SOPT during reset initialization to lock in the settings. That
way, they cannot be changed accidentally if the application program gets lost.

The write to SRS that services (clears) the COP timer must not be placed in an interrupt service routine
(ISR) because the ISR could continue to be executed periodically even if the main application program
fails.

When the MCU is in active background mode, the COP timer is temporarily disabled.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine
(ISR), and then restore the CPU status so processing resumes where it was before the interrupt. Other than
the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events such
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Resets, Interrupts, and System Configuration
5.8.4 System Options Register (SOPT)

This register may be read at any time. Bits 3 and 2 are unimplemented and always read 0. This is a
write-once register so only the first write after reset is honored. Any subsequent attempt to write to SOPT
(intentionally or unintentionally) is ignored to avoid accidental changes to these sensitive settings. SOPT
must be written during the user’s reset initialization program to set the desired controls even if the desired
settings are the same as the reset settings.

7 6 5 4 3 2 1 0

R
COPE COPT STOPE

0 0
BKGDPE RSTPE

W

Reset 1 1 0 1 0 0 1 1

= Unimplemented or Reserved

Figure 5-5.  System Options Register (SOPT)

Table 5-5. SOPT Field Descriptions

Field Description

7
COPE

COP Watchdog Enable — This write-once bit defaults to 1 after reset.
0 COP watchdog timer disabled.
1 COP watchdog timer enabled (force reset on timeout).

6
COPT

COP Watchdog Timeout — This write-once bit defaults to 1 after reset.
0 Short timeout period selected (218 cycles of BUSCLK).
1 Long timeout period selected (220 cycles of BUSCLK).

5
STOPE

Stop Mode Enable — This write-once bit defaults to 0 after reset, which disables stop mode. If stop mode is
disabled and a user program attempts to execute a STOP instruction, an illegal opcode reset is forced.
0 Stop mode disabled.
1 Stop mode enabled.

1
BKGDPE

Background Debug Mode Pin Enable — The BKGDPE bit enables the PTD0/BKGD/MS pin to function as
BKGD/MS. When the bit is clear, the pin will function as PTD0, which is an output only general purpose I/O. This
pin always defaults to BKGD/MS function after any reset.
0 BKGD pin disabled.
1 BKGD pin enabled.

0
RSTPE

RESET Pin Enable — The RSTPE bit enables the PTD1/RESET pin to function as RESET. When the bit is clear,
the pin will function as PTD1, which is an output only general purpose I/O. This pin always defaults to RESET
function after any reset.
0 RESET pin disabled.
1 RESET pin enabled.
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Resets, Interrupts, and System Configuration
5.8.5 System Device Identification Register (SDIDH, SDIDL)

This read-only register is included so host development systems can identify the HCS08 derivative and
revision number. This allows the development software to recognize where specific memory blocks,
registers, and control bits are located in a target MCU.

7 6 5 4 3 2 1 0

R REV3 REV2 REV1 REV0 ID11 ID10 ID9 ID8

W

Reset 0(1)

1. The revision number that is hard coded into these bits reflects the current silicon revision level.

0(1) 0(1) 0(1) 0 0 0 0

= Unimplemented or Reserved

Figure 5-6. System Device Identification Register — High (SDIDH)

Table 5-6. SDIDH Field Descriptions

Field Description

7:4
REV[3:0]

Revision Number — The high-order 4 bits of address $1806 are hard coded to reflect the current mask set
revision number (0–F).

3:0
ID[11:8]

Part Identification Number — Each derivative in the HCS08 Family has a unique identification number. The
MC9S08RC/RD/RE/RG32/60 is hard coded to the value $004 and the MC9S08RC/RD/RE8/16 is hard coded to
the value $003.

7 6 5 4 3 2 1 0

R ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

W

Reset, 8/16K: 0 0 0 0 0 1 1 1

Reset, 32/60K: 0 0 0 0 0 1 0 0

= Unimplemented or Reserved

Figure 5-7. System Device Identification Register — Low (SDIDL)

Table 5-7. SDIDL Field Descriptions

Field Description

7:0
ID[7:0]

Part Identification Number — Each derivative in the HCS08 Family has a unique identification number. The
MC9S08RC/RD/RE/RG32/60 is hard coded to the value $004 and the MC9S08RC/RD/RE8/16 is hard coded to
the value $003.
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STHX opr16a
STHX oprx8,SP

Store H:X (Index Reg.) (M:M + 0x0001) ← (H:X)
0 – – – DIR

EXT
SP1

35
96

9EFF

dd
hh ll
ff

4
5
5

STOP

Enable Interrupts:
Stop Processing
Refer to MCU
Documentation

I bit ← 0; Stop Processing
– – 0 – – –

INH 8E 2+

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX   ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of
Index Register)
in Memory

M ← (X)

0 – – – DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9EDF
9EEF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

SUB  #opr8i
SUB opr8a
SUB opr16a
SUB oprx16,X
SUB oprx8,X
SUB   ,X
SUB oprx16,SP
SUB oprx8,SP

Subtract A ← (A) – (M)

– – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A0
B0
C0
D0
E0
F0

9ED0
9EE0

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SWI Software Interrupt

PC ← (PC) + 0x0001
Push (PCL); SP ← (SP) – 0x0001
Push (PCH); SP ← (SP) – 0x0001

Push (X); SP ← (SP) – 0x0001
Push (A); SP ← (SP) – 0x0001

Push (CCR); SP ← (SP) – 0x0001
I ← 1;

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

– – 1 – – –

INH 83 11

Table 7-2. HCS08 Instruction Set Summary (Sheet 6 of 7)
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Timer/PWM (TPM)
independently be configured to operate in input capture, output compare, or buffered edge-aligned PWM
mode.

The following sections describe the main 16-bit counter and each of the timer operating modes (input
capture, output compare, edge-aligned PWM, and center-aligned PWM). Because details of pin operation
and interrupt activity depend on the operating mode, these topics are covered in the associated mode
sections.

10.5.1 Counter

All timer functions are based on the main 16-bit counter (TPM1CNTH:TPM1CNTL). This section
discusses selection of the clock source, up-counting vs. up-/down-counting, end-of-count overflow, and
manual counter reset.

After any MCU reset, CLKSB:CLKSA = 0:0 so no clock source is selected and the TPM is inactive.
Normally, CLKSB:CLKSA would be set to 0:1 so the bus clock drives the timer counter. The clock source
for the TPM can be selected to be off, the bus clock (BUSCLK), the fixed system clock (XCLK), or an
external input through the TPM1CH0 pin. The maximum frequency allowed for the external clock option
is one-fourth the bus rate. Refer to Section 10.7.1, “Timer Status and Control Register (TPM1SC),” and
Table 10-2 for more information about clock source selection.

When the microcontroller is in active background mode, the TPM temporarily suspends all counting until
the microcontroller returns to normal user operating mode. During stop mode, all TPM clocks are stopped;
therefore, the TPM is effectively disabled until clocks resume. During wait mode, the TPM continues to
operate normally.

The main 16-bit counter has two counting modes. When center-aligned PWM is selected (CPWMS = 1),
the counter operates in up-/down-counting mode. Otherwise, the counter operates as a simple up-counter.
As an up-counter, the main 16-bit counter counts from $0000 through its terminal count and then continues
with $0000. The terminal count is $FFFF or a modulus value in TPM1MODH:TPM1MODL.

When center-aligned PWM operation is specified, the counter counts upward from $0000 through its
terminal count and then counts downward to $0000 where it returns to up-counting. Both $0000 and the
terminal count value (value in TPM1MODH:TPM1MODL) are normal length counts (one timer clock
period long).

An interrupt flag and enable are associated with the main 16-bit counter. The timer overflow flag (TOF) is
a software-accessible indication that the timer counter has overflowed. The enable signal selects between
software polling (TOIE = 0) where no hardware interrupt is generated, or interrupt-driven operation
(TOIE = 1) where a static hardware interrupt is automatically generated whenever the TOF flag is 1.

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In
up-counting mode, the main 16-bit counter counts from $0000 through $FFFF and overflows to $0000 on
the next counting clock. TOF becomes set at the transition from $FFFF to $0000. When a modulus limit
is set, TOF becomes set at the transition from the value set in the modulus register to $0000. When the
main 16-bit counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes
direction at the transition from the value set in the modulus register and the next lower count value. This
corresponds to the end of a PWM period. (The $0000 count value corresponds to the center of a period.)
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Serial Communications Interface (S08SCIV1)
12.1.3 Block Diagram

Figure 12-1 shows the transmitter portion of the SCI. (Figure 12-2 shows the receiver portion of the SCI.)

Figure 12-1. SCI Transmitter Block Diagram
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Serial Communications Interface (S08SCIV1)
12.2 Register Definition
The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for
transmit/receive data.

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all SCI registers. This section refers to registers and control bits only by their names. A
Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.

12.2.1 SCI Baud Rate Registers (SCI1BDH, SCI1BHL)

This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud
rate setting [SBR12:SBR0], first write to SCI1BDH to buffer the high half of the new value and then write
to SCI1BDL. The working value in SCI1BDH does not change until SCI1BDL is written.

SCI1BDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the first
time the receiver or transmitter is enabled (RE or TE bits in SCI1C2 are written to 1).

7 6 5 4 3 2 1 0

R 0 0 0
SBR12 SBR11 SBR10 SBR9 SBR8

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-3. SCI Baud Rate Register (SCI1BDH)

Table 12-1. SCI1BDH Register Field Descriptions

Field Description

4:0
SBR[12:8]

Baud Rate Modulo Divisor — These 13 bits are referred to collectively as BR, and they set the modulo divide
rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply
current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 12-2.

7 6 5 4 3 2 1 0

R
SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

W

Reset 0 0 0 0 0 1 0 0

Figure 12-4. SCI Baud Rate Register (SCI1BDL)

Table 12-2. SCI1BDL Register Field Descriptions

Field Description

7:0
SBR[7:0]

Baud Rate Modulo Divisor — These 13 bits are referred to collectively as BR, and they set the modulo divide
rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply
current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 12-1.
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Serial Peripheral Interface (SPI) Module
SSOE — Slave Select Output Enable

This bit is used in combination with the mode fault enable (MODFEN) bit in SPCR2 and the
master/slave (MSTR) control bit to determine the function of the SS1 pin as shown in Table 13-1.

LSBFE — LSB First (Shifter Direction)
1 = SPI serial data transfers start with least significant bit.
0 = SPI serial data transfers start with most significant bit.

13.4.2 SPI Control Register 2 (SPI1C2)

This read/write register is used to control optional features of the SPI system. Bits 7, 6, 5, and 2 are not
implemented and always read 0.

Figure 13-8. SPI Control Register 2 (SPI1C2)

MODFEN — Master Mode-Fault Function Enable

When the SPI is configured for slave mode, this bit has no meaning or effect. (The SS1 pin is the slave
select input.) In master mode, this bit determines how the SS1 pin is used (refer to Table 13-1 for more
details).

1 = Mode fault function enabled, master SS1 pin acts as the mode fault input or the slave select
output.

0 = Mode fault function disabled, master SS1 pin reverts to general-purpose I/O not controlled by
SPI.

Table 13-1. SS1 Pin Function

MODFEN SSOE Master Mode Slave Mode

0 0 General-purpose I/O (not SPI) Slave select input

0 1 General-purpose I/O (not SPI) Slave select input

1 0 SS input for mode fault Slave select input

1 1 Automatic SS output Slave select input

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 <st-blue>
MODFEN

<st-blue>
BIDIROE

0 <st-blue>
SPISWAI

<st-blue>
SPC0Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
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Serial Peripheral Interface (SPI) Module
SPR2:SPR1:SPR0 — SPI Baud Rate Divisor

This 3-bit field selects one of eight divisors for the SPI baud rate divider as shown in Figure 13-3. The
input to this divider comes from the SPI baud rate prescaler (see Figure 13-4). The output of this
divider is the SPI bit rate clock for master mode.

Table 13-2. SPI Baud Rate Prescaler Divisor

SPPR2:SPPR1:SPPR0 Prescaler Divisor

0:0:0 1

0:0:1 2

0:1:0 3

0:1:1 4

1:0:0 5

1:0:1 6

1:1:0 7

1:1:1 8

Table 13-3. SPI Baud Rate Divisor

SPR2:SPR1:SPR0 Rate Divisor

0:0:0 2

0:0:1 4

0:1:0 8

0:1:1 16

1:0:0 32

1:0:1 64

1:1:0 128

1:1:1 256
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Development Support
15.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture
bus information and what information to capture. The system relies on the single-wire background debug
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map.
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any
of the control and status registers for the debug module. The one exception is that the debug system can
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in
Section 15.3.6, “Hardware Breakpoints.”

15.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is
actually executed as opposed to only being read from memory into the instruction queue. The comparators
are also capable of magnitude comparisons to support the inside range and outside range trigger modes.
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an
additional purpose, in full address plus data comparisons they are used to decide which of these buses to
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU

• Storage of data bus values into the FIFO

• Starting to store change-of-flow addresses into the FIFO (begin type trace)

• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

15.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11

192 Freescale Semiconductor



Development Support
the host must perform ((8 – CNT) – 1) dummy reads of the FIFO to advance it to the first significant entry
in the FIFO.

In most trigger modes, the information stored in the FIFO consists of 16-bit change-of-flow addresses. In
these cases, read DBGFH then DBGFL to get one coherent word of information out of the FIFO. Reading
DBGFL (the low-order byte of the FIFO data port) causes the FIFO to shift so the next word of information
is available at the FIFO data port. In the event-only trigger modes (see Section 15.3.5, “Trigger Modes”),
8-bit data information is stored into the FIFO. In these cases, the high-order half of the FIFO (DBGFH) is
not used and data is read out of the FIFO by simply reading DBGFL. Each time DBGFL is read, the FIFO
is shifted so the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses, there is a delay between CPU
addresses and the input side of the FIFO. Because of this delay, if the trigger event itself is a change-of-flow
address or a change-of-flow address appears during the next two bus cycles after a trigger event starts the
FIFO, it will not be saved into the FIFO. In the case of an end-trace, if the trigger event is a change-of-flow,
it will be saved as the last change-of-flow entry for that debug run.

The FIFO can also be used to generate a profile of executed instruction addresses when the debugger is not
armed. When ARM = 0, reading DBGFL causes the address of the most-recently fetched opcode to be
saved in the FIFO. To use the profiling feature, a host debugger would read addresses out of the FIFO by
reading DBGFH then DBGFL at regular periodic intervals. The first eight values would be discarded
because they correspond to the eight DBGFL reads needed to initially fill the FIFO. Additional periodic
reads of DBGFH and DBGFL return delayed information about executed instructions so the host debugger
can develop a profile of executed instruction addresses.

15.3.3 Change-of-Flow Information

To minimize the amount of information stored in the FIFO, only information related to instructions that
cause a change to the normal sequential execution of instructions is stored. With knowledge of the source
and object code program stored in the target system, an external debugger system can reconstruct the path
of execution through many instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch condition was true), the source
address is stored (the address of the conditional branch opcode). Because BRA and BRN instructions are
not conditional, these events do not cause change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X index register pair to determine the
destination address, so the debug system stores the run-time destination address for any indirect JMP or
JSR. For interrupts, RTI, or RTS, the destination address is stored in the FIFO as change-of-flow
information.

15.3.4 Tag vs. Force Breakpoints and Triggers

Tagging is a term that refers to identifying an instruction opcode as it is fetched into the instruction queue,
but not taking any other action until and unless that instruction is actually executed by the CPU. This
distinction is important because any change-of-flow from a jump, branch, subroutine call, or interrupt
causes some instructions that have been fetched into the instruction queue to be thrown away without being
executed.
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