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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SO
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Pins and Connections
Figure 2-2. MC9S08RC/RD/RE/RG in 32-Pin LQFP Package

Figure 2-3. MC9S08RC/RD/RE/RG in 28-Pin SOIC Package and 28-Pin PDIP Package
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Memory
4.6.2 FLASH Options Register (FOPT and NVOPT)

During reset, the contents of the nonvolatile location NVOPT are copied from FLASH into FOPT. Bits 5
through 2 are not used and always read 0. This register may be read at any time, but writes have no meaning
or effect. To change the value in this register, erase and reprogram the NVOPT location in FLASH memory
as usual and then issue a new MCU reset.

4.6.3 FLASH Configuration Register (FCNFG)

Bits 7 through 5 may be read or written at any time. Bits 4 through 0 always read 0 and cannot be written.

7 6 5 4 3 2 1 0

R KEYEN FNORED 0 0 0 0 SEC01 SEC00

W

Reset This register is loaded from nonvolatile location NVOPT during reset.

= Unimplemented or Reserved

Figure 4-6. FLASH Options Register (FOPT)

Table 4-7. FOPT Field Descriptions

Field Description

7
KEYEN

Backdoor Key Mechanism Enable — When this bit is 0, the backdoor key mechanism cannot be used to
disengage security. The backdoor key mechanism is accessible only from user (secured) firmware. BDM
commands cannot be used to write key comparison values that would unlock the backdoor key. For more detailed
information about the backdoor key mechanism, refer to Section 4.5, “Security."
0 No backdoor key access allowed.
1 If user firmware writes an 8-byte value that matches the nonvolatile backdoor key (NVBACKKEY through

NVBACKKEY+7 in that order), security is temporarily disengaged until the next MCU reset.

6
FNORED

Vector Redirection Disable — When this bit is 1, then vector redirection is disabled.
0 Vector redirection enabled.
1 Vector redirection disabled.

1:0
SEC0[1:0]

Security State Code — This 2-bit field determines the security state of the MCU as shown below. When the
MCU is secure, the contents of RAM and FLASH memory cannot be accessed by instructions from any
unsecured source including the background debug interface. For more detailed information about security, refer
to Section 4.5, “Security.”
00 Secure
01 Secure
10 Unsecured
11 Secure
SEC01:SEC00 changes to 1:0 after successful backdoor key entry or a successful blank check of FLASH.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Resets, Interrupts, and System Configuration
as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI under
certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The
CPU will not respond until and unless the local interrupt enable is a logic 1 to enable the interrupt. The I
bit in the CCR is logic 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set
after reset, which masks (prevents) all maskable interrupt sources. The user program initializes the stack
pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt sequence uses the same cycle-by-cycle sequence as the SWI instruction and
consists of:

• Saving the CPU registers on the stack

• Setting the I bit in the CCR to mask further interrupts

• Fetching the interrupt vector for the highest-priority interrupt that is currently pending

• Filling the instruction queue with the first three bytes of program information starting from the
address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another
interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0
when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit may be cleared
inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be
serviced without waiting for the first service routine to finish. This practice is not recommended for anyone
other than the most experienced programmers because it can lead to subtle program errors that are difficult
to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction that restores the CCR, A,
X, and PC registers to their pre-interrupt values by reading the previously saved information off the stack.

NOTE
For compatibility with the M68HC08 Family, the H register is not
automatically saved and restored. It is good programming practice to push
H onto the stack at the start of the interrupt service routine (ISR) and restore
it just before the RTI that is used to return from the ISR.

If two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced first
(see Table 5-1).

5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before the interrupt, the stack pointer
(SP) points at the next available byte location on the stack. The current values of CPU registers are stored
on the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After
stacking, the SP points at the next available location on the stack, which is the address that is one less than
the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the
main program that would have executed next if the interrupt had not occurred.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Resets, Interrupts, and System Configuration
5.8.6 System Real-Time Interrupt Status and Control Register (SRTISC)

This register contains one read-only status flag, one write-only acknowledge bit, three read/write delay
selects, and three unimplemented bits, which always read 0.

7 6 5 4 3 2 1 0

R RTIF 0
RTICLKS RTIE

0
RTIS2 RTIS1 RTIS0

W RTIACK

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-8. System RTI Status and Control Register (SRTISC)

Table 5-8. SRTISC Field Descriptions

Field Description

7
RTIF

Real-Time Interrupt Flag — This read-only status bit indicates the periodic wakeup timer has timed out.
0 Periodic wakeup timer not timed out.
1 Periodic wakeup timer timed out.

6
RTIACK

Real-Time Interrupt Acknowledge — This write-only bit is used to acknowledge real-time interrupt request
(write 1 to clear RTIF). Writing 0 has no meaning or effect. Reads always return 0.

5
RTICLKS

Real-Time Interrupt Clock Select — This read/write bit selects the clock source for the real-time interrupt.
0 Real-time interrupt request clock source is internal 1-kHz oscillator.
1 Real-time interrupt request clock source is external clock.

4
RTIE

Real-Time Interrupt Enable — This read-write bit enables real-time interrupts.
0 Real-time interrupts disabled.
1 Real-time interrupts enabled.

2:0
RTIS[2:0]

Real-Time Interrupt Period Selects — These read/write bits select the wakeup period for the RTI. One clock
source for the real-time interrupt is its own internal clock source, which oscillates with a period of approximately
tRTI and is independent of other MCU clock sources. Using an external clock source the delays will be crystal
frequency divided by value in RTIS2:RTIS1:RTIS0. See Table 5-9.

Table 5-9. Real-Time Interrupt Period

RTIS2:RTIS1:RTIS0
Internal Clock Source (1)

(tRTI = 1 ms, Nominal)

1. See Table A-9 tRTI  in Appendix A, “Electrical Characteristics,” for the tolerance on these values.

External Clock Source (2)

Period = text

2. text is based on the external clock source, resonator, or crystal selected by the ICG configuration. See Table A-9 for details.

0:0:0 Disable periodic wakeup timer Disable periodic wakeup timer

0:0:1 8 ms text x 256

0:1:0 32 ms tex x 1024

0:1:1 64 ms tex x 2048

1:0:0 128 ms tex x 4096

1:0:1 256 ms text x 8192

1:1:0 512 ms text x 16384

1:1:1 1.024 s tex x 32768
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11

70 Freescale Semiconductor



Parallel Input/Output
6.4.2 Internal Pullup Control

An internal pullup device can be enabled for each port pin that is configured as an input (PTxDDn = 0).
The pullup device is available for a peripheral module to use, provided the peripheral is enabled and is an
input function as long as the PTxDDn = 0.

NOTE
The voltage measured on the pulled up PTA0 pin will be less than VDD. The
internal gates connected to this pin are pulled all the way to VDD. All other
pins with enabled pullup resistors will have an unloaded measurement of
VDD.

6.5 Stop Modes
Depending on the stop mode, I/O functions differently as the result of executing a STOP instruction. An
explanation of I/O behavior for the various stop modes follows:

• When the MCU enters stop1 mode, all internal registers, including general-purpose I/O control and
data registers, are powered down. All of the general-purpose I/O pins assume their reset state:
output buffers and pullups turned off. Upon exit from stop1, all I/O must be initialized as if the
MCU had been reset.

• When the MCU enters stop2 mode, the internal registers are powered down as in stop1 but the I/O
pin states are latched and held. For example, a port pin that is an output driving low continues to
function as an output driving low even though its associated data direction and output data registers
are powered down internally. Upon exit from stop2, the pins continue to hold their states until a 1
is written to the PPDACK bit. To avoid discontinuity in the pin state following exit from stop2, the
user must restore the port control and data registers to the values they held befor4e entering stop2.
These values can be stored in RAM before entering stop2 because the RAM is maintained during
stop2.

• In stop3 mode, all I/O is maintained because internal logic circuity stays powered up. Upon
recovery, normal I/O function is available to the user.

6.6 Parallel I/O Registers and Control Bits
This section provides information about all registers and control bits associated with the parallel I/O ports.

Refer to tables in the Memory chapter for the absolute address assignments for all parallel I/O registers.
This section refers to registers and control bits only by their names. A Freescale-provided equate or header
file normally is used to translate these names into the appropriate absolute addresses.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Parallel Input/Output
6.6.1 Port A Registers (PTAD, PTAPE, and PTADD)

Port A pins used as general-purpose I/O pins are controlled by the port A data (PTAD), data direction
(PTADD), and pullup enable (PTAPE) registers.

7 6 5 4 3 2 1 0

R
PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-6. Port A Data Register (PTAD)

Table 6-1. PTAD Field Descriptions

Field Description

7:0
PTAD[7:0]

Port A Data Register Bits — For port A pins that are inputs, reads of this register return the logic level on the
pin. For port A pins that are configured as outputs, reads of this register return the last value written to this
register.
Writes are latched into all bits of this register. For port A pins that are configured as outputs, the logic level is
driven out the corresponding MCU pin.
Reset forces PTAD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures
all port pins as high-impedance inputs with pullups disabled.

7 6 5 4 3 2 1 0

R
PTAPE7 PTAPE6 PTAPE5 PTAPE4 PTAPE3 PTAPE2 PTAPE1 PTAPE0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-7. Pullup Enable for Port A (PTAPE)

Table 6-2. PTAPE Field Descriptions

Field Description

7:0
PTAPE[7:0]

Pullup Enable for Port A Bits — For port A pins that are inputs, these read/write control bits determine whether
internal pullup devices are enabled provided the corresponding PTADDn is a logic 0. For port A pins that are
configured as outputs, these bits are ignored and the internal pullup devices are disabled. When any of bits 7
through 4 of port A are enabled as KBI inputs and are configured to detect rising edges/high levels, the pullup
enable bits enable pulldown rather than pullup devices.
0 Internal pullup device disabled.
1 Internal pullup device enabled.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Parallel Input/Output
7 6 5 4 3 2 1 0

R
PTBPE7 PTBPE6 PTBPE5 PTBPE4 PTBPE3 PTBPE2 PTBPE1 PTBPE0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-10. Pullup Enable for Port B (PTBPE)

Table 6-5. PTBPE Field Descriptions

Field Description

7:0
PTBPE[7:0]

Pullup Enable for Port B Bits — For port B pins that are inputs, these read/write control bits determine whether
internal pullup devices are enabled. For port B pins that are configured as outputs, these bits are ignored and
the internal pullup devices are disabled.
0 Internal pullup device disabled.
1 Internal pullup device enabled.

7 6 5 4 3 2 1 0

R
PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDD1 PTBDD0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-11. Data Direction for Port B (PTBDD)

Table 6-6. PTBDD Field Descriptions

Field Description

7:0
PTBDD[7:0]

Data Direction for Port B Bits — These read/write bits control the direction of port B pins and what is read for
PTBD reads.
0 Input (output driver disabled) and reads return the pin value.
1 Output driver enabled for port B bit n and PTBD reads return the contents of PTBDn.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Central Processor Unit (S08CPUV2)Central Processor Unit (S08CPUV2)
7.3 Addressing Modes
Addressing modes define the way the CPU accesses operands and data. In the HCS08, all memory, status
and control registers, and input/output (I/O) ports share a single 64-Kbyte linear address space so a 16-bit
binary address can uniquely identify any memory location. This arrangement means that the same
instructions that access variables in RAM can also be used to access I/O and control registers or nonvolatile
program space.

Some instructions use more than one addressing mode. For instance, move instructions use one addressing
mode to specify the source operand and a second addressing mode to specify the destination address.
Instructions such as BRCLR, BRSET, CBEQ, and DBNZ use one addressing mode to specify the location

Table 7-1. CCR Register Field Descriptions

Field Description

7
V

Two’s Complement Overflow Flag — The CPU sets the overflow flag when a two’s complement overflow occurs.
The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.
0 No overflow
1 Overflow

4
H

Half-Carry Flag — The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during
an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded
decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C condition code bits to
automatically add a correction value to the result from a previous ADD or ADC on BCD operands to correct the
result to a valid BCD value.
0 No carry between bits 3 and 4
1 Carry between bits 3 and 4

3
I

Interrupt Mask Bit — When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts
are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set
automatically after the CPU registers are saved on the stack, but before the first instruction of the interrupt service
routine is executed.
Interrupts are not recognized at the instruction boundary after any instruction that clears I (CLI or TAP). This
ensures that the next instruction after a CLI or TAP will always be executed without the possibility of an intervening
interrupt, provided I was set.
0 Interrupts enabled
1 Interrupts disabled

2
N

Negative Flag — The CPU sets the negative flag when an arithmetic operation, logic operation, or data
manipulation produces a negative result, setting bit 7 of the result. Simply loading or storing an 8-bit or 16-bit value
causes N to be set if the most significant bit of the loaded or stored value was 1.
0 Non-negative result
1 Negative result

1
Z

Zero Flag — The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation
produces a result of 0x00 or 0x0000. Simply loading or storing an 8-bit or 16-bit value causes Z to be set if the
loaded or stored value was all 0s.
0 Non-zero result
1 Zero result

0
C

Carry/Borrow Flag — The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit
7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and
branch, shift, and rotate — also clear or set the carry/borrow flag.
0 No carry out of bit 7
1 Carry out of bit 7
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Central Processor Unit (S08CPUV2)Central Processor Unit (S08CPUV2)
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Carrier Modulator Transmitter (CMT) Block Description
8.2 Features
The CMT consists of a carrier generator, modulator, and transmitter that drives the infrared out (IRO) pin.
The features of this module include:

• Four modes of operation

— Time with independent control of high and low times

— Baseband

— Frequency shift key (FSK)

— Direct software control of IRO pin

• Extended space operation in time, baseband, and FSK modes

• Selectable input clock divide: 1, 2, 4, or 8

• Interrupt on end of cycle

— Ability to disable IRO pin and use as timer interrupt

8.3 CMT Block Diagram

Figure 8-2. Carrier Modulator Transmitter Module Block Diagram

8.4 Pin Description
The IRO pin is the only pin associated with the CMT. The pin is driven by the transmitter output when the
MCGEN bit in the CMTMSC register and the IROPEN bit in the CMTOC register are set. If the MCGEN
bit is clear and the IROPEN bit is set, the pin is driven by the IROL bit in the CMTOC register. This enables
user software to directly control the state of the IRO pin by writing to the IROL bit. If the IROPEN bit is
clear, the pin is disabled and is not driven by the CMT module. This is so the CMT can be configured as a
modulo timer for generating periodic interrupts without causing pin activity.
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Keyboard Interrupt (S08KBIV1)
Figure 9-1. MC9S08RC/RD/RE/RG Block Diagram
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NOTES:
7. Port pins are software configurable with pullup device if input port
8. PTA0 does not have a clamp diode to VDD. PTA0 should not be driven above VDD. Also, PTA0 does not pullup to VDD when internal

pullup is enabled.
9. IRQ pin contains software configurable pullup/pulldown device if IRQ enabled (IRQPE = 1)
10.The RESET pin contains integrated pullup device enabled if reset enabled (RSTPE = 1)
11.High current drive
12.Pins PTA[7:4] contain both pullup and pulldown devices. Pulldown enabled when KBI is enabled (KBIPEn = 1) and rising edge is

selected (KBEDGn = 1).
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Timer/PWM (TPM)
10.6 TPM Interrupts
The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel.
The meaning of channel interrupts depends on the mode of operation for each channel. If the channel is
configured for input capture, the interrupt flag is set each time the selected input capture edge is
recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each
time the main timer counter matches the value in the 16-bit channel value register. See the Resets,
Interrupts, and System Configuration chapter for absolute interrupt vector addresses, priority, and local
interrupt mask control bits.

For each interrupt source in the TPM, a flag bit is set on recognition of the interrupt condition such as timer
overflow, channel input capture, or output compare events. This flag may be read (polled) by software to
verify that the action has occurred, or an associated enable bit (TOIE or CHnIE) can be set to enable
hardware interrupt generation. While the interrupt enable bit is set, a static interrupt will be generated
whenever the associated interrupt flag equals 1. It is the responsibility of user software to perform a
sequence of steps to clear the interrupt flag before returning from the interrupt service routine.

10.6.1 Clearing Timer Interrupt Flags

TPM interrupt flags are cleared by a 2-step process that includes a read of the flag bit while it is set (1)
followed by a write of 0 to the bit. If a new event is detected between these two steps, the sequence is reset
and the interrupt flag remains set after the second step to avoid the possibility of missing the new event.

10.6.2 Timer Overflow Interrupt Description

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In
up-counting mode, the 16-bit timer counter counts from $0000 through $FFFF and overflows to $0000 on
the next counting clock. TOF becomes set at the transition from $FFFF to $0000. When a modulus limit
is set, TOF becomes set at the transition from the value set in the modulus register to $0000. When the
counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes direction at
the transition from the value set in the modulus register and the next lower count value. This corresponds
to the end of a PWM period. (The $0000 count value corresponds to the center of a period.)

10.6.3 Channel Event Interrupt Description

The meaning of channel interrupts depends on the current mode of the channel (input capture, output
compare, edge-aligned PWM, or center-aligned PWM).

When a channel is configured as an input capture channel, the ELSnB:ELSnA control bits select rising
edges, falling edges, any edge, or no edge (off) as the edge that triggers an input capture event. When the
selected edge is detected, the interrupt flag is set. The flag is cleared by the 2-step sequence described in
Section 10.6.1, “Clearing Timer Interrupt Flags.”

When a channel is configured as an output compare channel, the interrupt flag is set each time the main
timer counter matches the 16-bit value in the channel value register. The flag is cleared by the 2-step
sequence described in Section 10.6.1, “Clearing Timer Interrupt Flags.”
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Serial Communications Interface (S08SCIV1)
12.2.3 SCI Control Register 2 (SCI1C2)

This register can be read or written at any time.

7 6 5 4 3 2 1 0

R
TIE TCIE RIE ILIE TE RE RWU SBK

W

Reset 0 0 0 0 0 0 0 0

Figure 12-6. SCI Control Register 2 (SCI1C2)

Table 12-4. SCI1C2 Register Field Descriptions

Field Description

7
TIE

Transmit Interrupt Enable (for TDRE)
0 Hardware interrupts from TDRE disabled (use polling).
1 Hardware interrupt requested when TDRE flag is 1.

6
TCIE

Transmission Complete Interrupt Enable (for TC)
0 Hardware interrupt requested when TC flag is 1.
1 Hardware interrupts from TC disabled (use polling).

5
RIE

Receiver Interrupt Enable (for RDRF)
0 Hardware interrupts from RDRF disabled (use polling).
1 Hardware interrupt requested when RDRF flag is 1.

4
ILIE

Idle Line Interrupt Enable (for IDLE)
0 Hardware interrupts from IDLE disabled (use polling).
1 Hardware interrupt requested when IDLE flag is 1.

3
TE

Transmitter Enable
0 Transmitter off.
1 Transmitter on.
TE must be 1 in order to use the SCI transmitter. Normally, when TE = 1, the SCI forces the TxD pin to act as an
output for the SCI system. If LOOPS = 1 and RSRC = 0, the TxD pin reverts to being a port B general-purpose
I/O pin even if TE = 1.
When the SCI is configured for single-wire operation (LOOPS = RSRC = 1), TXDIR controls the direction of
traffic on the single SCI communication line (TxD pin).
TE also can be used to queue an idle character by writing TE = 0 then TE = 1 while a transmission is in progress.
Refer to Section 12.3.2.1, “Send Break and Queued Idle,” for more details.
When TE is written to 0, the transmitter keeps control of the port TxD pin until any data, queued idle, or queued
break character finishes transmitting before allowing the pin to revert to a general-purpose I/O pin.

2
RE

Receiver Enable — When the SCI receiver is off, the RxD pin reverts to being a general-purpose port I/O pin.
0 Receiver off.
1 Receiver on.
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Serial Peripheral Interface (SPI) Module
When CPHA = 1, the slave begins to drive its MISO output when SS1 goes to active low, but the data is
not defined until the first SPSCK edge. The first SPSCK edge shifts the first bit of data from the shifter
onto the MOSI output of the master and the MISO output of the slave. The next SPSCK edge causes both
the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the
third SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled,
and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the
master and slave, respectively. When CHPA = 1, the slave’s SS input is not required to go to its inactive
high level between transfers.

Figure 13-6 shows the clock formats when CPHA = 0. At the top of the figure, the eight bit times are shown
for reference with bit 1 starting as the slave is selected (SS IN goes low), and bit 8 ends at the last SPSCK
edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting in LSBFE.
Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific
transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a
slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master
and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform applies to the
slave select output from a master (provided MODFEN and SSOE = 1). The master SS output goes to active
low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after the end
of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input of a slave.

Figure 13-6. SPI Clock Formats (CPHA = 0)

BIT TIME #
(REFERENCE)

MSB FIRST
LSB FIRST

SPSCK
(CPOL = 0)

SPSCK
(CPOL = 1)

SAMPLE IN
(MISO OR MOSI)

MOSI
(MASTER OUT)

MISO
(SLAVE OUT)

SS OUT
(MASTER)

SS IN
(SLAVE)

BIT 7
BIT 0

BIT 6
BIT 1

BIT 2
BIT 5

BIT 1
BIT 6

BIT 0
BIT 7

1 2 6 7 8...

...

...
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Serial Peripheral Interface (SPI) Module
13.4.5 SPI Data Register (SPI1D)

Figure 13-11. SPI Data Register (SPI1D)

Reads of this register return the data read from the receive data buffer. Writes to this register write data
to the transmit data buffer. When the SPI is configured as a master, writing data to the transmit data
buffer initiates an SPI transfer.

Data should not be written to the transmit data buffer unless the SPI transmit buffer empty flag
(SPTEF) is set, indicating there is room in the transmit buffer to queue a new transmit byte.

Data may be read from SPI1D any time after SPRF is set and before another transfer is finished. Failure
to read the data out of the receive data buffer before a new transfer ends causes a receive overrun
condition and the data from the new transfer is lost.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0
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Development Support
BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of
microcontrollers. This protocol assumes the host knows the communication clock rate that is determined
by the target BDC clock rate. All communication is initiated and controlled by the host that drives a
high-to-low edge to signal the beginning of each bit time. Commands and data are sent most significant bit
first (MSB first). For a detailed description of the communications protocol, refer to Section 15.2.2,
“Communication Details.”

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC
command may be sent to the target MCU to request a timed sync response signal from which the host can
determine the correct communication speed.

BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required.
Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external
capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively
driven speedup pulses to force rapid rise times on this pin without risking harmful drive level conflicts.
Refer to Section 15.2.2, “Communication Details,” for more detail.

When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD
chooses normal operating mode. When a development system is connected, it can pull both BKGD and
RESET low, release RESET to select active background mode rather than normal operating mode, then
release BKGD. It is not necessary to reset the target MCU to communicate with it through the background
debug interface.

15.2.2 Communication Details

The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to
indicate the start of each bit time. The external controller provides this falling edge whether data is
transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data
is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if
512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress
when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU
system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed.

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the
BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source.

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting cycles.
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Development Support
Figure 15-3 shows the host receiving a logic 1 from the target HCS08 MCU. Because the host is
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long
enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive
before the target MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the
bit time. The host should sample the bit level about 10 cycles after it started the bit time.

Figure 15-3. BDC Target-to-Host Serial Bit Timing (Logic 1)
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A force-type breakpoint waits for the current instruction to finish and then acts upon the breakpoint
request. The usual action in response to a breakpoint is to go to active background mode rather than
continuing to the next instruction in the user application program.

The tag vs. force terminology is used in two contexts within the debug module. The first context refers to
breakpoint requests from the debug module to the CPU. The second refers to match signals from the
comparators to the debugger control logic. When a tag-type break request is sent to the CPU, a signal is
entered into the instruction queue along with the opcode so that if/when this opcode ever executes, the CPU
will effectively replace the tagged opcode with a BGND opcode so the CPU goes to active background
mode rather than executing the tagged instruction. When the TRGSEL control bit in the DBGT register is
set to select tag-type operation, the output from comparator A or B is qualified by a block of logic in the
debug module that tracks opcodes and only produces a trigger to the debugger if the opcode at the compare
address is actually executed. There is separate opcode tracking logic for each comparator so more than one
compare event can be tracked through the instruction queue at a time.

15.3.5 Trigger Modes

The trigger mode controls the overall behavior of a debug run. The 4-bit TRG field in the DBGT register
selects one of nine trigger modes. When TRGSEL = 1 in the DBGT register, the output of the comparator
must propagate through an opcode tracking circuit before triggering FIFO actions. The BEGIN bit in
DBGT chooses whether the FIFO begins storing data when the qualified trigger is detected (begin trace),
or the FIFO stores data in a circular fashion from the time it is armed until the qualified trigger is detected
(end trigger).

A debug run is started by writing a 1 to the ARM bit in the DBGC register, which sets the ARMF flag and
clears the AF and BF flags and the CNT bits in DBGS. A begin-trace debug run ends when the FIFO gets
full. An end-trace run ends when the selected trigger event occurs. Any debug run can be stopped manually
by writing a 0 to ARM or DBGEN in DBGC.

In all trigger modes except event-only modes, the FIFO stores change-of-flow addresses. In event-only
trigger modes, the FIFO stores data in the low-order eight bits of the FIFO.

The BEGIN control bit is ignored in event-only trigger modes and all such debug runs are begin type
traces. When TRGSEL = 1 to select opcode fetch triggers, it is not necessary to use R/W in comparisons
because opcode tags would only apply to opcode fetches that are always read cycles. It would also be
unusual to specify TRGSEL = 1 while using a full mode trigger because the opcode value is normally
known at a particular address.

The following trigger mode descriptions only state the primary comparator conditions that lead to a trigger.
Either comparator can usually be further qualified with R/W by setting RWAEN (RWBEN) and the
corresponding RWA (RWB) value to be matched against R/W. The signal from the comparator with
optional R/W qualification is used to request a CPU breakpoint if BRKEN = 1 and TAG determines
whether the CPU request will be a tag request or a force request.
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