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Introduction
1.4 System Clock Distribution

Figure 1-2. System Clock Distribution Diagram

Table 1-2 shows a simplified clock connection diagram for the MCU. The CPU operates at the input
frequency of the oscillator. The bus clock frequency is half of the oscillator frequency and is used by all of
the internal circuits with the exception of the CPU and RTI. The RTI can use either the oscillator input or
the internal RTI oscillator as its clock source.

Table 1-2. Block Versions

Module Version

Analog Comparator (ACMP) 1

Carrier Modulator Transmitter (CMT) 1

Keyboard Interrupt (KBI) 1

Serial Communications Interface (SCI) 1

Serial Peripheral Interface (SPI) 3

Timer Pulse-Width Modulator (TPM) 1

Central Processing Unit (CPU) 2

Debug Module (DBG) 1

FLASH 1

System Control 2

TPM CMT SCI SPI

BDCCPU ACMP RAM FLASH

OSC
OSCOUT* ÷2

SYSTEM

LOGIC

BUSCLK

FLASH has frequency
requirements for program
and erase operation.
See Appendix A.

CONTROL

RTI

RTI
OSC

RTICLKS

* OSCOUT is the alternate BDC clock source for the MC9S08RC/RD/RE/RG.
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Chapter 3
Modes of Operation

3.1 Introduction
The operating modes of the MC9S08RC/RD/RE/RG are described in this section. Entry into each mode,
exit from each mode, and functionality while in each of the modes are described.

3.2 Features
• Active background mode for code development

• Wait mode:

— CPU shuts down to conserve power
— System clocks running
— Full voltage regulation maintained

• Stop modes:

— System clocks stopped; voltage regulator in standby
— Stop1 — Full power down of internal circuits for maximum power savings
— Stop2 — Partial power down of internal circuits, RAM remains operational
— Stop3 — All internal circuits powered for fast recovery

3.3 Run Mode

This is the normal operating mode for the MC9S08RC/RD/RE/RG. This mode is selected when the
BKGD/MS pin is high at the rising edge of reset. In this mode, the CPU executes code from internal
memory with execution beginning at the address fetched from memory at $FFFE:$FFFF after reset.

3.4 Active Background Mode
The active background mode functions are managed through the background debug controller (BDC) in
the HCS08 core. The BDC, together with the on-chip debug module (DBG), provide the means for
analyzing MCU operation during software development.

Active background mode is entered in any of five ways:

• When the BKGD/MS pin is low at the rising edge of reset

• When a BACKGROUND command is received through the BKGD pin

• When a BGND instruction is executed

• When encountering a BDC breakpoint

• When encountering a DBG breakpoint
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Memory
4.6.4 FLASH Protection Register (FPROT and NVPROT)

During reset, the contents of the nonvolatile location NVPROT is copied from FLASH into FPROT. Bits 0,
1, and 2 are not used and each always reads as 0. This register may be read at any time, but user program
writes have no meaning or effect. Background debug commands can write to FPROT at $1824.

7 6 5 4 3 2 1 0

R
KEYACC

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-7. FLASH Configuration Register (FCNFG)

Table 4-8. FCNFG Field Descriptions

Field Description

5
KEYACC

Enable Writing of Access Key — This bit enables writing of the backdoor comparison key. For more detailed
information about the backdoor key mechanism, refer to Section 4.5, “Security."
0 Writes to $FFB0–$FFB7 are interpreted as the start of a FLASH programming or erase command.
1 Writes to NVBACKKEY ($FFB0–$FFB7) are interpreted as comparison key writes.

Reads of the FLASH return invalid data.

7 6 5 4 3 2 1 0

R FPOPEN FPDIS FPS2 FPS1 FPS0 0 0 0

W (1)

1. Background commands can be used to change the contents of these bits in FPROT.

(1) (1) (1) (1)

Reset This register is loaded from nonvolatile location NVPROT during reset.

= Unimplemented or Reserved

Figure 4-8. FLASH Protection Register (FPROT)

Table 4-9. FPROT Field Descriptions

Field Description

7
FPOPEN

Open Unprotected FLASH for Program/Erase
0 Entire FLASH memory is block protected (no program or erase allowed).
1 Any FLASH location, not otherwise block protected or secured, may be erased or programmed.

6
FPDIS

FLASH Protection Disable
0 FLASH block specified by FPS2:FPS0 is block protected (program and erase not allowed).
1 No FLASH block is protected.

5:3
FPS[2:0]

FLASH Protect Size Selects — When FPDIS = 0, this 3-bit field determines the size of a protected block of
FLASH locations at the high address end of the FLASH (see Table 4-10 and Table 4-11). Protected FLASH
locations cannot be erased or programmed.
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Resets, Interrupts, and System Configuration
5.8.4 System Options Register (SOPT)

This register may be read at any time. Bits 3 and 2 are unimplemented and always read 0. This is a
write-once register so only the first write after reset is honored. Any subsequent attempt to write to SOPT
(intentionally or unintentionally) is ignored to avoid accidental changes to these sensitive settings. SOPT
must be written during the user’s reset initialization program to set the desired controls even if the desired
settings are the same as the reset settings.

7 6 5 4 3 2 1 0

R
COPE COPT STOPE

0 0
BKGDPE RSTPE

W

Reset 1 1 0 1 0 0 1 1

= Unimplemented or Reserved

Figure 5-5.  System Options Register (SOPT)

Table 5-5. SOPT Field Descriptions

Field Description

7
COPE

COP Watchdog Enable — This write-once bit defaults to 1 after reset.
0 COP watchdog timer disabled.
1 COP watchdog timer enabled (force reset on timeout).

6
COPT

COP Watchdog Timeout — This write-once bit defaults to 1 after reset.
0 Short timeout period selected (218 cycles of BUSCLK).
1 Long timeout period selected (220 cycles of BUSCLK).

5
STOPE

Stop Mode Enable — This write-once bit defaults to 0 after reset, which disables stop mode. If stop mode is
disabled and a user program attempts to execute a STOP instruction, an illegal opcode reset is forced.
0 Stop mode disabled.
1 Stop mode enabled.

1
BKGDPE

Background Debug Mode Pin Enable — The BKGDPE bit enables the PTD0/BKGD/MS pin to function as
BKGD/MS. When the bit is clear, the pin will function as PTD0, which is an output only general purpose I/O. This
pin always defaults to BKGD/MS function after any reset.
0 BKGD pin disabled.
1 BKGD pin enabled.

0
RSTPE

RESET Pin Enable — The RSTPE bit enables the PTD1/RESET pin to function as RESET. When the bit is clear,
the pin will function as PTD1, which is an output only general purpose I/O. This pin always defaults to RESET
function after any reset.
0 RESET pin disabled.
1 RESET pin enabled.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Parallel Input/Output
6.4.2 Internal Pullup Control

An internal pullup device can be enabled for each port pin that is configured as an input (PTxDDn = 0).
The pullup device is available for a peripheral module to use, provided the peripheral is enabled and is an
input function as long as the PTxDDn = 0.

NOTE
The voltage measured on the pulled up PTA0 pin will be less than VDD. The
internal gates connected to this pin are pulled all the way to VDD. All other
pins with enabled pullup resistors will have an unloaded measurement of
VDD.

6.5 Stop Modes
Depending on the stop mode, I/O functions differently as the result of executing a STOP instruction. An
explanation of I/O behavior for the various stop modes follows:

• When the MCU enters stop1 mode, all internal registers, including general-purpose I/O control and
data registers, are powered down. All of the general-purpose I/O pins assume their reset state:
output buffers and pullups turned off. Upon exit from stop1, all I/O must be initialized as if the
MCU had been reset.

• When the MCU enters stop2 mode, the internal registers are powered down as in stop1 but the I/O
pin states are latched and held. For example, a port pin that is an output driving low continues to
function as an output driving low even though its associated data direction and output data registers
are powered down internally. Upon exit from stop2, the pins continue to hold their states until a 1
is written to the PPDACK bit. To avoid discontinuity in the pin state following exit from stop2, the
user must restore the port control and data registers to the values they held befor4e entering stop2.
These values can be stored in RAM before entering stop2 because the RAM is maintained during
stop2.

• In stop3 mode, all I/O is maintained because internal logic circuity stays powered up. Upon
recovery, normal I/O function is available to the user.

6.6 Parallel I/O Registers and Control Bits
This section provides information about all registers and control bits associated with the parallel I/O ports.

Refer to tables in the Memory chapter for the absolute address assignments for all parallel I/O registers.
This section refers to registers and control bits only by their names. A Freescale-provided equate or header
file normally is used to translate these names into the appropriate absolute addresses.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Central Processor Unit (S08CPUV2)Central Processor Unit (S08CPUV2)
CPX  #opr8i
CPX opr8a
CPX opr16a
CPX oprx16,X
CPX oprx8,X
CPX   ,X
CPX oprx16,SP
CPX oprx8,SP

Compare X (Index
Register Low) with
Memory

(X) – (M)
(CCR Updated But Operands Not

Changed)

– – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A3
B3
C3
D3
E3
F3

9ED3
9EE3

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

DAA
Decimal Adjust
Accumulator After ADD or
ADC of BCD Values

(A)10

U – –
INH 72 1

DBNZ opr8a,rel
DBNZA rel
DBNZX rel
DBNZ oprx8,X,rel
DBNZ  ,X,rel
DBNZ oprx8,SP,rel

Decrement and Branch if
Not Zero

Decrement A, X, or M
Branch if (result) ≠ 0

DBNZX Affects X Not H

– – – – – – DIR
INH
INH
IX1
IX
SP1

3B
4B
5B
6B
7B

9E6B

dd rr
rr
rr
ff rr
rr
ff rr

7
4
4
7
6
8

DEC opr8a
DECA
DECX
DEC oprx8,X
DEC  ,X
DEC oprx8,SP

Decrement

M ← (M) – 0x01
A ← (A) – 0x01
X ← (X) – 0x01
M ← (M) – 0x01
M ← (M) – 0x01
M ← (M) – 0x01

– –

–

DIR
INH
INH
IX1
IX
SP1

3A
4A
5A
6A
7A

9E6A

dd

ff

ff

5
1
1
5
4
6

DIV  Divide A ← (H:A)÷(X)
H ← Remainder

– – – – INH 52 6

EOR  #opr8i
EOR opr8a
EOR opr16a
EOR oprx16,X
EOR oprx8,X
EOR   ,X
EOR oprx16,SP
EOR oprx8,SP

Exclusive OR
Memory with
Accumulator

A ← (A ⊕ M)

0 – – – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A8
B8
C8
D8
E8
F8

9ED8
9EE8

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

INC opr8a
INCA
INCX
INC oprx8,X
INC  ,X
INC oprx8,SP

Increment

M ← (M) + 0x01
A ← (A) + 0x01
X ← (X) + 0x01
M ← (M) + 0x01
M ← (M) + 0x01
M ← (M) + 0x01

– – – DIR
INH
INH
IX1
IX
SP1

3C
4C
5C
6C
7C

9E6C

dd

ff

ff

5
1
1
5
4
6

JMP opr8a
JMP opr16a
JMP oprx16,X
JMP oprx8,X
JMP  ,X

 Jump PC ← Jump Address

– – – – – – DIR
EXT
IX2
IX1
IX

BC
CC
DC
EC
FC

dd
hh ll
ee ff
ff

3
4
4
3
3

JSR opr8a
JSR opr16a
JSR oprx16,X
JSR oprx8,X
JSR  ,X

Jump to Subroutine

PC ← (PC) + n  (n = 1, 2, or 3)
Push  (PCL);  SP ← (SP) – 0x0001
Push  (PCH);  SP ← (SP) – 0x0001

PC ← Unconditional Address

– – – – – – DIR
EXT
IX2
IX1
IX

BD
CD
DD
ED
FD

dd
hh ll
ee ff
ff

5
6
6
5
5

LDA  #opr8i
LDA opr8a
LDA opr16a
LDA oprx16,X
LDA oprx8,X
LDA   ,X
LDA oprx16,SP
LDA oprx8,SP

Load Accumulator from
Memory A ← (M)

0 – – – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A6
B6
C6
D6
E6
F6

9ED6
9EE6

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

LDHX  #opr16i
LDHX  opr8a
LDHX opr16a
LDHX  ,X
LDHX oprx16,X
LDHX oprx8,X
LDHX oprx8,SP

Load Index Register (H:X)
from Memory H:X ← (M:M + 0x0001)

0 – – – IMM
DIR
EXT
IX
IX2
IX1
SP1

45
55
32

9EAE
9EBE
9ECE
9EFE

jj kk
dd
hh ll

ee ff
ff
ff

3
4
5
5
6
5
5

Table 7-2. HCS08 Instruction Set Summary (Sheet 4 of 7)

Source
Form

Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

B
u

s 
C

yc
le

s1

V H I N Z C
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Central Processor Unit (S08CPUV2)Central Processor Unit (S08CPUV2)
ROR opr8a
RORA
RORX
ROR oprx8,X
ROR  ,X
ROR oprx8,SP

Rotate Right through
Carry

– – DIR
INH
INH
IX1
IX
SP1

36
46
56
66
76

9E66

dd

ff

ff

5
1
1
5
4
6

RSP Reset Stack Pointer SP ← 0xFF
(High Byte Not Affected)

– – – – – – INH 9C 1

RTI Return from Interrupt

SP ← (SP) + 0x0001;  Pull (CCR)
SP ← (SP) + 0x0001;  Pull (A)
SP ← (SP) + 0x0001;  Pull (X)

SP ← (SP) + 0x0001;  Pull (PCH)
SP ← (SP) + 0x0001;  Pull (PCL)

INH 80 9

RTS Return from Subroutine SP ← SP + 0x0001; Pull (PCH)
SP ← SP + 0x0001; Pull (PCL)

– – – – – – INH 81 6

SBC  #opr8i
SBC opr8a
SBC opr16a
SBC oprx16,X
SBC oprx8,X
SBC   ,X
SBC oprx16,SP
SBC oprx8,SP

Subtract with Carry A ← (A) – (M) – (C)

– – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9ED2
9EE2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SEC Set Carry Bit C ← 1 – – – – – 1 INH 99 1

SEI Set Interrupt Mask Bit I ← 1 – – 1 – – – INH 9B 1

STA opr8a
STA opr16a
STA oprx16,X
STA oprx8,X
STA   ,X
STA oprx16,SP
STA oprx8,SP

Store Accumulator in
Memory M ← (A)

0 – – – DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9ED7
9EE7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

STHX opr8a
STHX opr16a
STHX oprx8,SP

Store H:X (Index Reg.) (M:M + 0x0001) ← (H:X)
0 – – – DIR

EXT
SP1

35
96

9EFF

dd
hh ll
ff

4
5
5

STOP

Enable Interrupts:
Stop Processing
Refer to MCU
Documentation

I bit ← 0; Stop Processing
– – 0 – – –

INH 8E 2+

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX   ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of
Index Register)
in Memory

M ← (X)

0 – – – DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9EDF
9EEF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

SUB  #opr8i
SUB opr8a
SUB opr16a
SUB oprx16,X
SUB oprx8,X
SUB   ,X
SUB oprx16,SP
SUB oprx8,SP

Subtract A ← (A) – (M)

– – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A0
B0
C0
D0
E0
F0

9ED0
9EE0

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SWI Software Interrupt

PC ← (PC) + 0x0001
Push (PCL); SP ← (SP) – 0x0001
Push (PCH); SP ← (SP) – 0x0001

Push (X); SP ← (SP) – 0x0001
Push (A); SP ← (SP) – 0x0001

Push (CCR); SP ← (SP) – 0x0001
I ← 1;

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

– – 1 – – –

INH 83 11

Table 7-2. HCS08 Instruction Set Summary (Sheet 6 of 7)

Source
Form

Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p
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d

e

O
p

er
an

d

B
u

s 
C

yc
le

s1

V H I N Z C

b0b7

C
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Carrier Modulator Transmitter (CMT) Block Description
8.5 Functional Description
The CMT module consists of a carrier generator, a modulator, a transmitter output, and control registers.
The block diagram is shown in Figure 8-2. When operating in time mode, the user independently defines
the high and low times of the carrier signal to determine both period and duty cycle. The carrier generator
resolution is 125 ns when operating with an 8 MHz internal bus frequency and the CMTDIV1 and
CMTDIV0 bits in the CMTMSC register are both equal to 0. The carrier generator can generate signals
with periods between 250 ns (4 MHz) and 127.5 µs (7.84 kHz) in steps of 125 ns. See Table 8-1.

The possible duty cycle options will depend upon the number of counts required to complete the carrier
period. For example, a 1.6 MHz signal has a period of 625 ns and will therefore require 5 × 125 ns counts
to generate. These counts may be split between high and low times, so the duty cycles available will be
20 percent (one high, four low), 40 percent (two high, three low), 60 percent (three high, two low) and
80 percent (four high, one low).

For lower frequency signals with larger periods, higher resolution (as a percentage of the total period) duty
cycles are possible.

When the BASE bit in the CMT modulator status and control register (CMTMSC) is set, the carrier output
(fCG) to the modulator is held high continuously to allow for the generation of baseband protocols.

A third mode allows the carrier generator to alternate between two sets of high and low times. When
operating in FSK mode, the generator will toggle between the two sets when instructed by the modulator,
allowing the user to dynamically switch between two carrier frequencies without CPU intervention.

The modulator provides a simple method to control protocol timing. The modulator has a minimum
resolution of 1.0 µs with an 8 MHz internal bus clock. It can count bus clocks (to provide real-time control)
or it can count carrier clocks (for self-clocked protocols). See Section 8.5.2, “Modulator," for more details.

The transmitter output block controls the state of the infrared out pin (IRO). The modulator output is gated
on to the IRO pin when the modulator/carrier generator is enabled.

A summary of the possible modes is shown in Table 8-2.

Table 8-1. Clock Divide

Bus
Clock
(MHz)

CMTDIV1:CMTDIV0

Carrier
Generator
Resolution

(µs)

Min Carrier
Generator

Period
(µs)

Min
Modulator

Period
(µs)

8 0:0 0.125 0.25 1.0

8 0:1 0.25 0.5 2.0

8 1:0 0.5 1.0 4.0

8 1:1 1.0 2.0 8.0
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Keyboard Interrupt (KBI) Block Description
9.4.1 KBI x Status and Control Register (KBIxSC)

7 6 5 4 3 2 1 0

R
KBEDG7 KBEDG6 KBEDG5 KBEDG4

KBF 0
KBIE KBIMOD

W KBACK

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-3. KBI x Status and Control Register (KBIxSC)

Table 9-1. KBIxSC Field Descriptions

Field Description

7:4
KBEDG[7:4]

Keyboard Edge Select for KBI Port Bits — Each of these read/write bits selects the polarity of the edges and/or
levels that are recognized as trigger events on the corresponding KBI port pin when it is configured as a keyboard
interrupt input (KBIPEn = 1). Also see the KBIMOD control bit, which determines whether the pin is sensitive to
edges-only or edges and levels.
0 Falling edges/low levels.
1 Rising edges/high levels.

3
KBF

Keyboard Interrupt Flag — This read-only status flag is set whenever the selected edge event has been
detected on any of the enabled KBI port pins. This flag is cleared by writing a logic 1 to the KBACK control bit.
The flag will remain set if KBIMOD = 1 to select edge-and-level operation and any enabled KBI port pin remains
at the asserted level.
0 No KBI interrupt pending.
1 KBI interrupt pending.
KBF can be used as a software pollable flag (KBIE = 0) or it can generate a hardware interrupt request to the
CPU (KBIE = 1). KBF must be cleared before entering stop mode.

2
KBACK

Keyboard Interrupt Acknowledge — This write-only bit (reads always return 0) is used to clear the KBF status
flag by writing a logic 1 to KBACK. When KBIMOD = 1 to select edge-and-level operation and any enabled KBI
port pin remains at the asserted level, KBF is being continuously set so writing 1 to KBACK does not clear the
KBF flag.

1
KBIE

Keyboard Interrupt Enable — This read/write control bit determines whether hardware interrupts are generated
when the KBF status flag equals 1. When KBIE = 0, no hardware interrupts are generated, but KBF can still be
used for software polling.
0 KBF does not generate hardware interrupts (use polling).
1 KBI hardware interrupt requested when KBF = 1.

0
KBIMOD

Keyboard Detection Mode — This read/write control bit selects either edge-only detection or edge-and-level
detection. KBI port bits 3 through 0 can detect falling edges-only or falling edges and low levels.
KBI port bits 7 through 4 can be configured to detect either:
 • Rising edges-only or rising edges and high levels (KBEDGn = 1)
 • Falling edges-only or falling edges and low levels (KBEDGn = 0)
0 Edge-only detection.
1 Edge-and-level detection.
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Timer/PWM (TPM) Block Description
10.3 TPM Block Diagram
The TPM uses one input/output (I/O) pin per channel, TPM1CHn where n is the channel number (for
example, 0–4). The TPM shares its I/O pins with general-purpose I/O port pins (refer to the Pins and
Connections chapter for more information). Figure 10-2 shows the structure of a TPM. Some MCUs
include more than one TPM, with various numbers of channels.

Figure 10-2. TPM Block Diagram

The central component of the TPM is the 16-bit counter that can operate as a free-running counter, a
modulo counter, or an up-/down-counter when the TPM is configured for center-aligned PWM. The TPM
counter (when operating in normal up-counting mode) provides the timing reference for the input capture,
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Serial Communications Interface (S08SCIV1)
12.2.4 SCI Status Register 1 (SCI1S1)

This register has eight read-only status flags. Writes have no effect. Special software sequences (which do
not involve writing to this register) are used to clear these status flags.

1
RWU

Receiver Wakeup Control — This bit can be written to 1 to place the SCI receiver in a standby state where it
waits for automatic hardware detection of a selected wakeup condition. The wakeup condition is either an idle
line between messages (WAKE = 0, idle-line wakeup), or a logic 1 in the most significant data bit in a character
(WAKE = 1, address-mark wakeup). Application software sets RWU and (normally) a selected hardware
condition automatically clears RWU. Refer to Section 12.3.3.2, “Receiver Wakeup Operation,” for more details.
0 Normal SCI receiver operation.
1 SCI receiver in standby waiting for wakeup condition.

0
SBK

Send Break — Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional
break characters of 10 or 11 bit times of logic 0 are queued as long as SBK = 1. Depending on the timing of the
set and clear of SBK relative to the information currently being transmitted, a second break character may be
queued before software clears SBK. Refer to Section 12.3.2.1, “Send Break and Queued Idle,” for more details.
0 Normal transmitter operation.
1 Queue break character(s) to be sent.

7 6 5 4 3 2 1 0

R TDRE TC RDRF IDLE OR NF FE PF

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-7. SCI Status Register 1 (SCI1S1)

Table 12-5. SCI1S1 Register Field Descriptions

Field Description

7
TDRE

Transmit Data Register Empty Flag — TDRE is set immediately after reset and when a transmit data value
transfers from the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To
clear TDRE, read SCI1S1 with TDRE = 1 and then write to the SCI data register (SCI1D).
0 Transmit data register (buffer) full.
1 Transmit data register (buffer) empty.

6
TC

Transmission Complete Flag — TC is set immediately after reset and when TDRE = 1 and no data, preamble,
or break character is being transmitted.
0 Transmitter active (sending data, a preamble, or a break).
1 Transmitter idle (transmission activity complete).
TC is cleared automatically by reading SCI1S1 with TC = 1 and then doing one of the following three things:

• Write to the SCI data register (SCI1D) to transmit new data
• Queue a preamble by changing TE from 0 to 1
• Queue a break character by writing 1 to SBK in SCI1C2

Table 12-4. SCI1C2 Register Field Descriptions (continued)

Field Description
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Serial Peripheral Interface (SPI) Module
13.1 Features
Features of the SPI module include:

• Master or slave mode operation

• Full-duplex or single-wire bidirectional option

• Programmable transmit bit rate

• Double-buffered transmit and receive

• Serial clock phase and polarity options

• Slave select output

• Selectable MSB-first or LSB-first shifting

13.2 Block Diagrams
This section includes block diagrams showing SPI system connections, the internal organization of the SPI
module, and the SPI clock dividers that control the master mode bit rate.

13.2.1 SPI System Block Diagram

Figure 13-2 shows the SPI modules of two MCUs connected in a master-slave arrangement. The master
device initiates all SPI data transfers. During a transfer, the master shifts data out (on the MOSI1 pin) to
the slave while simultaneously shifting data in (on the MISO1 pin) from the slave. The transfer effectively
exchanges the data that was in the SPI shift registers of the two SPI systems. The SPSCK1 signal is a clock
output from the master and an input to the slave. The slave device must be selected by a low level on the
slave select input (SS1 pin). In this system, the master device has configured its SS1 pin as an optional
slave select output.

Figure 13-2. SPI System Connections
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Serial Peripheral Interface (SPI) Module
13.3.1 SPI Clock Formats

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.

Figure 13-5 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are shown
for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after the
sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the
setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies
for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI
input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from
a master and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform applies
to the slave select output from a master (provided MODFEN and SSOE = 1). The master SS output goes
to active low one-half SPSCK cycle before the start of the transfer and goes back high at the end of the
eighth bit time of the transfer. The SS IN waveform applies to the slave select input of a slave.

Figure 13-5. SPI Clock Formats (CPHA = 1)
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Serial Peripheral Interface (SPI) Module
When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB
depending on LSBFE) when SS1 goes to active low. The first SPSCK edge causes both the master and the
slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK
edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the
second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and
slave, respectively. When CPHA = 0, the slave’s SS input must go to its inactive high level between
transfers.

13.3.2 SPI Pin Controls

The SPI optionally shares four port pins. The function of these pins depends on the settings of SPI control
bits. When the SPI is disabled (SPE = 0), these four pins revert to being general-purpose port I/O pins that
are not controlled by the SPI.

13.3.2.1 SPSCK1 — SPI Serial Clock

When the SPI is enabled as a slave, this pin is the serial clock input. When the SPI is enabled as a master,
this pin is the serial clock output.

13.3.2.2 MOSI1 — Master Data Out, Slave Data In

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this
pin is the serial data output. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data
input. If SPC0 = 1 to select single-wire bidirectional mode, and master mode is selected, this pin becomes
the bidirectional data I/O pin (MOMI). Also, the bidirectional mode output enable bit determines whether
the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and slave mode is
selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

13.3.2.3 MISO1 — Master Data In, Slave Data Out

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this
pin is the serial data input. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data
output. If SPC0 = 1 to select single-wire bidirectional mode, and slave mode is selected, this pin becomes
the bidirectional data I/O pin (SISO) and the bidirectional mode output enable bit determines whether the
pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and master mode is selected,
this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

13.3.2.4 SS1 — Slave Select

When the SPI is enabled as a slave, this pin is the low-true slave select input. When the SPI is enabled as
a master and mode fault enable is off (MODFEN = 0), this pin is not used by the SPI and reverts to being
a general-purpose port I/O pin. When the SPI is enabled as a master and MODFEN = 1, the slave select
output enable bit determines whether this pin acts as the mode fault input (SSOE = 0) or as the slave select
output (SSOE = 1).
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Development Support
Figure 15-4 shows the host receiving a logic 0 from the target HCS08 MCU. Because the host is
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the start of the bit time as perceived by the target MCU. The host initiates the bit time but the
target HCS08 finishes it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low
for 13 BDC clock cycles, then briefly drives it high to speed up the rising edge. The host samples the bit
level about 10 cycles after starting the bit time.

Figure 15-4. BDM Target-to-Host Serial Bit Timing (Logic 0)
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Development Support
15.4.3.5 Debug FIFO High Register (DBGFH)

This register provides read-only access to the high-order eight bits of the FIFO. Writes to this register have
no meaning or effect. In the event-only trigger modes, the FIFO only stores data into the low-order byte of
each FIFO word, so this register is not used and will read 0x00.

Reading DBGFH does not cause the FIFO to shift to the next word. When reading 16-bit words out of the
FIFO, read DBGFH before reading DBGFL because reading DBGFL causes the FIFO to advance to the
next word of information.

15.4.3.6 Debug FIFO Low Register (DBGFL)

This register provides read-only access to the low-order eight bits of the FIFO. Writes to this register have
no meaning or effect.

Reading DBGFL causes the FIFO to shift to the next available word of information. When the debug
module is operating in event-only modes, only 8-bit data is stored into the FIFO (high-order half of each
FIFO word is unused). When reading 8-bit words out of the FIFO, simply read DBGFL repeatedly to get
successive bytes of data from the FIFO. It isn’t necessary to read DBGFH in this case.

Do not attempt to read data from the FIFO while it is still armed (after arming but before the FIFO is filled
or ARMF is cleared) because the FIFO is prevented from advancing during reads of DBGFL. This can
interfere with normal sequencing of reads from the FIFO.

Reading DBGFL while the debugger is not armed causes the address of the most-recently fetched opcode
to be stored to the last location in the FIFO. By reading DBGFH then DBGFL periodically, external host
software can develop a profile of program execution. After eight reads from the FIFO, the ninth read will
return the information that was stored as a result of the first read. To use the profiling feature, read the FIFO
eight times without using the data to prime the sequence and then begin using the data to get a delayed
picture of what addresses were being executed. The information stored into the FIFO on reads of DBGFL
(while the FIFO is not armed) is the address of the most-recently fetched opcode.
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Development Support
15.4.3.9 Debug Status Register (DBGS)

This is a read-only status register.

7 6 5 4 3 2 1 0

R AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 15-9. Debug Status Register (DBGS)

Table 15-6. DBGS Register Field Descriptions

Field Description

7
AF

Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A
condition was met since arming.
0 Comparator A has not matched
1 Comparator A match

6
BF

Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B
condition was met since arming.
0 Comparator B has not matched
1 Comparator B match

5
ARMF

Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1
to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A
debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A
debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC.
0 Debugger not armed
1 Debugger armed

3:0
CNT[3:0]

FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid
data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO.
The external debug host is responsible for keeping track of the count as information is read out of the FIFO.
0000 Number of valid words in FIFO = No valid data
0001 Number of valid words in FIFO = 1
0010 Number of valid words in FIFO = 2
0011 Number of valid words in FIFO = 3
0100 Number of valid words in FIFO = 4
0101 Number of valid words in FIFO = 5
0110 Number of valid words in FIFO = 6
0111 Number of valid words in FIFO = 7
1000 Number of valid words in FIFO = 8
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Electrical Characteristics
A.10 FLASH Specifications
This section provides details about program/erase times and program-erase endurance for the FLASH
memory.

Program and erase operations do not require any special power sources other than the normal VDD supply.
For more detailed information about program/erase operations, see the Memory chapter.

Table A-12. FLASH Characteristics

Characteristic Symbol Min Typical Max Unit

Supply voltage for program/erase Vprog/erase 2.05 3.6 V

Supply voltage for read operation
0 < fBus < 8 MHz

VRead
1.8 3.6

V

Internal FCLK frequency(1)

1. The frequency of this clock is controlled by a software setting.

fFCLK 150 200 kHz

Internal FCLK period (1/FCLK) tFcyc 5 6.67 µs

Byte program time (random location)(2) tprog 9 tFcyc

Byte program time (burst mode)(2) tBurst 4 tFcyc

Page erase time(2)

2. These values are hardware state machine controlled. User code does not need to count cycles. This information
supplied for calculating approximate time to program and erase.

tPage 4000 tFcyc

Mass erase time(2) tMass 20,000 tFcyc

Program/erase endurance(3)

TL to TH = –40°C to + 85°C
T = 25°C

3. Typical endurance for FLASH was evaluated for this product family on the 9S12Dx64. For additional
information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin
EB619/D, Typical Endurance for Nonvolatile Memory.

10,000
100,000

—
—

cycles

Data retention(4)

4. Typical data retention values are based on intrinsic capability of the technology measured at high temperature
and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor
defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for
Nonvolatile Memory.

tD_ret 15 100 — years
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