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Chapter 2
Pins and Connections

2.1 Introduction
This section describes signals that connect to package pins. It includes a pinout diagram, a table of signal
properties, and detailed discussion of signals.

2.2 Device Pin Assignment

Figure 2-1. MC9S08RC/RD/RE/RG in 44-Pin LQFP Package
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Memory
4.4.3 Program and Erase Command Execution

The steps for executing any of the commands are listed below. The FCDIV register must be initialized and
any error flags cleared before beginning command execution. The command execution steps are:

1. Write a data value to an address in the FLASH array. The address and data information from this
write is latched into the FLASH interface. This write is a required first step in any command
sequence. For erase and blank check commands, the value of the data is not important. For page
erase commands, the address may be any address in the 512-byte page of FLASH to be erased. For
mass erase and blank check commands, the address can be any address in the FLASH memory.
Whole pages of 512 bytes are the smallest block of FLASH that may be erased. In the 60K version,
there are two instances where the size of a block that is accessible to the user is less than 512 bytes:
the first page following RAM, and the first page following the high page registers. These pages are
overlapped by the RAM and high page registers respectively.

NOTE
Do not program any byte in the FLASH more than once after a successful
erase operation. Reprogramming bits to a byte which is already
programmed is not allowed without first erasing the page in which the byte
resides or mass erasing the entire FLASH memory. Programming without
first erasing may disturb data stored in the FLASH.

2. Write the command code for the desired command to FCMD. The five valid commands are blank
check ($05), byte program ($20), burst program ($25), page erase ($40), and mass erase ($41). The
command code is latched into the command buffer.

3. Write a 1 to the FCBEF bit in FSTAT to clear FCBEF and launch the command (including its
address and data information).

A partial command sequence can be aborted manually by writing a 0 to FCBEF any time after the write to
the memory array and before writing the 1 that clears FCBEF and launches the complete command.
Aborting a command in this way sets the FACCERR access error flag, which must be cleared before
starting a new command.

A strictly monitored procedure must be adhered to, or the command will not be accepted. This minimizes
the possibility of any unintended changes to the FLASH memory contents. The command complete flag
(FCCF) indicates when a command is complete. The command sequence must be completed by clearing
FCBEF to launch the command. Figure 4-3 is a flowchart for executing all of the commands except for
burst programming. The FCDIV register must be initialized before using any FLASH commands. This
must be done only once following a reset.
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Memory
• Writing to a FLASH address before the internal FLASH clock frequency has been set by writing
to the FCDIV register

• Writing to a FLASH address while FCBEF is not set (A new command cannot be started until the
command buffer is empty.)

• Writing a second time to a FLASH address before launching the previous command (There is only
one write to FLASH for every command.)

• Writing a second time to FCMD before launching the previous command (There is only one write
to FCMD for every command.)

• Writing to any FLASH control register other than FCMD after writing to a FLASH address

• Writing any command code other than the five allowed codes ($05, $20, $25, $40, or $41) to
FCMD

• Accessing (read or write) any FLASH control register other than the write to FSTAT (to clear
FCBEF and launch the command) after writing the command to FCMD

• The MCU enters stop mode while a program or erase command is in progress (The command is
aborted.)

• Writing the byte program, burst program, or page erase command code ($20, $25, or $40) with a
background debug command while the MCU is secured (The background debug controller can
only do blank check and mass erase commands when the MCU is secure.)

• Writing 0 to FCBEF to cancel a partial command

4.4.6 FLASH Block Protection

Block protection prevents program or erase changes for FLASH memory locations in a designated address
range. Mass erase is disabled when any block of FLASH is protected. The MC9S08RC/RD/RE/RG allows
a block of memory at the end of FLASH, and/or the entire FLASH memory to be block protected. A
disable control bit and a 3-bit control field, for each of the blocks, allows the user to independently set the
size of these blocks. A separate control bit allows block protection of the entire FLASH memory array. All
seven of these control bits are located in the FPROT register (see Section 4.6.4, “FLASH Protection
Register (FPROT and NVPROT)“).

At reset, the high-page register (FPROT) is loaded with the contents of the NVPROT location that is in the
nonvolatile register block of the FLASH memory. The value in FPROT cannot be changed directly from
application software so a runaway program cannot alter the block protection settings. If the last 512 bytes
of FLASH (which includes the NVPROT register) is protected, the application program cannot alter the
block protection settings (intentionally or unintentionally). The FPROT control bits can be written by
background debug commands to allow a way to erase a protected FLASH memory.

One use for block protection is to block protect an area of FLASH memory for a bootloader program. This
bootloader program then can be used to erase the rest of the FLASH memory and reprogram it. Because
the bootloader is protected, it remains intact even if MCU power is lost during an erase and reprogram
operation.
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Central Processor Unit (S08CPUV2)Central Processor Unit (S08CPUV2)
BRCLR n,opr8a,rel Branch if Bit n in Memory
Clear Branch if (Mn) = 0

– – – – – DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never Uses 3 Bus Cycles – – – – – – REL 21 rr 3

BRSET n,opr8a,rel Branch if Bit n in Memory
Set Branch if (Mn) = 1

– – – – – DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n,opr8a Set Bit n in Memory Mn ← 1

– – – – – – DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BSR rel Branch to Subroutine

PC ← (PC) + 0x0002
push (PCL); SP ← (SP) – 0x0001
push (PCH); SP ← (SP) – 0x0001

PC ← (PC) + rel

– – – – – –
REL AD rr 5

CBEQ  opr8a,rel
CBEQA  #opr8i,rel
CBEQX  #opr8i,rel
CBEQ  oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and Branch if
Equal

Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

– – – – – – DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
5
6

CLC Clear Carry Bit C ← 0 – – – – – 0 INH 98 1

CLI Clear Interrupt Mask Bit I ← 0 – – 0 – – – INH 9A 1

CLR opr8a
CLRA
CLRX
CLRH
CLR oprx8,X
CLR  ,X
CLR oprx8,SP

Clear

M ← 0x00
A ← 0x00
X ← 0x00
H ← 0x00
M ← 0x00
M ← 0x00
M ← 0x00

0 – – 0 1 – DIR
INH
INH
INH
IX1
IX
SP1

3F
4F
5F
8C
6F
7F

9E6F

dd

ff

ff

5
1
1
1
5
4
6

CMP  #opr8i
CMP opr8a
CMP opr16a
CMP oprx16,X
CMP oprx8,X
CMP   ,X
CMP oprx16,SP
CMP oprx8,SP

Compare Accumulator
with Memory

(A) – (M)
(CCR Updated But Operands Not

Changed)

– – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A1
B1
C1
D1
E1
F1

9ED1
9EE1

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

COM opr8a
COMA
COMX
COM oprx8,X
COM  ,X
COM oprx8,SP

Complement
(One’s Complement)

M ← (M)= 0xFF – (M)
A ← (A) = 0xFF – (A)
X ← (X) = 0xFF – (X)
M ← (M) = 0xFF – (M)
M ← (M) = 0xFF – (M)
M ← (M) = 0xFF – (M)

0 – – 1 DIR
INH
INH
IX1
IX
SP1

33
43
53
63
73

9E63

dd

ff

ff

5
1
1
5
4
6

CPHX opr16a
CPHX #opr16i
CPHX opr8a
CPHX oprx8,SP

Compare Index Register
(H:X) with Memory

(H:X) – (M:M + 0x0001)
(CCR Updated But Operands Not

Changed)

– – EXT
IMM
DIR
SP1

3E
65
75

9EF3

hh ll
jj kk
dd
ff

6
3
5
6

Table 7-2. HCS08 Instruction Set Summary (Sheet 3 of 7)

Source
Form

Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

B
u

s 
C

yc
le

s1

V H I N Z C
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11

Freescale Semiconductor 99



Carrier Modulator Transmitter (CMT) Block Description
The duty cycle of the carrier signal is controlled by varying the ratio of high time to low + high time. As
the input clock period is fixed, the duty cycle resolution will be proportional to the number of counts
required to generate the desired carrier period.

8.5.2 Modulator

The modulator has three main modes of operation:

• Gate the carrier onto the modulator output (time mode)

• Control the logic level of the modulator output (baseband mode)

• Count carrier periods and instruct the carrier generator to alternate between two carrier frequencies
whenever a modulation period (mark + space counts) expires (FSK mode)

The modulator includes a 17-bit down counter with underflow detection. The counter is loaded from the
16-bit modulation mark period buffer registers, CMTCMD1 and CMTCMD2. The most significant bit is
loaded with a logic zero and serves as a sign bit. When the counter holds a positive value, the modulator
gate is open and the carrier signal is driven to the transmitter block.

When the counter underflows, the modulator gate is closed and a 16-bit comparator is enabled that
compares the logical complement of the value of the down-counter with the contents of the modulation
space period register (which has been loaded from the registers CMTCMD3 and CMTCMD4).

When a match is obtained the cycle repeats by opening the modulator gate, reloading the counter with the
contents of CMTCMD1 and CMTCMD2, and reloading the modulation space period register with the
contents of CMTCMD3 and CMTCMD4.

If the contents of the modulation space period register are all zeroes, the match will be immediate and no
space period will be generated (for instance, for FSK protocols that require successive bursts of different
frequencies).

The MCGEN bit in the CMTMSC register must be set to enable the modulator timer.

Duty Cycle
Highcount

Highcount Lowcount+
---------------------------------------------------------------------= Eqn. 8-4
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Keyboard Interrupt (KBI) Block Description
9.2 KBI Block Diagram
Figure 9-2 shows the block diagram for a KBI module.

Figure 9-2. KBI Block Diagram

The KBI module allows up to eight pins to act as additional interrupt sources. Four of these pins allow
falling-edge sensing while the other four can be configured for either rising-edge sensing or falling-edge
sensing. The sensing mode for all eight pins can also be modified to detect edges and levels instead of only
edges.

9.3 Keyboard Interrupt (KBI) Module
This on-chip peripheral module is called a keyboard interrupt (KBI) module because originally it was
designed to simplify the connection and use of row-column matrices of keyboard switches. However, these
inputs are also useful as extra external interrupt inputs and as an external means of waking up the MCU
from stop or wait low-power modes.

9.3.1 Pin Enables

The KBIPEn control bits in the KBIxPE register allow a user to enable (KBIPEn = 1) any combination of
KBI-related port pins to be connected to the KBI module. Pins corresponding to 0s in KBIxPE are
general-purpose I/O pins that are not associated with the KBI module.

9.3.2 Edge and Level Sensitivity

Synchronous logic is used to detect edges. Prior to detecting an edge, enabled keyboard inputs in a KBI
module must be at the deasserted logic level.

A falling edge is detected when an enabled keyboard input signal is seen as a logic 1 (the deasserted level)
during one bus cycle and then a logic 0 (the asserted level) during the next cycle.
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Keyboard Interrupt (KBI) Block Description
A rising edge is detected when the input signal is seen as a logic 0 during one bus cycle and then a logic 1
during the next cycle.

The KBIMOD control bit can be set to reconfigure the detection logic so that it detects edges and levels.
In KBIMOD = 1 mode, the KBF status flag becomes set when an edge is detected (when one or more
enabled pins change from the deasserted to the asserted level while all other enabled pins remain at their
deasserted levels), but the flag is continuously set (and cannot be cleared) as long as any enabled keyboard
input pin remains at the asserted level. When the MCU enters stop mode, the synchronous edge-detection
logic is bypassed (because clocks are stopped). In stop mode, KBI inputs act as asynchronous
level-sensitive inputs so they can wake the MCU from stop mode.

9.3.3 KBI Interrupt Controls

The KBF status flag becomes set (1) when an edge event has been detected on any KBI input pin. If
KBIE = 1 in the KBIxSC register, a hardware interrupt will be requested whenever KBF = 1. The KBF flag
is cleared by writing a 1 to the keyboard acknowledge (KBACK) bit.

When KBIMOD = 0 (selecting edge-only operation), KBF is always cleared by writing 1 to KBACK.
When KBIMOD = 1 (selecting edge-and-level operation), KBF cannot be cleared as long as any keyboard
input is at its asserted level.

9.4 KBI Registers and Control Bits

This section provides information about all registers and control bits associated with the KBI modules.

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all KBI registers. This section refers to registers and control bits only by their names. A
Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.

Some MCU systems have more than one KBI, so register names include placeholder characters to identify
which KBI is being referenced. For example, KBIxSC refers to the KBIx status and control register and
KBI2SC is the status and control register for KBI2.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Keyboard Interrupt (KBI) Block Description
9.4.1 KBI x Status and Control Register (KBIxSC)

7 6 5 4 3 2 1 0

R
KBEDG7 KBEDG6 KBEDG5 KBEDG4

KBF 0
KBIE KBIMOD

W KBACK

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-3. KBI x Status and Control Register (KBIxSC)

Table 9-1. KBIxSC Field Descriptions

Field Description

7:4
KBEDG[7:4]

Keyboard Edge Select for KBI Port Bits — Each of these read/write bits selects the polarity of the edges and/or
levels that are recognized as trigger events on the corresponding KBI port pin when it is configured as a keyboard
interrupt input (KBIPEn = 1). Also see the KBIMOD control bit, which determines whether the pin is sensitive to
edges-only or edges and levels.
0 Falling edges/low levels.
1 Rising edges/high levels.

3
KBF

Keyboard Interrupt Flag — This read-only status flag is set whenever the selected edge event has been
detected on any of the enabled KBI port pins. This flag is cleared by writing a logic 1 to the KBACK control bit.
The flag will remain set if KBIMOD = 1 to select edge-and-level operation and any enabled KBI port pin remains
at the asserted level.
0 No KBI interrupt pending.
1 KBI interrupt pending.
KBF can be used as a software pollable flag (KBIE = 0) or it can generate a hardware interrupt request to the
CPU (KBIE = 1). KBF must be cleared before entering stop mode.

2
KBACK

Keyboard Interrupt Acknowledge — This write-only bit (reads always return 0) is used to clear the KBF status
flag by writing a logic 1 to KBACK. When KBIMOD = 1 to select edge-and-level operation and any enabled KBI
port pin remains at the asserted level, KBF is being continuously set so writing 1 to KBACK does not clear the
KBF flag.

1
KBIE

Keyboard Interrupt Enable — This read/write control bit determines whether hardware interrupts are generated
when the KBF status flag equals 1. When KBIE = 0, no hardware interrupts are generated, but KBF can still be
used for software polling.
0 KBF does not generate hardware interrupts (use polling).
1 KBI hardware interrupt requested when KBF = 1.

0
KBIMOD

Keyboard Detection Mode — This read/write control bit selects either edge-only detection or edge-and-level
detection. KBI port bits 3 through 0 can detect falling edges-only or falling edges and low levels.
KBI port bits 7 through 4 can be configured to detect either:
 • Rising edges-only or rising edges and high levels (KBEDGn = 1)
 • Falling edges-only or falling edges and low levels (KBEDGn = 0)
0 Edge-only detection.
1 Edge-and-level detection.
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Keyboard Interrupt (KBI) Block Description
9.4.2 KBI x Pin Enable Register (KBIxPE)

7 6 5 4 3 2 1 0

R
KBIPE7 KBIPE6 KBIPE5 KBIPE4 KBIPE3 KBIPE2 KBIPE1 KBIPE0

W

Reset 0 0 0 0 0 0 0 0

Figure 9-4. KBI x Pin Enable Register (KBIxPE)

Table 9-2. KBIxPE Field Descriptions

Field Description

7:0
KBIPE[7:0]

Keyboard Pin Enable for KBI Port Bits — Each of these read/write bits selects whether the associated KBI
port pin is enabled as a keyboard interrupt input or functions as a general-purpose I/O pin.
0 Bit n of KBI port is a general-purpose I/O pin not associated with the KBI.
1 Bit n of KBI port enabled as a keyboard interrupt input
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Serial Communications Interface (S08SCIV1)
12.2.4 SCI Status Register 1 (SCI1S1)

This register has eight read-only status flags. Writes have no effect. Special software sequences (which do
not involve writing to this register) are used to clear these status flags.

1
RWU

Receiver Wakeup Control — This bit can be written to 1 to place the SCI receiver in a standby state where it
waits for automatic hardware detection of a selected wakeup condition. The wakeup condition is either an idle
line between messages (WAKE = 0, idle-line wakeup), or a logic 1 in the most significant data bit in a character
(WAKE = 1, address-mark wakeup). Application software sets RWU and (normally) a selected hardware
condition automatically clears RWU. Refer to Section 12.3.3.2, “Receiver Wakeup Operation,” for more details.
0 Normal SCI receiver operation.
1 SCI receiver in standby waiting for wakeup condition.

0
SBK

Send Break — Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional
break characters of 10 or 11 bit times of logic 0 are queued as long as SBK = 1. Depending on the timing of the
set and clear of SBK relative to the information currently being transmitted, a second break character may be
queued before software clears SBK. Refer to Section 12.3.2.1, “Send Break and Queued Idle,” for more details.
0 Normal transmitter operation.
1 Queue break character(s) to be sent.

7 6 5 4 3 2 1 0

R TDRE TC RDRF IDLE OR NF FE PF

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-7. SCI Status Register 1 (SCI1S1)

Table 12-5. SCI1S1 Register Field Descriptions

Field Description

7
TDRE

Transmit Data Register Empty Flag — TDRE is set immediately after reset and when a transmit data value
transfers from the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To
clear TDRE, read SCI1S1 with TDRE = 1 and then write to the SCI data register (SCI1D).
0 Transmit data register (buffer) full.
1 Transmit data register (buffer) empty.

6
TC

Transmission Complete Flag — TC is set immediately after reset and when TDRE = 1 and no data, preamble,
or break character is being transmitted.
0 Transmitter active (sending data, a preamble, or a break).
1 Transmitter idle (transmission activity complete).
TC is cleared automatically by reading SCI1S1 with TC = 1 and then doing one of the following three things:

• Write to the SCI data register (SCI1D) to transmit new data
• Queue a preamble by changing TE from 0 to 1
• Queue a break character by writing 1 to SBK in SCI1C2

Table 12-4. SCI1C2 Register Field Descriptions (continued)

Field Description
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Serial Communications Interface (S08SCIV1)
12.3 Functional Description
The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote
devices, including other MCUs. The SCI comprises a baud rate generator, transmitter, and receiver block.
The transmitter and receiver operate independently, although they use the same baud rate generator. During
normal operation, the MCU monitors the status of the SCI, writes the data to be transmitted, and processes
received data. The following describes each of the blocks of the SCI.

12.3.1 Baud Rate Generation

As shown in Figure 12-11, the clock source for the SCI baud rate generator is the bus-rate clock.

Figure 12-11. SCI Baud Rate Generation

SCI communications require the transmitter and receiver (which typically derive baud rates from
independent clock sources) to use the same baud rate. Allowed tolerance on this baud frequency depends
on the details of how the receiver synchronizes to the leading edge of the start bit and how bit sampling is
performed.

The MCU resynchronizes to bit boundaries on every high-to-low transition, but in the worst case, there are
no such transitions in the full 10- or 11-bit time character frame so any mismatch in baud rate is
accumulated for the whole character time. For a Freescale Semiconductor SCI system whose bus
frequency is driven by a crystal, the allowed baud rate mismatch is about ±4.5 percent for 8-bit data format
and about ±4 percent for 9-bit data format. Although baud rate modulo divider settings do not always
produce baud rates that exactly match standard rates, it is normally possible to get within a few percent,
which is acceptable for reliable communications.

12.3.2 Transmitter Functional Description

This section describes the overall block diagram for the SCI transmitter (Figure 12-1), as well as
specialized functions for sending break and idle characters.

The transmitter is enabled by setting the TE bit in SCI1C2. This queues a preamble character that is one
full character frame of the idle state. The transmitter then remains idle until data is available in the transmit
data buffer. Programs store data into the transmit data buffer by writing to the SCI data register (SCI1D).

The central element of the SCI transmitter is the transmit shift register that is either 10 or 11 bits long
depending on the setting in the M control bit. For the remainder of this section, we will assume M = 0,
selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits,
and a stop bit. When the transmit shift register is available for a new SCI character, the value waiting in

SBR12:SBR0

DIVIDE BY
Tx BAUD RATE

Rx SAMPLING CLOCK
(16 × BAUD RATE)

BAUD RATE GENERATOR
OFF IF [SBR12:SBR0] = 0

BUSCLK
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BUSCLK

[SBR12:SBR0] × 16

16

MODULO DIVIDE BY
(1 THROUGH 8191)
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has one full character time after RDRF is set before the data in the receive data buffer must be read to avoid
a receiver overrun.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive
data register by reading SCI1D. The RDRF flag is cleared automatically by a 2-step sequence which is
normally satisfied in the course of the user’s program that handles receive data. Refer to Section 12.3.4,
“Interrupts and Status Flags,” for more details about flag clearing.

12.3.3.1 Data Sampling Technique

The SCI receiver uses a 16× baud rate clock for sampling. The receiver starts by taking logic level samples
at 16 times the baud rate to search for a falling edge on the RxD1 serial data input pin. A falling edge is
defined as a logic 0 sample after three consecutive logic 1 samples. The 16× baud rate clock is used to
divide the bit time into 16 segments labeled RT1 through RT16. When a falling edge is located, three more
samples are taken at RT3, RT5, and RT7 to make sure this was a real start bit and not merely noise. If at
least two of these three samples are 0, the receiver assumes it is synchronized to a receive character.

The receiver then samples each bit time, including the start and stop bits, at RT8, RT9, and RT10 to
determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples
taken during the bit time. In the case of the start bit, the bit is assumed to be 0 if at least two of the samples
at RT3, RT5, and RT7 are 0 even if one or all of the samples taken at RT8, RT9, and RT10 are 1s. If any
sample in any bit time (including the start and stop bits) in a character frame fails to agree with the logic
level for that bit, the noise flag (NF) will be set when the received character is transferred to the receive
data buffer.

The falling edge detection logic continuously looks for falling edges, and if an edge is detected, the sample
clock is resynchronized to bit times. This improves the reliability of the receiver in the presence of noise
or mismatched baud rates. It does not improve worst case analysis because some characters do not have
any extra falling edges anywhere in the character frame.

In the case of a framing error, provided the received character was not a break character, the sampling logic
that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected
almost immediately.

In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing
error flag is cleared. The receive shift register continues to function, but a complete character cannot
transfer to the receive data buffer if FE is still set.

12.3.3.2 Receiver Wakeup Operation

Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a
message that is intended for a different SCI receiver. In such a system, all receivers evaluate the first
character(s) of each message, and as soon as they determine the message is intended for a different
receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCI1C2. When RWU = 1, it
inhibits setting of the status flags associated with the receiver, thus eliminating the software overhead for
handling the unimportant message characters. At the end of a message, or at the beginning of the next
message, all receivers automatically force RWU to 0 so all receivers wake up in time to look at the first
character(s) of the next message.
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12.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared
automatically when the receiver detects a full character time of the idle-line level. The M control bit selects
8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character
time (10 or 11 bit times because of the start and stop bits). The idle-line type (ILT) control bit selects one
of two ways to detect an idle line:

• When ILT = 0, the idle bit counter starts after the start bit so the stop bit and any logic 1s at the end
of a character count toward the full character time of idle.

• When ILT = 1, the idle bit counter doesn’t start until after a stop bit time, so the idle detection is
not affected by the data in the last character of the previous message.

12.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared
automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth
bit in M = 0 mode and ninth bit in M = 1 mode).

12.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the
cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events.
Another interrupt vector is associated with the receiver for RDRF and IDLE events, and a third vector is
used for OR, NF, FE, and PF error conditions. Each of these eight interrupt sources can be separately
masked by local interrupt enable masks. The flags can still be polled by software when the local masks are
cleared to disable generation of hardware interrupt requests.

The SCI transmitter has two status flags that optionally can generate hardware interrupt requests. Transmit
data register empty (TDRE) indicates when there is room in the transmit data buffer to write another
transmit character to SCI1D. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt will be
requested whenever TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished
transmitting all data, preamble, and break characters and is idle with TxD1 high. This flag is often used in
systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt
enable (TCIE) bit is set, a hardware interrupt will be requested whenever TC = 1. Instead of hardware
interrupts, software polling may be used to monitor the TDRE and TC status flags if the corresponding TIE
or TCIE local interrupt masks are 0s.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive
data register by reading SCI1D. The RDRF flag is cleared by reading SCI1S1 while RDRF = 1 and then
reading SCI1D.

When polling is used, this sequence is naturally satisfied in the normal course of the user program. If
hardware interrupts are used, SCI1S1 must be read in the interrupt service routine (ISR). Normally, this is
done in the ISR anyway to check for receive errors, so the sequence is automatically satisfied.

The IDLE status flag includes logic that prevents it from getting set repeatedly when the RxD1 line remains
idle for an extended period of time. IDLE is cleared by reading SCI1S1 while IDLE = 1 and then reading
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When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB
depending on LSBFE) when SS1 goes to active low. The first SPSCK edge causes both the master and the
slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK
edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the
second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and
slave, respectively. When CPHA = 0, the slave’s SS input must go to its inactive high level between
transfers.

13.3.2 SPI Pin Controls

The SPI optionally shares four port pins. The function of these pins depends on the settings of SPI control
bits. When the SPI is disabled (SPE = 0), these four pins revert to being general-purpose port I/O pins that
are not controlled by the SPI.

13.3.2.1 SPSCK1 — SPI Serial Clock

When the SPI is enabled as a slave, this pin is the serial clock input. When the SPI is enabled as a master,
this pin is the serial clock output.

13.3.2.2 MOSI1 — Master Data Out, Slave Data In

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this
pin is the serial data output. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data
input. If SPC0 = 1 to select single-wire bidirectional mode, and master mode is selected, this pin becomes
the bidirectional data I/O pin (MOMI). Also, the bidirectional mode output enable bit determines whether
the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and slave mode is
selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

13.3.2.3 MISO1 — Master Data In, Slave Data Out

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this
pin is the serial data input. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data
output. If SPC0 = 1 to select single-wire bidirectional mode, and slave mode is selected, this pin becomes
the bidirectional data I/O pin (SISO) and the bidirectional mode output enable bit determines whether the
pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and master mode is selected,
this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

13.3.2.4 SS1 — Slave Select

When the SPI is enabled as a slave, this pin is the low-true slave select input. When the SPI is enabled as
a master and mode fault enable is off (MODFEN = 0), this pin is not used by the SPI and reverts to being
a general-purpose port I/O pin. When the SPI is enabled as a master and MODFEN = 1, the slave select
output enable bit determines whether this pin acts as the mode fault input (SSOE = 0) or as the slave select
output (SSOE = 1).
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11

170 Freescale Semiconductor



Serial Peripheral Interface (SPI) Module
13.4.5 SPI Data Register (SPI1D)

Figure 13-11. SPI Data Register (SPI1D)

Reads of this register return the data read from the receive data buffer. Writes to this register write data
to the transmit data buffer. When the SPI is configured as a master, writing data to the transmit data
buffer initiates an SPI transfer.

Data should not be written to the transmit data buffer unless the SPI transmit buffer empty flag
(SPTEF) is set, indicating there is room in the transmit buffer to queue a new transmit byte.

Data may be read from SPI1D any time after SPRF is set and before another transfer is finished. Failure
to read the data out of the receive data buffer before a new transfer ends causes a receive overrun
condition and the data from the new transfer is lost.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0
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BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of
microcontrollers. This protocol assumes the host knows the communication clock rate that is determined
by the target BDC clock rate. All communication is initiated and controlled by the host that drives a
high-to-low edge to signal the beginning of each bit time. Commands and data are sent most significant bit
first (MSB first). For a detailed description of the communications protocol, refer to Section 15.2.2,
“Communication Details.”

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC
command may be sent to the target MCU to request a timed sync response signal from which the host can
determine the correct communication speed.

BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required.
Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external
capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively
driven speedup pulses to force rapid rise times on this pin without risking harmful drive level conflicts.
Refer to Section 15.2.2, “Communication Details,” for more detail.

When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD
chooses normal operating mode. When a development system is connected, it can pull both BKGD and
RESET low, release RESET to select active background mode rather than normal operating mode, then
release BKGD. It is not necessary to reset the target MCU to communicate with it through the background
debug interface.

15.2.2 Communication Details

The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to
indicate the start of each bit time. The external controller provides this falling edge whether data is
transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data
is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if
512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress
when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU
system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed.

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the
BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source.

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting cycles.
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15.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture
bus information and what information to capture. The system relies on the single-wire background debug
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map.
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any
of the control and status registers for the debug module. The one exception is that the debug system can
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in
Section 15.3.6, “Hardware Breakpoints.”

15.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is
actually executed as opposed to only being read from memory into the instruction queue. The comparators
are also capable of magnitude comparisons to support the inside range and outside range trigger modes.
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an
additional purpose, in full address plus data comparisons they are used to decide which of these buses to
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU

• Storage of data bus values into the FIFO

• Starting to store change-of-flow addresses into the FIFO (begin type trace)

• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

15.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and
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A-Only — Trigger when the address matches the value in comparator A

A OR B — Trigger when the address matches either the value in comparator A or the value in
comparator B

A Then B — Trigger when the address matches the value in comparator B but only after the address for
another cycle matched the value in comparator A. There can be any number of cycles after the A match
and before the B match.

A AND B Data (Full Mode) — This is called a full mode because address, data, and R/W (optionally)
must match within the same bus cycle to cause a trigger event. Comparator A checks address, the low byte
of comparator B checks data, and R/W is checked against RWA if RWAEN = 1. The high-order half of
comparator B is not used.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.

A AND NOT B Data (Full Mode) — Address must match comparator A, data must not match the low
half of comparator B, and R/W must match RWA if RWAEN = 1. All three conditions must be met within
the same bus cycle to cause a trigger.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.

Event-Only B (Store Data) — Trigger events occur each time the address matches the value in
comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the
FIFO becomes full.

A Then Event-Only B (Store Data) — After the address has matched the value in comparator A, a trigger
event occurs each time the address matches the value in comparator B. Trigger events cause the data to be
captured into the FIFO. The debug run ends when the FIFO becomes full.

Inside Range (A ≤ Address ≤ B) — A trigger occurs when the address is greater than or equal to the value
in comparator A and less than or equal to the value in comparator B at the same time.

Outside Range (Address < A or Address > B) — A trigger occurs when the address is either less than
the value in comparator A or greater than the value in comparator B.
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A.4 Electrostatic Discharge (ESD) Protection Characteristics
Although damage from static discharge is much less common on these devices than on early CMOS
circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification
tests are performed to ensure that these devices can withstand exposure to reasonable levels of static
without suffering any permanent damage. All ESD testing is in conformity with CDF-AEC-Q00 Stress
Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/)   A device is
considered to have failed if, after exposure to ESD pulses, the device no longer meets the device
specification requirements. Complete dc parametric and functional testing is performed per the applicable
device data sheet at room temperature followed by hot temperature, unless specified otherwise in the
device data sheet.

A.5 DC Characteristics
This section includes information about power supply requirements, I/O pin characteristics, and power
supply current in various operating modes.

Table A-3. ESD Protection Characteristics

Parameter Symbol Value Unit

ESD Target for Machine Model (MM)
MM circuit description

VTHMM 200 V

ESD Target for Human Body Model (HBM)
HBM circuit description

VTHHBM 2000 V

Table A-4. DC Characteristics (Temperature Range = 0 to 70°C Ambient)

Parameter Symbol Min Typical Max Unit

Low-voltage detection threshold VLVD 1.82 1.875 1.90 V

Power on reset (POR) voltage VPOR 0.8 0.9 1.1 V

Maximum low-voltage safe state re-arm(1)

1. If SAFE bit is set, VDD must be above re-arm voltage to allow MCU to accept interrupts, refer to Section 5.6, “Low-Voltage
Detect (LVD) System.”

VREARM 1.90 2.24 2.60 V

Table A-5. DC Characteristics (Temperature Range = –40 to 85°C Ambient)

Parameter Symbol Min Typical Max Unit

Supply voltage (run, wait and stop modes.)
0 < fBus < 8 MHz VDD 1.8 3.6 V

Minimum RAM retention supply voltage applied to VDD VRAM VPOR
(1), (2) — V

Low-voltage detection threshold
                                                           (VDD falling)
                                                           (VDD rising)

VLVD
1.82
1.92

1.88
1.96

1.93
2.01

V

Low-voltage warning threshold
                                                           (VDD falling)
                                                           (VDD rising)

VLVW
2.07
2.16

2.13
2.21

2.18
2.26

V

Power on reset (POR) voltage VPOR 0.85 1.0 1.2 V
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Maximum low-voltage safe state re-arm(3) VREARM — — 3.0 V

Input high voltage (VDD > 2.3 V) (all digital inputs) VIH 0.70 × VDD — V

Input high voltage (1.8 V ≤ VDD ≤ 2.3 V) (all digital inputs) VIH 0.85 × VDD — V

Input low voltage (VDD > 2.3 V) (all digital inputs) VIL — 0.35 ×
VDD

V

Input low voltage (1.8 V ≤ VDD ≤ 2.3 V)
(all digital inputs)

VIL — 0.30 ×
VDD

V

Input hysteresis (all digital inputs) Vhys 0.06 × VDD — V

Input leakage current (Per pin)
VIn = VDD or VSS, all input only pins

|IIn| — 0.025 1.0 µA

High impedance (off-state) leakage current (per pin)
VIn = VDD or VSS, all input/output

|IOZ| — 0.025 1.0 µA

Internal pullup resistors(4) (5) RPU 17.5 52.5 κW

Internal pulldown resistor (IRQ) RPD 17.5 52.5 κW

Output high voltage (VDD ≥ 1.8 V)
IOH = –2 mA (ports A, C, D and E) VOH VDD – 0.5 — V

Output high voltage (port B and IRO)
IOH = –10 mA (VDD ≥ 2.7 V)
IOH = –6 mA (VDD ≥ 2.3 V)
IOH = –3 mA (VDD ≥ 1.8 V)

VDD – 0.5
—
—
—

Maximum total IOH for all port pins |IOHT| — 60 mA

Output low voltage (VDD ≥ 1.8 V)
IOL = 2.0 mA (ports A, C, D and E)

VOL
— 0.5 V

Output low voltage (port B)
IOL = 10.0 mA (VDD ≥ 2.7 V)
IOL = 6 mA (VDD ≥ 2.3 V)
IOL = 3 mA (VDD ≥ 1.8 V)

—
—
—

0.5
0.5
0.5

Output low voltage (IRO)
IOL = 16 mA (VDD ≥ 2.7 V)
IOL = 6 mA (VDD ≥ 2.3 V)
IOL = 3 mA (VDD ≥ 1.8 V)

—
—
—

1.2
1.2
1.2

Maximum total IOL for all port pins IOLT — 60 mA

dc injection current(2), (6), (7), (8),, (9)

VIN < VSS, VIN > VDD
Single pin limit
Total MCU limit, includes sum of all stressed pins

|IIC|

—
—

0.2
5

mA
mA

Input capacitance (all non-supply pins) CIn — 7 pF

1. RAM will retain data down to POR voltage. RAM data not guaranteed to be valid following a POR.
2. This parameter is characterized and not tested on each device.
3. If SAFE bit is set, VDD must be above re-arm voltage to allow MCU to accept interrupts, refer to Section 5.6, “Low-Voltage

Detect (LVD) System.”
4. Measurement condition for pull resistors: VIn = VSS for pullup and VIn = VDD for pulldown.
5. The PTA0 pullup resistor may not pull up to the specified minimum VIH. However, all ports are functionally tested to guarantee

that a logic 1 will be read on any port input when the pullup is enabled and no dc load is present on the pin.
6. All functional non-supply pins are internally clamped to VSS and VDD.

Table A-5. DC Characteristics (Temperature Range = –40 to 85°C Ambient) (continued)

Parameter Symbol Min Typical Max Unit
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