
Freescale Semiconductor - MC9S08RG60FGE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor S08

Core Size 8-Bit

Speed 8MHz

Connectivity SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 39

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package 44-LQFP (10x10)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08rg60fge

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s08rg60fge-4380228
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


MC9S08RG60 Data Sheet
Covers: MC9S08RC8/16/32/60

MC9S08RD8/16/32/60
MC9S08RE8/16/32/60
MC9S08RG32/60

MC9S08RG60/D
Rev.  1.11

06/2005



Pins and Connections
2.3.1 Power

VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all
I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides a regulated
lower-voltage source to the CPU and other internal circuitry of the MCU.

Typically, application systems have two separate capacitors across the power pins. In this case, there
should be a bulk electrolytic capacitor, such as a 10-µF tantalum capacitor, to provide bulk charge storage
for the overall system and a 0.1-µF ceramic bypass capacitor located as near to the MCU power pins as
practical to suppress high-frequency noise.

2.3.2 Oscillator

The oscillator in the MC9S08RC/RD/RE/RG is a traditional Pierce oscillator that can accommodate a
crystal or ceramic resonator in the range of 1 MHz to 16 MHz.

Refer to Figure 2-5 for the following discussion. RF should be a low-inductance resistor such as a carbon
composition resistor. Wire-wound resistors, and some metal film resistors, have too much inductance. C1
and C2 normally should be high-quality ceramic capacitors specifically designed for high-frequency
applications.

RF is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup and its
value is not generally critical. Typical systems use 1 MΩ. Higher values are sensitive to humidity and lower
values reduce gain and (in extreme cases) could prevent startup.

C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to match the requirements of a specific
crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and MCU pin
capacitance when sizing C1 and C2. The crystal manufacturer typically specifies a load capacitance that
is the series combination of C1 and C2, which are usually the same size. As a first-order approximation,
use 5 pF as an estimate of combined pin and PCB capacitance for each oscillator pin (EXTAL and XTAL).

2.3.3 PTD1/RESET

The external pin reset function is shared with an output-only port function on the PTD1/RESET pin. The
reset function is enabled when RSTPE in SOPT is set. RSTPE is set following any reset of the MCU and
must be cleared in order to use this pin as an output-only port.

Whenever any reset is initiated (whether from an external signal or from an internal system), the reset pin
is driven low for about 34 cycles of fSelf_reset, released, and sampled again about 38 cycles of fSelf_reset
later. If reset was caused by an internal source such as low-voltage reset or watchdog timeout, the circuitry
expects the reset pin sample to return a logic 1. If the pin is still low at this sample point, the reset is
assumed to be from an external source. The reset circuitry decodes the cause of reset and records it by
setting a corresponding bit in the system control reset status register (SRS).

Never connect any significant capacitance to the reset pin because that would interfere with the circuit and
sequence that detects the source of reset. If an external capacitance prevents the reset pin from rising to a
valid logic 1 before the reset sample point, all resets will appear to be external resets.
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Chapter 3
Modes of Operation

3.1 Introduction
The operating modes of the MC9S08RC/RD/RE/RG are described in this section. Entry into each mode,
exit from each mode, and functionality while in each of the modes are described.

3.2 Features
• Active background mode for code development

• Wait mode:

— CPU shuts down to conserve power
— System clocks running
— Full voltage regulation maintained

• Stop modes:

— System clocks stopped; voltage regulator in standby
— Stop1 — Full power down of internal circuits for maximum power savings
— Stop2 — Partial power down of internal circuits, RAM remains operational
— Stop3 — All internal circuits powered for fast recovery

3.3 Run Mode

This is the normal operating mode for the MC9S08RC/RD/RE/RG. This mode is selected when the
BKGD/MS pin is high at the rising edge of reset. In this mode, the CPU executes code from internal
memory with execution beginning at the address fetched from memory at $FFFE:$FFFF after reset.

3.4 Active Background Mode
The active background mode functions are managed through the background debug controller (BDC) in
the HCS08 core. The BDC, together with the on-chip debug module (DBG), provide the means for
analyzing MCU operation during software development.

Active background mode is entered in any of five ways:

• When the BKGD/MS pin is low at the rising edge of reset

• When a BACKGROUND command is received through the BKGD pin

• When a BGND instruction is executed

• When encountering a BDC breakpoint

• When encountering a DBG breakpoint
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Resets, Interrupts, and System Configuration
5.6.1 Power-On Reset Operation

When power is initially applied to the MCU, or when the supply voltage drops below the VPOR level, the
POR circuit will cause a reset condition. As the supply voltage rises, the LVD circuit will hold the chip in
reset until the supply has risen above the VLVD level. Both the POR bit and the LVD bit in SRS are set
following a POR.

5.6.2 LVD Reset Operation

The LVD can be configured to generate a reset upon detection of a low voltage condition. This is done by
setting LVDRE to 1. LVDRE is a write-once bit that is set following a POR and is unaffected by other
resets. When LVDRE = 1, setting the SAFE bit has no effect. After an LVD reset has occurred, the LVD
system will hold the MCU in reset until the supply voltage is above the VLVD level. The LVD bit in the
SRS register is set following either an LVD reset or POR.

5.6.3 LVD Interrupt and Safe State Operation

When the voltage on the supply pin VDD drops below VLVD and the LVD circuit is configured for interrupt
operation (LVDIE is set and LVDRE is clear), an LVD interrupt will occur. The LVD trip point is set above
the minimum voltage at which the MCU can reliably operate, but the supply voltage may still be dropping.
It is recommended that the user place the MCU in the safe state as soon as possible following a LVD
interrupt. For systems where the supply voltage may drop so rapidly that the MCU may not have time to
service the LVD interrupt and enter the safe state, it is recommended that the LVD be configured to
generate a reset. The safe state is entered by executing a STOP instruction with the SAFE bit in the system
power management status and control 1 (SPMSC1) register set while in a low voltage condition
(LVDF = 1).

After the LVD interrupt has occurred, the user may configure the system to block all interrupts, resets, or
wakeups by writing a 1 to the SAFE bit. While SAFE =1 and VDD is below VREARM all interrupts, resets,
and wakeups are blocked. After VDD is above VREARM, the SAFE bit is ignored (the SAFE bit will still
read a 1). After setting the SAFE bit, the MCU must be put into either the stop3 or stop2 mode before the
supply voltage drops below the minimum operating voltage of the MCU. The supply voltage may now
drop to a level just above the POR trip point and then restored to a level above VREARM and the MCU state
(in the case of stop3) and RAM contents will be preserved. When the supply voltage has been restored,
interrupts, resets, and wakeups are then unblocked. When the MCU has recovered from stop mode, the
SAFE bit should be cleared.

5.6.4 Low-Voltage Warning (LVW)

The LVD system has a low-voltage warning flag to indicate to the user that the supply voltage is
approaching, but is still above, the low-voltage detect voltage. The LVW does not have an interrupt
associated with it. However, the FLASH memory cannot be reliably programmed or erased below the
VLVW level, so the status of the LVWF bit in the system power management status and control 2 (SPMSC2)
register must be checked before initiating any FLASH program or erase operation.
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Parallel Input/Output
6.4.2 Internal Pullup Control

An internal pullup device can be enabled for each port pin that is configured as an input (PTxDDn = 0).
The pullup device is available for a peripheral module to use, provided the peripheral is enabled and is an
input function as long as the PTxDDn = 0.

NOTE
The voltage measured on the pulled up PTA0 pin will be less than VDD. The
internal gates connected to this pin are pulled all the way to VDD. All other
pins with enabled pullup resistors will have an unloaded measurement of
VDD.

6.5 Stop Modes
Depending on the stop mode, I/O functions differently as the result of executing a STOP instruction. An
explanation of I/O behavior for the various stop modes follows:

• When the MCU enters stop1 mode, all internal registers, including general-purpose I/O control and
data registers, are powered down. All of the general-purpose I/O pins assume their reset state:
output buffers and pullups turned off. Upon exit from stop1, all I/O must be initialized as if the
MCU had been reset.

• When the MCU enters stop2 mode, the internal registers are powered down as in stop1 but the I/O
pin states are latched and held. For example, a port pin that is an output driving low continues to
function as an output driving low even though its associated data direction and output data registers
are powered down internally. Upon exit from stop2, the pins continue to hold their states until a 1
is written to the PPDACK bit. To avoid discontinuity in the pin state following exit from stop2, the
user must restore the port control and data registers to the values they held befor4e entering stop2.
These values can be stored in RAM before entering stop2 because the RAM is maintained during
stop2.

• In stop3 mode, all I/O is maintained because internal logic circuity stays powered up. Upon
recovery, normal I/O function is available to the user.

6.6 Parallel I/O Registers and Control Bits
This section provides information about all registers and control bits associated with the parallel I/O ports.

Refer to tables in the Memory chapter for the absolute address assignments for all parallel I/O registers.
This section refers to registers and control bits only by their names. A Freescale-provided equate or header
file normally is used to translate these names into the appropriate absolute addresses.
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Carrier Modulator Transmitter (CMT) Block Description
8.5.1 Carrier Generator

The carrier signal is generated by counting a register-selected number of input clocks (125 ns for an 8 MHz
bus) for both the carrier high time and the carrier low time. The period is determined by the total number
of clocks counted. The duty cycle is determined by the ratio of high time clocks to total clocks counted.
The high and low time values are user programmable and are held in two registers.

An alternate set of high/low count values is held in another set of registers to allow the generation of dual
frequency FSK (frequency shift keying) protocols without CPU intervention.

NOTE
Only non-zero data values are allowed. The carrier generator will not work
if any of the count values are equal to zero.

The MCGEN bit in the CMTMSC register must be set and the BASE bit must be cleared to enable carrier
generator clocks. When the BASE bit is set, the carrier output to the modulator is held high continuously.
The block diagram is shown in Figure 8-3.

Table 8-2. CMT Modes of Operation

Mode
MCGEN

Bit(1)

1. To prevent spurious operation, initialize all data and control registers before beginning a transmission (MCGEN=1).

BASE
Bit(2)

2. These bits are not double buffered and should not be changed during a transmission (while MCGEN=1).

FSK
Bit(2)

EXSPC
Bit

Comment

Time 1 0 0 0
fCG controlled by primary high and low registers.
fCG transmitted to IRO pin when modulator gate is open.

Baseband 1 1 x 0 fCG is always high. IRO pin high when modulator gate is open.

FSK 1 0 1 0
fCG control alternates between primary high/low registers and
secondary high/low registers.
fCG transmitted to IRO pin when modulator gate is open.

Extended
Space

1 x x 1
Setting the EXSPC bit causes subsequent modulator cycles
to be spaces (modulator out not asserted) for the duration of
the modulator period (mark and space times).

IRO Latch 0 x x x IROL bit controls state of IRO pin.
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Timer/PWM (TPM)
10.7.1 Timer Status and Control Register (TPM1SC)

TPM1SC contains the overflow status flag and control bits that are used to configure the interrupt enable,
TPM configuration, clock source, and prescale divisor. These controls relate to all channels within this
timer module.

7 6 5 4 3 2 1 0

R TOF
TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-5. Timer Status and Control Register (TPM1SC)

Table 10-1. TPM1SC Register Field Descriptions

Field Description

7
TOF

Timer Overflow Flag — This flag is set when the TPM counter changes to $0000 after reaching the modulo
value programmed in the TPM counter modulo registers. When the TPM is configured for CPWM, TOF is set
after the counter has reached the value in the modulo register, at the transition to the next lower count value.
Clear TOF by reading the TPM status and control register when TOF is set and then writing a 0 to TOF. If another
TPM overflow occurs before the clearing sequence is complete, the sequence is reset so TOF would remain set
after the clear sequence was completed for the earlier TOF. Reset clears TOF. Writing a 1 to TOF has no effect.
0 TPM counter has not reached modulo value or overflow
1 TPM counter has overflowed

6
TOIE

Timer Overflow Interrupt Enable — This read/write bit enables TPM overflow interrupts. If TOIE is set, an
interrupt is generated when TOF equals 1. Reset clears TOIE.
0 TOF interrupts inhibited (use software polling)
1 TOF interrupts enabled

5
CPWMS

Center-Aligned PWM Select — This read/write bit selects CPWM operating mode. Reset clears this bit so the
TPM operates in up-counting mode for input capture, output compare, and edge-aligned PWM functions. Setting
CPWMS reconfigures the TPM to operate in up-/down-counting mode for CPWM functions. Reset clears
CPWMS.
0 All TPM1 channels operate as input capture, output compare, or edge-aligned PWM mode as selected by the

MSnB:MSnA control bits in each channel’s status and control register
1 All TPM1 channels operate in center-aligned PWM mode

4:3
CLKS[B:A]

Clock Source Select — As shown in Table 10-2, this 2-bit field is used to disable the TPM system or select one
of three clock sources to drive the counter prescaler. The external source and the XCLK are synchronized to the
bus clock by an on-chip synchronization circuit.

2:0
PS[2:0]

Prescale Divisor Select — This 3-bit field selects one of eight divisors for the TPM clock input as shown in
Table 10-3. This prescaler is located after any clock source synchronization or clock source selection, so it affects
whatever clock source is selected to drive the TPM system.
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Chapter 11
Serial Communications Interface (S08SCIV1)

11.1 Introduction
The MC9S08RDxx, MC9S08RExx, and MC9S08RGxx devices include a serial communications interface
(SCI) module, which is sometimes called a universal asynchronous receiver/transmitters (UART). The SCI
module shares pins with PTB0 and PTB1 port pins. When the SCI is enabled, the pins are controlled by
the SCI module.

Figure 11-1 is a device-level block diagram with the SCI highlighted.
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Serial Communications Interface (S08SCIV1)
12.2.3 SCI Control Register 2 (SCI1C2)

This register can be read or written at any time.

7 6 5 4 3 2 1 0

R
TIE TCIE RIE ILIE TE RE RWU SBK

W

Reset 0 0 0 0 0 0 0 0

Figure 12-6. SCI Control Register 2 (SCI1C2)

Table 12-4. SCI1C2 Register Field Descriptions

Field Description

7
TIE

Transmit Interrupt Enable (for TDRE)
0 Hardware interrupts from TDRE disabled (use polling).
1 Hardware interrupt requested when TDRE flag is 1.

6
TCIE

Transmission Complete Interrupt Enable (for TC)
0 Hardware interrupt requested when TC flag is 1.
1 Hardware interrupts from TC disabled (use polling).

5
RIE

Receiver Interrupt Enable (for RDRF)
0 Hardware interrupts from RDRF disabled (use polling).
1 Hardware interrupt requested when RDRF flag is 1.

4
ILIE

Idle Line Interrupt Enable (for IDLE)
0 Hardware interrupts from IDLE disabled (use polling).
1 Hardware interrupt requested when IDLE flag is 1.

3
TE

Transmitter Enable
0 Transmitter off.
1 Transmitter on.
TE must be 1 in order to use the SCI transmitter. Normally, when TE = 1, the SCI forces the TxD pin to act as an
output for the SCI system. If LOOPS = 1 and RSRC = 0, the TxD pin reverts to being a port B general-purpose
I/O pin even if TE = 1.
When the SCI is configured for single-wire operation (LOOPS = RSRC = 1), TXDIR controls the direction of
traffic on the single SCI communication line (TxD pin).
TE also can be used to queue an idle character by writing TE = 0 then TE = 1 while a transmission is in progress.
Refer to Section 12.3.2.1, “Send Break and Queued Idle,” for more details.
When TE is written to 0, the transmitter keeps control of the port TxD pin until any data, queued idle, or queued
break character finishes transmitting before allowing the pin to revert to a general-purpose I/O pin.

2
RE

Receiver Enable — When the SCI receiver is off, the RxD pin reverts to being a general-purpose port I/O pin.
0 Receiver off.
1 Receiver on.
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Serial Communications Interface (S08SCIV1)
12.2.4 SCI Status Register 1 (SCI1S1)

This register has eight read-only status flags. Writes have no effect. Special software sequences (which do
not involve writing to this register) are used to clear these status flags.

1
RWU

Receiver Wakeup Control — This bit can be written to 1 to place the SCI receiver in a standby state where it
waits for automatic hardware detection of a selected wakeup condition. The wakeup condition is either an idle
line between messages (WAKE = 0, idle-line wakeup), or a logic 1 in the most significant data bit in a character
(WAKE = 1, address-mark wakeup). Application software sets RWU and (normally) a selected hardware
condition automatically clears RWU. Refer to Section 12.3.3.2, “Receiver Wakeup Operation,” for more details.
0 Normal SCI receiver operation.
1 SCI receiver in standby waiting for wakeup condition.

0
SBK

Send Break — Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional
break characters of 10 or 11 bit times of logic 0 are queued as long as SBK = 1. Depending on the timing of the
set and clear of SBK relative to the information currently being transmitted, a second break character may be
queued before software clears SBK. Refer to Section 12.3.2.1, “Send Break and Queued Idle,” for more details.
0 Normal transmitter operation.
1 Queue break character(s) to be sent.

7 6 5 4 3 2 1 0

R TDRE TC RDRF IDLE OR NF FE PF

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-7. SCI Status Register 1 (SCI1S1)

Table 12-5. SCI1S1 Register Field Descriptions

Field Description

7
TDRE

Transmit Data Register Empty Flag — TDRE is set immediately after reset and when a transmit data value
transfers from the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To
clear TDRE, read SCI1S1 with TDRE = 1 and then write to the SCI data register (SCI1D).
0 Transmit data register (buffer) full.
1 Transmit data register (buffer) empty.

6
TC

Transmission Complete Flag — TC is set immediately after reset and when TDRE = 1 and no data, preamble,
or break character is being transmitted.
0 Transmitter active (sending data, a preamble, or a break).
1 Transmitter idle (transmission activity complete).
TC is cleared automatically by reading SCI1S1 with TC = 1 and then doing one of the following three things:

• Write to the SCI data register (SCI1D) to transmit new data
• Queue a preamble by changing TE from 0 to 1
• Queue a break character by writing 1 to SBK in SCI1C2

Table 12-4. SCI1C2 Register Field Descriptions (continued)

Field Description
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Serial Communications Interface (S08SCIV1)
5
RDRF

Receive Data Register Full Flag — RDRF becomes set when a character transfers from the receive shifter into
the receive data register (SCI1D). To clear RDRF, read SCI1S1 with RDRF = 1 and then read the SCI data
register (SCI1D).
0 Receive data register empty.
1 Receive data register full.

4
IDLE

Idle Line Flag — IDLE is set when the SCI receive line becomes idle for a full character time after a period of
activity. When ILT = 0, the receiver starts counting idle bit times after the start bit. So if the receive character is
all 1s, these bit times and the stop bit time count toward the full character time of logic high (10 or 11 bit times
depending on the M control bit) needed for the receiver to detect an idle line. When ILT = 1, the receiver doesn’t
start counting idle bit times until after the stop bit. So the stop bit and any logic high bit times at the end of the
previous character do not count toward the full character time of logic high needed for the receiver to detect an
idle line.
To clear IDLE, read SCI1S1 with IDLE = 1 and then read the SCI data register (SCI1D). After IDLE has been
cleared, it cannot become set again until after a new character has been received and RDRF has been set. IDLE
will get set only once even if the receive line remains idle for an extended period.
0 No idle line detected.
1 Idle line was detected.

3
OR

Receiver Overrun Flag — OR is set when a new serial character is ready to be transferred to the receive data
register (buffer), but the previously received character has not been read from SCI1D yet. In this case, the new
character (and all associated error information) is lost because there is no room to move it into SCI1D. To clear
OR, read SCI1S1 with OR = 1 and then read the SCI data register (SCI1D).
0 No overrun.
1 Receive overrun (new SCI data lost).

2
NF

Noise Flag — The advanced sampling technique used in the receiver takes seven samples during the start bit
and three samples in each data bit and the stop bit. If any of these samples disagrees with the rest of the samples
within any bit time in the frame, the flag NF will be set at the same time as the flag RDRF gets set for the
character. To clear NF, read SCI1S1 and then read the SCI data register (SCI1D).
0 No noise detected.
1 Noise detected in the received character in SCI1D.

1
FE

Framing Error Flag — FE is set at the same time as RDRF when the receiver detects a logic 0 where the stop
bit was expected. This suggests the receiver was not properly aligned to a character frame. To clear FE, read
SCI1S1 with FE = 1 and then read the SCI data register (SCI1D).
0 No framing error detected. This does not guarantee the framing is correct.
1 Framing error.

0
PF

Parity Error Flag — PF is set at the same time as RDRF when parity is enabled (PE = 1) and the parity bit in
the received character does not agree with the expected parity value. To clear PF, read SCI1S1 and then read
the SCI data register (SCI1D).
0 No parity error.
1 Parity error.

Table 12-5. SCI1S1 Register Field Descriptions (continued)

Field Description
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Serial Communications Interface (S08SCIV1)
12.3 Functional Description
The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote
devices, including other MCUs. The SCI comprises a baud rate generator, transmitter, and receiver block.
The transmitter and receiver operate independently, although they use the same baud rate generator. During
normal operation, the MCU monitors the status of the SCI, writes the data to be transmitted, and processes
received data. The following describes each of the blocks of the SCI.

12.3.1 Baud Rate Generation

As shown in Figure 12-11, the clock source for the SCI baud rate generator is the bus-rate clock.

Figure 12-11. SCI Baud Rate Generation

SCI communications require the transmitter and receiver (which typically derive baud rates from
independent clock sources) to use the same baud rate. Allowed tolerance on this baud frequency depends
on the details of how the receiver synchronizes to the leading edge of the start bit and how bit sampling is
performed.

The MCU resynchronizes to bit boundaries on every high-to-low transition, but in the worst case, there are
no such transitions in the full 10- or 11-bit time character frame so any mismatch in baud rate is
accumulated for the whole character time. For a Freescale Semiconductor SCI system whose bus
frequency is driven by a crystal, the allowed baud rate mismatch is about ±4.5 percent for 8-bit data format
and about ±4 percent for 9-bit data format. Although baud rate modulo divider settings do not always
produce baud rates that exactly match standard rates, it is normally possible to get within a few percent,
which is acceptable for reliable communications.

12.3.2 Transmitter Functional Description

This section describes the overall block diagram for the SCI transmitter (Figure 12-1), as well as
specialized functions for sending break and idle characters.

The transmitter is enabled by setting the TE bit in SCI1C2. This queues a preamble character that is one
full character frame of the idle state. The transmitter then remains idle until data is available in the transmit
data buffer. Programs store data into the transmit data buffer by writing to the SCI data register (SCI1D).

The central element of the SCI transmitter is the transmit shift register that is either 10 or 11 bits long
depending on the setting in the M control bit. For the remainder of this section, we will assume M = 0,
selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits,
and a stop bit. When the transmit shift register is available for a new SCI character, the value waiting in

SBR12:SBR0

DIVIDE BY
Tx BAUD RATE

Rx SAMPLING CLOCK
(16 × BAUD RATE)

BAUD RATE GENERATOR
OFF IF [SBR12:SBR0] = 0

BUSCLK

BAUD RATE =
BUSCLK

[SBR12:SBR0] × 16

16

MODULO DIVIDE BY
(1 THROUGH 8191)
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13.2.3 SPI Baud Rate Generation

As shown in Figure 13-4, the clock source for the SPI baud rate generator is the bus clock. The three
prescale bits (SPPR2:SPPR1:SPPR0) choose a prescale divisor of 1, 2, 3, 4, 5, 6, 7, or 8. The three rate
select bits (SPR2:SPR1:SPR0) divide the output of the prescaler stage by 2, 4, 8, 16, 32, 64, 128, or 256
to get the internal SPI master mode bit-rate clock.

Figure 13-4. SPI Baud Rate Generation

13.3 Functional Description
An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then
writing a byte of data to the SPI data register (SPI1D) in the master SPI device. When the SPI shift register
is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate
there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.

During the SPI transfer, data is sampled (read) on the MISO1 pin at one SPSCK edge and shifted, changing
the bit value on the MOSI1 pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was
in the shift register of the master has been shifted out the MOSI1 pin to the slave while eight bits of data
were shifted in the MISO1 pin into the master’s shift register. At the end of this transfer, the received data
byte is moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read
by reading SPI1D. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is
moved into the shifter, SPTEF is set, and a new transfer is started.

Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable
(LSBFE) bit is set, SPI data is shifted LSB first.

When the SPI is configured as a slave, its SS1 pin must be driven low before a transfer starts and SS1 must
stay low throughout the transfer. If a clock format where CPHA = 0 is selected, SS1 must be driven to a
logic 1 between successive transfers. If CPHA = 1, SS1 may remain low between successive transfers. See
Section 13.3.1, “SPI Clock Formats,” for more details.

Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently
being shifted out, can be queued into the transmit data buffer, and a previously received character can be
in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the
transmit buffer has room for a new character. The SPRF flag indicates when a received character is
available in the receive data buffer. The received character must be read out of the receive buffer (read
SPI1D) before the next transfer is finished or a receive overrun error results.

In the case of a receive overrun, the new data is lost because the receive buffer still held the previous
character and was not ready to accept the new data. There is no indication for such an overrun condition
so the application system designer must ensure that previous data has been read from the receive buffer
before a new transfer is initiated.

DIVIDE BY
2, 4, 8, 16, 32, 64, 128, or 256

DIVIDE BY
1, 2, 3, 4, 5, 6, 7, or 8

PRESCALER CLOCK RATE DIVIDER

SPPR2:SPPR1:SPPR0 SPR2:SPR1:SPR0
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BIT RATE
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SSOE — Slave Select Output Enable

This bit is used in combination with the mode fault enable (MODFEN) bit in SPCR2 and the
master/slave (MSTR) control bit to determine the function of the SS1 pin as shown in Table 13-1.

LSBFE — LSB First (Shifter Direction)
1 = SPI serial data transfers start with least significant bit.
0 = SPI serial data transfers start with most significant bit.

13.4.2 SPI Control Register 2 (SPI1C2)

This read/write register is used to control optional features of the SPI system. Bits 7, 6, 5, and 2 are not
implemented and always read 0.

Figure 13-8. SPI Control Register 2 (SPI1C2)

MODFEN — Master Mode-Fault Function Enable

When the SPI is configured for slave mode, this bit has no meaning or effect. (The SS1 pin is the slave
select input.) In master mode, this bit determines how the SS1 pin is used (refer to Table 13-1 for more
details).

1 = Mode fault function enabled, master SS1 pin acts as the mode fault input or the slave select
output.

0 = Mode fault function disabled, master SS1 pin reverts to general-purpose I/O not controlled by
SPI.

Table 13-1. SS1 Pin Function

MODFEN SSOE Master Mode Slave Mode

0 0 General-purpose I/O (not SPI) Slave select input

0 1 General-purpose I/O (not SPI) Slave select input

1 0 SS input for mode fault Slave select input

1 1 Automatic SS output Slave select input

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 <st-blue>
MODFEN

<st-blue>
BIDIROE

0 <st-blue>
SPISWAI

<st-blue>
SPC0Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11

Freescale Semiconductor 173



Serial Peripheral Interface (SPI) Module
13.4.5 SPI Data Register (SPI1D)

Figure 13-11. SPI Data Register (SPI1D)

Reads of this register return the data read from the receive data buffer. Writes to this register write data
to the transmit data buffer. When the SPI is configured as a master, writing data to the transmit data
buffer initiates an SPI transfer.

Data should not be written to the transmit data buffer unless the SPI transmit buffer empty flag
(SPTEF) is set, indicating there is room in the transmit buffer to queue a new transmit byte.

Data may be read from SPI1D any time after SPRF is set and before another transfer is finished. Failure
to read the data out of the receive data buffer before a new transfer ends causes a receive overrun
condition and the data from the new transfer is lost.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0
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Figure 15-4 shows the host receiving a logic 0 from the target HCS08 MCU. Because the host is
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the start of the bit time as perceived by the target MCU. The host initiates the bit time but the
target HCS08 finishes it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low
for 13 BDC clock cycles, then briefly drives it high to speed up the rising edge. The host samples the bit
level about 10 cycles after starting the bit time.

Figure 15-4. BDM Target-to-Host Serial Bit Timing (Logic 0)

10 CYCLES

BDC CLOCK
(TARGET MCU)

HOST DRIVE
TO BKGD PIN

TARGET MCU
DRIVE AND
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SPEED-UP PULSE

SPEEDUP
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15.4.3.5 Debug FIFO High Register (DBGFH)

This register provides read-only access to the high-order eight bits of the FIFO. Writes to this register have
no meaning or effect. In the event-only trigger modes, the FIFO only stores data into the low-order byte of
each FIFO word, so this register is not used and will read 0x00.

Reading DBGFH does not cause the FIFO to shift to the next word. When reading 16-bit words out of the
FIFO, read DBGFH before reading DBGFL because reading DBGFL causes the FIFO to advance to the
next word of information.

15.4.3.6 Debug FIFO Low Register (DBGFL)

This register provides read-only access to the low-order eight bits of the FIFO. Writes to this register have
no meaning or effect.

Reading DBGFL causes the FIFO to shift to the next available word of information. When the debug
module is operating in event-only modes, only 8-bit data is stored into the FIFO (high-order half of each
FIFO word is unused). When reading 8-bit words out of the FIFO, simply read DBGFL repeatedly to get
successive bytes of data from the FIFO. It isn’t necessary to read DBGFH in this case.

Do not attempt to read data from the FIFO while it is still armed (after arming but before the FIFO is filled
or ARMF is cleared) because the FIFO is prevented from advancing during reads of DBGFL. This can
interfere with normal sequencing of reads from the FIFO.

Reading DBGFL while the debugger is not armed causes the address of the most-recently fetched opcode
to be stored to the last location in the FIFO. By reading DBGFH then DBGFL periodically, external host
software can develop a profile of program execution. After eight reads from the FIFO, the ninth read will
return the information that was stored as a result of the first read. To use the profiling feature, read the FIFO
eight times without using the data to prime the sequence and then begin using the data to get a delayed
picture of what addresses were being executed. The information stored into the FIFO on reads of DBGFL
(while the FIFO is not armed) is the address of the most-recently fetched opcode.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11

200 Freescale Semiconductor



RC492C
Placed Image




RC492C
Placed Image





