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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Part Number Package Description Original (gold wire) 
package document number

Current (copper wire) 
package document number

MC68HC908JW32 48 QFN 98ARH99048A 98ASA00466D

MC9S08AC16

MC9S908AC60

MC9S08AC128

MC9S08AW60

MC9S08GB60A

MC9S08GT16A

MC9S08JM16

MC9S08JM60

MC9S08LL16

MC9S08QE128

MC9S08QE32

MC9S08RG60

MCF51CN128

MC9RS08LA8 48 QFN 98ARL10606D 98ASA00466D

MC9S08GT16A 32 QFN 98ARH99035A 98ASA00473D

MC9S908QE32 32 QFN 98ARE10566D 98ASA00473D

MC9S908QE8 32 QFN 98ASA00071D 98ASA00736D 

MC9S08JS16 24 QFN 98ARL10608D 98ASA00734D

MC9S08QB8

MC9S08QG8 24 QFN 98ARL10605D 98ASA00474D

MC9S08SH8 24 QFN 98ARE10714D 98ASA00474D

MC9RS08KB12 24 QFN 98ASA00087D 98ASA00602D

MC9S08QG8 16 QFN 98ARE10614D 98ASA00671D

MC9RS08KB12 8 DFN 98ARL10557D 98ASA00672D

MC9S08QG8

MC9RS08KA2 6 DFN 98ARL10602D 98ASA00735D
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Resets, Interrupts, and System Configuration
The MC9S08RC/RD/RE/RG has these sources for reset:

• Power-on reset (POR)

• Low-voltage detect (LVD)

• Computer operating properly (COP) timer

• Illegal opcode detect

• Illegal address (16K and 8K devices only)

• Background debug forced reset

• The reset pin (RESET)

Each of these sources, with the exception of the background debug forced reset, has an associated bit in
the system reset status register. Whenever the MCU enters reset, the reset pin is driven low for 34 internal
bus cycles where the internal bus frequency is one-half the OSC frequency. After the 34 cycles are
completed, the pin is released and will be pulled up by the internal pullup resistor, unless it is held low
externally. After the pin is released, it is sampled after another 38 cycles to determine whether the reset pin
is the cause of the MCU reset.

5.4 Computer Operating Properly (COP) Watchdog
The COP watchdog is intended to force a system reset when the application software fails to execute as
expected. To prevent a system reset from the COP timer (when it is enabled), application software must
reset the COP timer periodically. If the application program gets lost and fails to reset the COP before it
times out, a system reset is generated to force the system back to a known starting point. The COP
watchdog is enabled by the COPE bit in SOPT (see Section 5.8.4, “System Options Register (SOPT),” for
additional information). The COP timer is reset by writing any value to the address of SRS. This write does
not affect the data in the read-only SRS. Instead, the act of writing to this address is decoded and sends a
reset signal to the COP timer.

After any reset, the COP timer is enabled. This provides a reliable way to detect code that is not executing
as intended. If the COP watchdog is not used in an application, it can be disabled by clearing the COPE
bit in the write-once SOPT register. Also, the COPT bit can be used to choose one of two timeout periods
(218 or 220 cycles of the bus rate clock). Even if the application will use the reset default settings in COPE
and COPT, the user must write to write-once SOPT during reset initialization to lock in the settings. That
way, they cannot be changed accidentally if the application program gets lost.

The write to SRS that services (clears) the COP timer must not be placed in an interrupt service routine
(ISR) because the ISR could continue to be executed periodically even if the main application program
fails.

When the MCU is in active background mode, the COP timer is temporarily disabled.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine
(ISR), and then restore the CPU status so processing resumes where it was before the interrupt. Other than
the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events such
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Resets, Interrupts, and System Configuration
7 6 5 4 3 2 1 0

R POR PIN COP ILOP ILAD(1)

1. The ILAD bit is only present in 16K and 8K versions of the devices.

0 LVD 0

W Writing any value to SRS address clears COP watchdog timer.

POR 1 0 0 0 0 0 1 0

LVR u 0 0 0 0 0 1 0

Any other
reset:

0 (2)

2. Any of these reset sources that are active at the time of reset will cause the corresponding bit(s) to be set; bits corresponding
to sources that are not active at the time of reset will be cleared.

(2) (2) (2) 0 0 0

u = Unaffected by reset

Figure 5-3. System Reset Status (SRS)

Table 5-3. SRS Field Descriptions

Field Description

7
POR

Power-On Reset — Reset was caused by the power-on detection logic. Because the internal supply voltage was
ramping up at the time, the low-voltage reset (LVR) status bit is also set to indicate that the reset occurred while
the internal supply was below the LVR threshold.
0 Reset not caused by POR.
1 POR caused reset.

6
PIN

External Reset Pin — Reset was caused by an active-low level on the external reset pin.
0 Reset not caused by external reset pin.
1 Reset came from external reset pin.

5
COP

Computer Operating Properly (COP) Watchdog — Reset was caused by the COP watchdog timer timing out.
This reset source may be blocked by COPE = 0.
0 Reset not caused by COP timeout.
1 Reset caused by COP timeout.

4
ILOP

Illegal Opcode — Reset was caused by an attempt to execute an unimplemented or illegal opcode. The STOP
instruction is considered illegal if stop is disabled by STOPE = 0 in the SOPT register. The BGND instruction is
considered illegal if active background mode is disabled by ENBDM = 0 in the BDCSC register.
0 Reset not caused by an illegal opcode.
1 Reset caused by an illegal opcode.

3
ILAD

Illegal Address Access — Reset was caused by an attempt to access a designated illegal address.
0 Reset not caused by an illegal address access
1 Reset caused by an illegal address access
Illegal address areas only exist in the 16K and 8K versions and are defined as:

• $0440–$17FF — Gap from end of RAM to start of high-page registers
• $1834–$BFFF — Gap from end of high-page registers to start of FLASH memory

Unused and reserved locations in register areas are not considered designated illegal addresses and do not
trigger illegal address resets.

1
LVD

Low Voltage Detect — If the LVDRE bit is set and the supply drops below the LVD trip voltage, an LVD reset
occurs. This bit is also set by POR.
0 Reset not caused by LVD trip or POR
1 Reset caused by LVD trip or POR
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Parallel Input/Output
6.6.1 Port A Registers (PTAD, PTAPE, and PTADD)

Port A pins used as general-purpose I/O pins are controlled by the port A data (PTAD), data direction
(PTADD), and pullup enable (PTAPE) registers.

7 6 5 4 3 2 1 0

R
PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-6. Port A Data Register (PTAD)

Table 6-1. PTAD Field Descriptions

Field Description

7:0
PTAD[7:0]

Port A Data Register Bits — For port A pins that are inputs, reads of this register return the logic level on the
pin. For port A pins that are configured as outputs, reads of this register return the last value written to this
register.
Writes are latched into all bits of this register. For port A pins that are configured as outputs, the logic level is
driven out the corresponding MCU pin.
Reset forces PTAD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures
all port pins as high-impedance inputs with pullups disabled.

7 6 5 4 3 2 1 0

R
PTAPE7 PTAPE6 PTAPE5 PTAPE4 PTAPE3 PTAPE2 PTAPE1 PTAPE0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-7. Pullup Enable for Port A (PTAPE)

Table 6-2. PTAPE Field Descriptions

Field Description

7:0
PTAPE[7:0]

Pullup Enable for Port A Bits — For port A pins that are inputs, these read/write control bits determine whether
internal pullup devices are enabled provided the corresponding PTADDn is a logic 0. For port A pins that are
configured as outputs, these bits are ignored and the internal pullup devices are disabled. When any of bits 7
through 4 of port A are enabled as KBI inputs and are configured to detect rising edges/high levels, the pullup
enable bits enable pulldown rather than pullup devices.
0 Internal pullup device disabled.
1 Internal pullup device enabled.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Parallel Input/Output
7 6 5 4 3 2 1 0

R
PTBPE7 PTBPE6 PTBPE5 PTBPE4 PTBPE3 PTBPE2 PTBPE1 PTBPE0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-10. Pullup Enable for Port B (PTBPE)

Table 6-5. PTBPE Field Descriptions

Field Description

7:0
PTBPE[7:0]

Pullup Enable for Port B Bits — For port B pins that are inputs, these read/write control bits determine whether
internal pullup devices are enabled. For port B pins that are configured as outputs, these bits are ignored and
the internal pullup devices are disabled.
0 Internal pullup device disabled.
1 Internal pullup device enabled.

7 6 5 4 3 2 1 0

R
PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDD1 PTBDD0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-11. Data Direction for Port B (PTBDD)

Table 6-6. PTBDD Field Descriptions

Field Description

7:0
PTBDD[7:0]

Data Direction for Port B Bits — These read/write bits control the direction of port B pins and what is read for
PTBD reads.
0 Input (output driver disabled) and reads return the pin value.
1 Output driver enabled for port B bit n and PTBD reads return the contents of PTBDn.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11

80 Freescale Semiconductor



Central Processor Unit (S08CPUV2)Central Processor Unit (S08CPUV2)
LDX  #opr8i
LDX opr8a
LDX opr16a
LDX oprx16,X
LDX oprx8,X
LDX   ,X
LDX oprx16,SP
LDX oprx8,SP

Load X (Index Register
Low) from Memory X ← (M)

0 – – – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AE
BE
CE
DE
EE
FE

9EDE
9EEE

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

LSL opr8a
LSLA
LSLX
LSL oprx8,X
LSL  ,X
LSL oprx8,SP

Logical Shift Left
(Same as ASL)

– – DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ff

ff

5
1
1
5
4
6

LSR opr8a
LSRA
LSRX
LSR oprx8,X
LSR  ,X
LSR oprx8,SP

Logical Shift Right

– – 0 DIR
INH
INH
IX1
IX
SP1

34
44
54
64
74

9E64

dd

ff

ff

5
1
1
5
4
6

MOV opr8a,opr8a
MOV opr8a,X+
MOV  #opr8i,opr8a
MOV  ,X+,opr8a

Move

(M)destination ← (M)source

H:X ← (H:X) + 0x0001 in
IX+/DIR and DIR/IX+ Modes

0 – – – DIR/DIR
DIR/IX+
IMM/DIR
IX+/DIR

4E
5E
6E
7E

dd dd
dd
ii dd
dd

5
5
4
5

MUL Unsigned multiply X:A ← (X) × (A) – 0 – – – 0 INH 42 5

NEG opr8a
NEGA
NEGX
NEG oprx8,X
NEG  ,X
NEG oprx8,SP

Negate
(Two’s Complement)

M ← – (M) = 0x00 – (M)
A ← – (A) = 0x00 – (A)
X ← – (X) = 0x00 – (X)
M ← – (M) = 0x00 – (M)
M ← – (M) = 0x00 – (M)
M ← – (M) = 0x00 – (M)

– – DIR
INH
INH
IX1
IX
SP1

30
40
50
60
70

9E60

dd

ff

ff

5
1
1
5
4
6

NOP No Operation Uses 1 Bus Cycle – – – – – – INH 9D 1

NSA Nibble Swap
Accumulator A ← (A[3:0]:A[7:4]) – – – – – – INH 62 1

ORA  #opr8i
ORA opr8a
ORA opr16a
ORA oprx16,X
ORA oprx8,X
ORA   ,X
ORA oprx16,SP
ORA oprx8,SP

Inclusive OR Accumulator
and Memory A ← (A) | (M)

0 – – – IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AA
BA
CA
DA
EA
FA

9EDA
9EEA

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

PSHA Push Accumulator onto
Stack Push (A); SP ← (SP) – 0x0001 – – – – – – INH 87 2

PSHH Push H (Index Register
High) onto Stack Push (H); SP ← (SP) – 0x0001 – – – – – – INH 8B 2

PSHX Push X (Index Register
Low) onto Stack Push (X); SP ← (SP) – 0x0001 – – – – – – INH 89 2

PULA Pull Accumulator from
Stack SP ← (SP + 0x0001); Pull (A) – – – – – – INH 86 3

PULH Pull H (Index Register
High) from Stack SP ← (SP + 0x0001); Pull (H) – – – – – – INH 8A 3

PULX Pull X (Index Register
Low) from Stack SP ← (SP + 0x0001); Pull (X) – – – – – – INH 88 3

ROL opr8a
ROLA
ROLX
ROL oprx8,X
ROL  ,X
ROL oprx8,SP

Rotate Left through Carry

– – DIR
INH
INH
IX1
IX
SP1

39
49
59
69
79

9E69

dd

ff

ff

5
1
1
5
4
6

Table 7-2. HCS08 Instruction Set Summary (Sheet 5 of 7)

Source
Form

Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

B
u

s 
C

yc
le

s1

V H I N Z C

C

b0b7

0

b0b7

C0

C

b0b7
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Chapter 8
Carrier Modulator Timer (S08CMTV1)

8.1 Introduction

Figure 8-1. MC9S08RC/RD/RE/RG Block Diagram

PTD3
PTD4/ACMP1–
PTD5/ACMP1+
PTD6/TPM1CH0

PTC1/KBI2P1
PTC0/KBI2P0

VSS

VDD

PTB3
PTB2

PTA7/KBI1P7–

PTB0/TxD1
PTB1/RxD1

PTD2/IRQ
PTD1/RESET
PTD0/BKGD/MS

PTC7/SS1
PTC6/SPSCK1
PTC5/MISO1
PTC4/MOSI1
PTC3/KBI2P3
PTC2/KBI2P2

P
O

R
T
 A

PO
RT

 C
PO

RT
 D

P
O

R
T 

B

8-BIT KEYBOARD
INTERRUPT MODULE (KBI1)

SERIAL PERIPHERAL
 INTERFACE MODULE (SPI1)

USER FLASH

USER RAM
(RC/RD/RE/RG32/60 = 2048 BYTES)

DEBUG
MODULE (DBG)

(RC/RD/RE/RG60 = 63,364 BYTES)

HCS08 CORE

BDC CPU

NOTES

NOTES 1, 5

2-CHANNEL TIMER/PWM
MODULE (TPM1)

PTE7–

PO
RT

 E

PTB5
PTB4

PTE6
PTB7/TPM1CH1

 MODULE (ACMP1)

HCS08 SYSTEM CONTROL

RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT

VOLTAGE
REGULATOR

RTI

ANALOG COMPARATOR

COP

IRQ LVD

INTERNAL BUS

LOW-POWER OSCILLATOR

INTERFACE MODULE (SCI1)
SERIAL COMMUNICATIONS

7

PTA1/KBI1P1

8
PTE0

NOTE 1

NOTES1, 2, 6

NOTE 1

(RC/RD/RE/RG32 = 32,768 BYTES)

(RC/RD/RE8/16 = 1024 BYTES)

(RC/RD/RE16 = 16,384 BYTES)

XTAL

EXTAL

CARRIER MODULATOR
TIMER MODULE (CMT)

 1, 3, 4

4-BIT KEYBOARD
INTERRUPT MODULE (KBI2)

IRO   NOTE 5

PTA0/KBI1P0

(RC/RD/RE8 = 8192 BYTES)

NOTES:
1. Port pins are software configurable with pullup device if input port
2. PTA0 does not have a clamp diode to VDD. PTA0 should not be driven above VDD. Also, PTA0 does not pullup to VDD when internal

pullup is enabled.
3. IRQ pin contains software configurable pullup/pulldown device if IRQ enabled (IRQPE = 1)
4. The RESET pin contains integrated pullup device enabled if reset enabled (RSTPE = 1)
5. High current drive
6. Pins PTA[7:4] contain both pullup and pulldown devices. Pulldown enabled when KBI is enabled (KBIPEn = 1) and rising edge is

selected (KBEDGn = 1).



Timer/PWM (TPM)
In input capture mode, reading either byte (TPM1CnVH or TPM1CnVL) latches the contents of both bytes
into a buffer where they remain latched until the other byte is read. This latching mechanism also resets
(becomes unlatched) when the TPM1CnSC register is written.

In output compare or PWM modes, writing to either byte (TPM1CnVH or TPM1CnVL) latches the value
into a buffer. When both bytes have been written, they are transferred as a coherent 16-bit value into the
timer channel value registers. This latching mechanism may be manually reset by writing to the
TPM1CnSC register.

This latching mechanism allows coherent 16-bit writes in either order, which is friendly to various
compiler implementations.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Chapter 12
Serial Communications Interface (S08SCIV1)

12.1 Introduction

12.1.1 Features

Features of SCI module include:

• Full-duplex, standard non-return-to-zero (NRZ) format

• Double-buffered transmitter and receiver with separate enables

• Programmable baud rates (13-bit modulo divider)

• Interrupt-driven or polled operation:

— Transmit data register empty and transmission complete

— Receive data register full

— Receive overrun, parity error, framing error, and noise error

— Idle receiver detect

• Hardware parity generation and checking

• Programmable 8-bit or 9-bit character length

• Receiver wakeup by idle-line or address-mark

12.1.2 Modes of Operation

See Section 12.3, “Functional Description,” for a detailed description of SCI operation in the different
modes.

• 8- and 9- bit data modes

• Stop modes — SCI is halted during all stop modes

• Loop modes
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11
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Serial Communications Interface (S08SCIV1)
12.2.2 SCI Control Register 1 (SCI1C1)

This read/write register is used to control various optional features of the SCI system.

7 6 5 4 3 2 1 0

R
LOOPS SCISWAI RSRC M WAKE ILT PE PT

W

Reset 0 0 0 0 0 0 0 0

Figure 12-5. SCI Control Register 1 (SCI1C1)

Table 12-3. SCI1C1 Register Field Descriptions

Field Description

7
LOOPS

Loop Mode Select — Selects between loop back modes and normal 2-pin full-duplex modes. When
LOOPS = 1, the transmitter output is internally connected to the receiver input.
0 Normal operation — RxD and TxD use separate pins.
1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input. (See

RSRC bit.) RxD pin is not used by SCI.

6
SCISWAI

SCI Stops in Wait Mode
0 SCI clocks continue to run in wait mode so the SCI can be the source of an interrupt that wakes up the CPU.
1 SCI clocks freeze while CPU is in wait mode.

5
RSRC

Receiver Source Select — This bit has no meaning or effect unless the LOOPS bit is set to 1. When
LOOPS = 1, the receiver input is internally connected to the TxD pin and RSRC determines whether this
connection is also connected to the transmitter output.
0 Provided LOOPS = 1, RSRC = 0 selects internal loop back mode and the SCI does not use the RxD pins.
1 Single-wire SCI mode where the TxD pin is connected to the transmitter output and receiver input.

4
M

9-Bit or 8-Bit Mode Select
0 Normal — start + 8 data bits (LSB first) + stop.
1 Receiver and transmitter use 9-bit data characters

start + 8 data bits (LSB first) + 9th data bit + stop.

3
WAKE

Receiver Wakeup Method Select — Refer to Section 12.3.3.2, “Receiver Wakeup Operation” for more
information.
0 Idle-line wakeup.
1 Address-mark wakeup.

2
ILT

Idle Line Type Select — Setting this bit to 1 ensures that the stop bit and logic 1 bits at the end of a character
do not count toward the 10 or 11 bit times of the logic high level by the idle line detection logic. Refer to
Section 12.3.3.2.1, “Idle-Line Wakeup” for more information.
0 Idle character bit count starts after start bit.
1 Idle character bit count starts after stop bit.

1
PE

Parity Enable — Enables hardware parity generation and checking. When parity is enabled, the most significant
bit (MSB) of the data character (eighth or ninth data bit) is treated as the parity bit.
0 No hardware parity generation or checking.
1 Parity enabled.

0
PT

Parity Type — Provided parity is enabled (PE = 1), this bit selects even or odd parity. Odd parity means the total
number of 1s in the data character, including the parity bit, is odd. Even parity means the total number of 1s in
the data character, including the parity bit, is even.
0 Even parity.
1 Odd parity.
MC9S08RC/RD/RE/RG Data Sheet, Rev.  1.11

Freescale Semiconductor 151



Serial Communications Interface (S08SCIV1)
12.2.4 SCI Status Register 1 (SCI1S1)

This register has eight read-only status flags. Writes have no effect. Special software sequences (which do
not involve writing to this register) are used to clear these status flags.

1
RWU

Receiver Wakeup Control — This bit can be written to 1 to place the SCI receiver in a standby state where it
waits for automatic hardware detection of a selected wakeup condition. The wakeup condition is either an idle
line between messages (WAKE = 0, idle-line wakeup), or a logic 1 in the most significant data bit in a character
(WAKE = 1, address-mark wakeup). Application software sets RWU and (normally) a selected hardware
condition automatically clears RWU. Refer to Section 12.3.3.2, “Receiver Wakeup Operation,” for more details.
0 Normal SCI receiver operation.
1 SCI receiver in standby waiting for wakeup condition.

0
SBK

Send Break — Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional
break characters of 10 or 11 bit times of logic 0 are queued as long as SBK = 1. Depending on the timing of the
set and clear of SBK relative to the information currently being transmitted, a second break character may be
queued before software clears SBK. Refer to Section 12.3.2.1, “Send Break and Queued Idle,” for more details.
0 Normal transmitter operation.
1 Queue break character(s) to be sent.

7 6 5 4 3 2 1 0

R TDRE TC RDRF IDLE OR NF FE PF

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-7. SCI Status Register 1 (SCI1S1)

Table 12-5. SCI1S1 Register Field Descriptions

Field Description

7
TDRE

Transmit Data Register Empty Flag — TDRE is set immediately after reset and when a transmit data value
transfers from the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To
clear TDRE, read SCI1S1 with TDRE = 1 and then write to the SCI data register (SCI1D).
0 Transmit data register (buffer) full.
1 Transmit data register (buffer) empty.

6
TC

Transmission Complete Flag — TC is set immediately after reset and when TDRE = 1 and no data, preamble,
or break character is being transmitted.
0 Transmitter active (sending data, a preamble, or a break).
1 Transmitter idle (transmission activity complete).
TC is cleared automatically by reading SCI1S1 with TC = 1 and then doing one of the following three things:

• Write to the SCI data register (SCI1D) to transmit new data
• Queue a preamble by changing TE from 0 to 1
• Queue a break character by writing 1 to SBK in SCI1C2

Table 12-4. SCI1C2 Register Field Descriptions (continued)

Field Description
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When CPHA = 1, the slave begins to drive its MISO output when SS1 goes to active low, but the data is
not defined until the first SPSCK edge. The first SPSCK edge shifts the first bit of data from the shifter
onto the MOSI output of the master and the MISO output of the slave. The next SPSCK edge causes both
the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the
third SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled,
and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the
master and slave, respectively. When CHPA = 1, the slave’s SS input is not required to go to its inactive
high level between transfers.

Figure 13-6 shows the clock formats when CPHA = 0. At the top of the figure, the eight bit times are shown
for reference with bit 1 starting as the slave is selected (SS IN goes low), and bit 8 ends at the last SPSCK
edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting in LSBFE.
Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific
transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a
slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master
and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform applies to the
slave select output from a master (provided MODFEN and SSOE = 1). The master SS output goes to active
low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after the end
of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input of a slave.

Figure 13-6. SPI Clock Formats (CPHA = 0)

BIT TIME #
(REFERENCE)

MSB FIRST
LSB FIRST

SPSCK
(CPOL = 0)

SPSCK
(CPOL = 1)

SAMPLE IN
(MISO OR MOSI)

MOSI
(MASTER OUT)

MISO
(SLAVE OUT)

SS OUT
(MASTER)

SS IN
(SLAVE)

BIT 7
BIT 0

BIT 6
BIT 1

BIT 2
BIT 5

BIT 1
BIT 6

BIT 0
BIT 7

1 2 6 7 8...

...

...
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13.3.3 SPI Interrupts

There are three flag bits, two interrupt mask bits, and one interrupt vector associated with the SPI system.
The SPI interrupt enable mask (SPIE) enables interrupts from the SPI receiver full flag (SPRF) and mode
fault flag (MODF). The SPI transmit interrupt enable mask (SPTIE) enables interrupts from the SPI
transmit buffer empty flag (SPTEF). When one of the flag bits is set, and the associated interrupt mask bit
is set, a hardware interrupt request is sent to the CPU. If the interrupt mask bits are cleared, software can
poll the associated flag bits instead of using interrupts. The SPI interrupt service routine (ISR) should
check the flag bits to determine what event caused the interrupt. The service routine should also clear the
flag bit(s) before returning from the ISR (usually near the beginning of the ISR).

13.3.4 Mode Fault Detection

A mode fault occurs and the mode fault flag (MODF) becomes set when a master SPI device detects an
error on the SS1 pin (provided the SS1 pin is configured as the mode fault input signal). The SS1 pin is
configured to be the mode fault input signal when MSTR = 1, mode fault enable is set (MODFEN = 1),
and slave select output enable is clear (SSOE = 0).

The mode fault detection feature can be used in a system where more than one SPI device might become
a master at the same time. The error is detected when a master’s SS1 pin is low, indicating that some other
SPI device is trying to address this master as if it were a slave. This could indicate a harmful output driver
conflict, so the mode fault logic is designed to disable all SPI output drivers when such an error is detected.

When a mode fault is detected, MODF is set and MSTR is cleared to change the SPI configuration back
to slave mode. The output drivers on the SPSCK1, MOSI1, and MISO1 (if not bidirectional mode) are
disabled.

MODF is cleared by reading it while it is set, then writing to the SPI control register 1 (SPI1C1). User
software should verify the error condition has been corrected before changing the SPI back to master
mode.

13.4 SPI Registers and Control Bits
The SPI has five 8-bit registers to select SPI options, control baud rate, report SPI status, and for
transmit/receive data.

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all SPI registers. This section refers to registers and control bits only by their names, and
a Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.
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13.4.4 SPI Status Register (SPI1S)

This register has three read-only status bits. Bits 6, 3, 2, 1, and 0 are not implemented and always read 0s.
Writes have no meaning or effect.

Figure 13-10. SPI Status Register (SPI1S)

SPRF — SPI Read Buffer Full Flag

SPRF is set at the completion of an SPI transfer to indicate that received data may be read from the SPI
data register (SPI1D). SPRF is cleared by reading SPRF while it is set, then reading the SPI data
register.

1 = Data available in the receive data buffer.
0 = No data available in the receive data buffer.

SPTEF — SPI Transmit Buffer Empty Flag

This bit is set when there is room in the transmit data buffer. It is cleared by reading SPI1S with SPTEF
set, followed by writing a data value to the transmit buffer at SPI1D. SPI1S must be read with
SPTEF = 1 before writing data to SPI1D or the SPI1D write will be ignored. SPTEF generates an
SPTEF CPU interrupt request if the SPTIE bit in the SPI1C1 is also set. SPTEF is automatically set
when a data byte transfers from the transmit buffer into the transmit shift register. For an idle SPI (no
data in the transmit buffer or the shift register and no transfer in progress), data written to SPI1D is
transferred to the shifter almost immediately so SPTEF is set within two bus cycles allowing a second
8-bit data value to be queued into the transmit buffer. After completion of the transfer of the value in
the shift register, the queued value from the transmit buffer will automatically move to the shifter and
SPTEF will be set to indicate there is room for new data in the transmit buffer. If no new data is waiting
in the transmit buffer, SPTEF simply remains set and no data moves from the buffer to the shifter.

1 = SPI transmit buffer empty.
0 = SPI transmit buffer not empty.

MODF — Master Mode Fault Flag

MODF is set if the SPI is configured as a master and the slave select input goes low, indicating some
other SPI device is also configured as a master. The SS1 pin acts as a mode fault error input only when
MSTR = 1, MODFEN = 1, and SSOE = 0; otherwise, MODF will never be set. MODF is cleared by
reading MODF while it is 1, then writing to SPI control register 1 (SPI1C1).

1 = Mode fault error detected.
0 = No mode fault error.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
<st-blue>

SPRF
0

<st-blue>
SPTEF

<st-blue>
MODF

0 0 0 0

Write:

Reset: 0 0 1 0 0 0 0 0

= Unimplemented or Reserved
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Table 15-1. BDC Command Summary

Command
Mnemonic

Active BDM/
Non-intrusive

Coding
Structure

Description

SYNC Non-intrusive n/a1

1 The SYNC command is a special operation that does not have a command code.

Request a timed reference pulse to determine
target BDC communication speed

ACK_ENABLE Non-intrusive D5/d
Enable acknowledge protocol. Refer to
Freescale document order no. HCS08RMv1/D.

ACK_DISABLE Non-intrusive D6/d
Disable acknowledge protocol. Refer to
Freescale document order no. HCS08RMv1/D.

BACKGROUND Non-intrusive 90/d
Enter active background mode if enabled
(ignore if ENBDM bit equals 0)

READ_STATUS Non-intrusive E4/SS Read BDC status from BDCSCR

WRITE_CONTROL Non-intrusive C4/CC Write BDC controls in BDCSCR

READ_BYTE Non-intrusive E0/AAAA/d/RD Read a byte from target memory

READ_BYTE_WS Non-intrusive E1/AAAA/d/SS/RD Read a byte and report status

READ_LAST Non-intrusive E8/SS/RD
Re-read byte from address just read and
report status

WRITE_BYTE Non-intrusive C0/AAAA/WD/d Write a byte to target memory

WRITE_BYTE_WS Non-intrusive C1/AAAA/WD/d/SS Write a byte and report status

READ_BKPT Non-intrusive E2/RBKP Read BDCBKPT breakpoint register

WRITE_BKPT Non-intrusive C2/WBKP Write BDCBKPT breakpoint register

GO Active BDM 08/d
Go to execute the user application program
starting at the address currently in the PC

TRACE1 Active BDM 10/d
Trace 1 user instruction at the address in the
PC, then return to active background mode

TAGGO Active BDM 18/d
Same as GO but enable external tagging
(HCS08 devices have no external tagging pin)

READ_A Active BDM 68/d/RD Read accumulator (A)

READ_CCR Active BDM 69/d/RD Read condition code register (CCR)

READ_PC Active BDM 6B/d/RD16 Read program counter (PC)

READ_HX Active BDM 6C/d/RD16 Read H and X register pair (H:X)

READ_SP Active BDM 6F/d/RD16 Read stack pointer (SP)

READ_NEXT Active BDM 70/d/RD
Increment H:X by one then read memory byte
located at H:X

READ_NEXT_WS Active BDM 71/d/SS/RD
Increment H:X by one then read memory byte
located at H:X. Report status and data.

WRITE_A Active BDM 48/WD/d Write accumulator (A)

WRITE_CCR Active BDM 49/WD/d Write condition code register (CCR)

WRITE_PC Active BDM 4B/WD16/d Write program counter (PC)

WRITE_HX Active BDM 4C/WD16/d Write H and X register pair (H:X)

WRITE_SP Active BDM 4F/WD16/d Write stack pointer (SP)

WRITE_NEXT Active BDM 50/WD/d
Increment H:X by one, then write memory byte
located at H:X

WRITE_NEXT_WS Active BDM 51/WD/d/SS
Increment H:X by one, then write memory byte
located at H:X. Also report status.
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15.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture
bus information and what information to capture. The system relies on the single-wire background debug
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map.
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any
of the control and status registers for the debug module. The one exception is that the debug system can
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in
Section 15.3.6, “Hardware Breakpoints.”

15.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is
actually executed as opposed to only being read from memory into the instruction queue. The comparators
are also capable of magnitude comparisons to support the inside range and outside range trigger modes.
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an
additional purpose, in full address plus data comparisons they are used to decide which of these buses to
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU

• Storage of data bus values into the FIFO

• Starting to store change-of-flow addresses into the FIFO (begin type trace)

• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

15.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and
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A force-type breakpoint waits for the current instruction to finish and then acts upon the breakpoint
request. The usual action in response to a breakpoint is to go to active background mode rather than
continuing to the next instruction in the user application program.

The tag vs. force terminology is used in two contexts within the debug module. The first context refers to
breakpoint requests from the debug module to the CPU. The second refers to match signals from the
comparators to the debugger control logic. When a tag-type break request is sent to the CPU, a signal is
entered into the instruction queue along with the opcode so that if/when this opcode ever executes, the CPU
will effectively replace the tagged opcode with a BGND opcode so the CPU goes to active background
mode rather than executing the tagged instruction. When the TRGSEL control bit in the DBGT register is
set to select tag-type operation, the output from comparator A or B is qualified by a block of logic in the
debug module that tracks opcodes and only produces a trigger to the debugger if the opcode at the compare
address is actually executed. There is separate opcode tracking logic for each comparator so more than one
compare event can be tracked through the instruction queue at a time.

15.3.5 Trigger Modes

The trigger mode controls the overall behavior of a debug run. The 4-bit TRG field in the DBGT register
selects one of nine trigger modes. When TRGSEL = 1 in the DBGT register, the output of the comparator
must propagate through an opcode tracking circuit before triggering FIFO actions. The BEGIN bit in
DBGT chooses whether the FIFO begins storing data when the qualified trigger is detected (begin trace),
or the FIFO stores data in a circular fashion from the time it is armed until the qualified trigger is detected
(end trigger).

A debug run is started by writing a 1 to the ARM bit in the DBGC register, which sets the ARMF flag and
clears the AF and BF flags and the CNT bits in DBGS. A begin-trace debug run ends when the FIFO gets
full. An end-trace run ends when the selected trigger event occurs. Any debug run can be stopped manually
by writing a 0 to ARM or DBGEN in DBGC.

In all trigger modes except event-only modes, the FIFO stores change-of-flow addresses. In event-only
trigger modes, the FIFO stores data in the low-order eight bits of the FIFO.

The BEGIN control bit is ignored in event-only trigger modes and all such debug runs are begin type
traces. When TRGSEL = 1 to select opcode fetch triggers, it is not necessary to use R/W in comparisons
because opcode tags would only apply to opcode fetches that are always read cycles. It would also be
unusual to specify TRGSEL = 1 while using a full mode trigger because the opcode value is normally
known at a particular address.

The following trigger mode descriptions only state the primary comparator conditions that lead to a trigger.
Either comparator can usually be further qualified with R/W by setting RWAEN (RWBEN) and the
corresponding RWA (RWB) value to be matched against R/W. The signal from the comparator with
optional R/W qualification is used to request a CPU breakpoint if BRKEN = 1 and TAG determines
whether the CPU request will be a tag request or a force request.
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