

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ST7
Core Size	8-Bit
Speed	16MHz
Connectivity	SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	1.5KB (1.5K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	16-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7flite05y0b6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

_

10 I.	/O P0	ORTS	42
1	10.1		42
1	10.2	FUNCTIONAL DESCRIPTION	42
1	10.3	UNUSED I/O PINS	46
1	10.4	LOW POWER MODES	46
1	10.5	INTERRUPTS	46
1	10.6	I/O PORT IMPLEMENTATION	46
11 (ON-C	HIP PERIPHERALS	48
1	11.1	LITE TIMER (LT)	
1	11.2	12-BIT AUTORELOAD TIMER (AT)	
1	11.3	SERIAL PERIPHERAL INTERFACE (SPI)	59
		8-BIT A/D CONVERTER (ADC)	
12 I	NSTE		
	12.1	ST7 ADDRESSING MODES	
		INSTRUCTION GROUPS	
13 E	ELEC		-
1	13.1	PARAMETER CONDITIONS	-
1	13.2	ABSOLUTE MAXIMUM RATINGS	
1	13.3	OPERATING CONDITIONS	
1	13.4	SUPPLY CURRENT CHARACTERISTICS	
1	13.5	CLOCK AND TIMING CHARACTERISTICS	
1	13.6	MEMORY CHARACTERISTICS	
1	13.7	EMC (ELECTROMAGNETIC COMPATIBILITY) CHARACTERISTICS	
1	13.8	I/O PORT PIN CHARACTERISTICS	95
1	13.9	CONTROL PIN CHARACTERISTICS 10	00
1	13.10	COMMUNICATION INTERFACE CHARACTERISTICS	02
1	13.11	8-BIT ADC CHARACTERISTICS 10	04
14 F	PACK	(AGE CHARACTERISTICS	
	14.1		
		THERMAL CHARACTERISTICS 1	
		CE CONFIGURATION AND ORDERING INFORMATION	
	-	OPTION BYTES 1	
		DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE 1	
		DEVELOPMENT TOOLS	
		ST7 APPLICATION NOTES	
		WN LIMITATIONS	
		EXECUTION OF BTJX INSTRUCTION 12	
1	16.2 V	IN-CIRCUIT PROGRAMMING OF DEVICES PREVIOUSLY PROGRAMMED WITH HAF WARE WATCHDOG OPTION 121	≀D-
1	16.3	IN-CIRCUIT DEBUGGING WITH HARDWARE WATCHDOG 12	21
1	16.4	RECOMMENDATIONS WHEN LVD IS ENABLED	21
1	16.5	CLEARING ACTIVE INTERRUPTS OUTSIDE INTERRUPT ROUTINE 12	21
17 F	REVIS	SION HISTORY	22

Pin	Pin n°			Level		Port / Control				ol			
0	IP16	Pin Name	Type	L.	ıt		Inp	out		Out	put	Main Function	Alternate Function
QFN20	SO16/DI		Ту	Input	Output	float	ndw	int	ana	OD	ЬΡ	(after reset)	Alternate Function
15	14	PA2/ATPWM0	I/O	C_T	HS	Х	Х			Х	Х	Port A2	Auto-Reload Timer PWM0
16	15	PA1	I/O	C_T	HS	Х	Х			х	Х	Port A1	
17	16	PA0/LTIC	I/O	C_T	HS	X	е	i0		Х	Х	Port A0	Lite Timer Input Capture

Note:

In the interrupt input column, " ei_x " defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.

57

DATA EEPROM (Cont'd)

5.7 REGISTER DESCRIPTION

EEPROM CONTROL/STATUS REGISTER (EEC-

SR) Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	E2LAT	E2PGM

Bits 7:2 = Reserved, forced by hardware to 0.

Bit 1 = E2LAT Latch Access Transfer

This bit is set by software. It is cleared by hardware at the end of the programming cycle. It can only be cleared by software if the E2PGM bit is cleared.

0: Read mode

1: Write mode

Bit 0 = **E2PGM** *Programming control and status*

This bit is set by software to begin the programming cycle. At the end of the programming cycle, this bit is cleared by hardware.

0: Programming finished or not yet started

1: Programming cycle is in progress

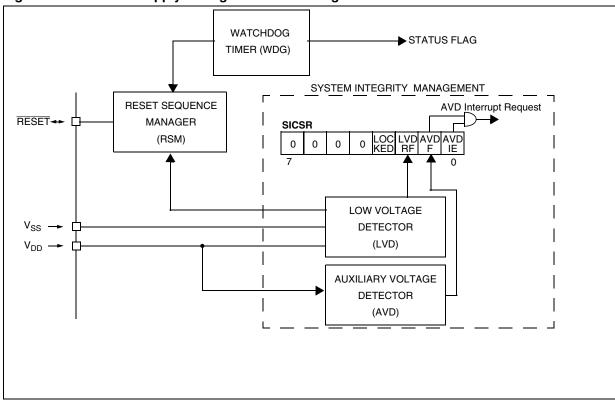

Note: If the E2PGM bit is cleared during the programming cycle, the memory data is not guaranteed.

Table 4. DATA EEPROM Register Map and Reset Values

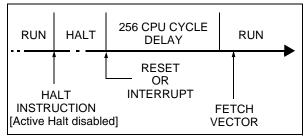
Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0030h	EECSR Reset Value	0	0	0	0	0	0	E2LAT 0	E2PGM 0

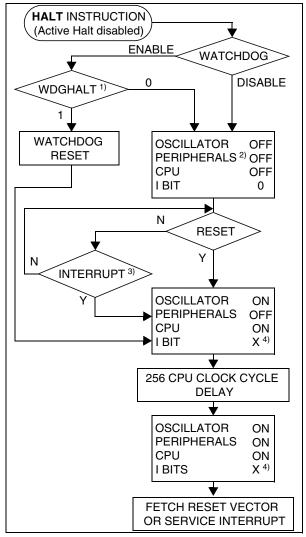
<u>ل</u>حک

POWER SAVING MODES (Cont'd)

9.4.2 HALT MODE

The HALT mode is the lowest power consumption mode of the MCU. It is entered by executing the 'HALT' instruction when active halt mode is disabled.


The MCU can exit HALT mode on reception of either a specific interrupt (see Table 6, "Interrupt Mapping," on page 30) or a RESET. When exiting HALT mode by means of a RESET or an interrupt, the oscillator is immediately turned on and the 256 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 28).


When entering HALT mode, the I bit in the CC register is forced to 0 to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes immediately.

In HALT mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator).

The compatibility of Watchdog operation with HALT mode is configured by the "WDGHALT" option bit of the option byte. The HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog RESET (see section 15.1 on page 112 for more details).

Notes:

1. WDGHALT is an option bit. See option byte section for more details.

2. Peripheral clocked with an external clock source can still be active.

3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 6, "Interrupt Mapping," on page 30 for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set during the interrupt routine and cleared when the CC register is popped.

5. If the PLL is enabled by option byte, it outputs the clock after a delay of t_{STARTUP} (see Figure 13).

Figure 28. HALT Mode Flow-chart

I/O PORTS (Cont'd)

CAUTION: The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts.

Analog alternate function

When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.

It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin.

WARNING: The analog input voltage level must be within the limits stated in the absolute maximum ratings.

10.3 UNUSED I/O PINS

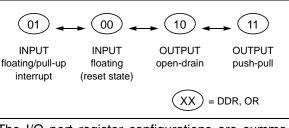
Unused I/O pins must be connected to fixed voltage levels. Refer to Section 13.8.

10.4 LOW POWER MODES

Mode	Description
WAIT	No effect on I/O ports. External interrupts cause the device to exit from WAIT mode.
HALT	No effect on I/O ports. External interrupts cause the device to exit from HALT mode.

10.5 INTERRUPTS

The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and the interrupt mask in the CC register is not active (RIM instruction).


Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
External interrupt on selected external event	-	DDRx ORx	Yes	Yes

10.6 I/O PORT IMPLEMENTATION

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC Input.

Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 30 Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation.

Figure 30. Interrupt I/O Port State Transitions

The I/O port register configurations are summarised as follows.

Port	Pin name	Input (DDR=0)	Output (DDR=1)		
POIL	Fill fidilie	OR = 0	OR = 1	OR = 0	OR = 1	
	PA7	floating	pull-up interrupt	open drain	push-pull	
Port A	PA6:1	floating	pull-up	open drain	push-pull	
	PA0	floating	pull-up interrupt	open drain	push-pull	
	PB4	floating	pull-up	open drain	push-pull	
Port B	PB3	floating	pull-up interrupt	open drain	push-pull	
TOILD	PB2:1	floating	pull-up	open drain	push-pull	
	PB0	floating	pull-up interrupt	open drain	push-pull	

Table 11. Port Configuration

I/O PORTS (Cont'd)

57

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0000h	PADR Reset Value	MSB 0	0	0	0	0	0	0	LSB 0
0001h	PADDR Reset Value	MSB 0	0	0	0	0	0	0	LSB 0
0002h	PAOR Reset Value	MSB 0	1	0	0	0	0	0	LSB 0
0003h	PBDR Reset Value	MSB 1	1	1	0	0	0	0	LSB 0
0004h	PBDDR Reset Value	MSB 0	0	0	0	0	0	0	LSB 0
0005h	PBOR Reset Value	MSB 0	0	0	0	0	0	0	LSB 0

Table 12. I/O Port Register Map and Reset Values

11 ON-CHIP PERIPHERALS

11.1 LITE TIMER (LT)

11.1.1 Introduction

The Lite Timer can be used for general-purpose timing functions. It is based on a free-running 8-bit upcounter with two software-selectable timebase periods, an 8-bit input capture register and watch-dog function.

11.1.2 Main Features

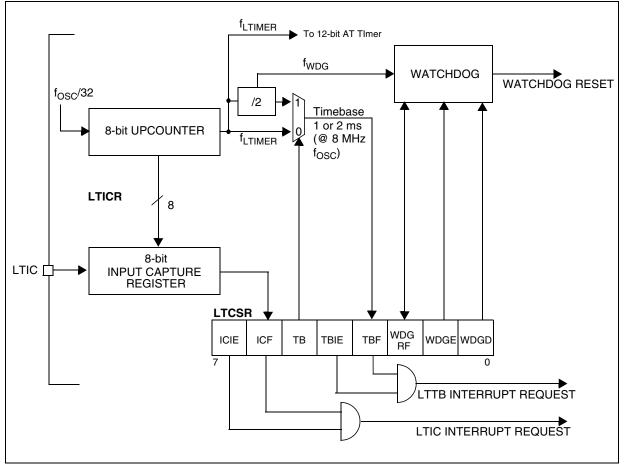

- Realtime Clock
 - 8-bit upcounter
 - 1 ms or 2 ms timebase period (@ 8 MHz f_{OSC})
 - Maskable timebase interrupt
- Input Capture
 - 8-bit input capture register (LTICR)
 - Maskable interrupt with wakeup from Halt Mode capability

Figure 31. Lite Timer Block Diagram

- Watchdog
 - Enabled by hardware or software (configurable by option byte)
 - Optional reset on HALT instruction (configurable by option byte)
 - Automatically resets the device unless disable bit is refreshed

47/

- Software reset (Forced Watchdog reset)
- Watchdog reset status flag

LITE TIMER (Cont'd)

Input Capture

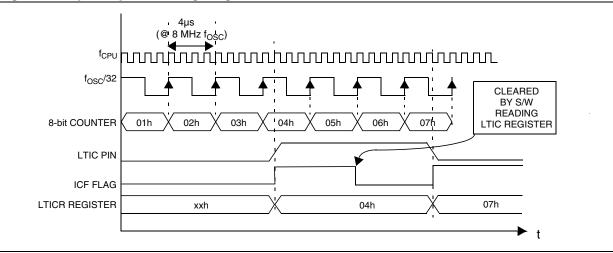
The 8-bit input capture register is used to latch the free-running upcounter after a rising or falling edge is detected on the LTIC pin. When an input capture occurs, the ICF bit is set and the LTICR register contains the value of the free-running upcounter. An interrupt is generated if the ICIE bit is set. The ICF bit is cleared by reading the LTICR register.

The LTICR is a read only register and always contains the data from the last input capture. Input capture is inhibited if the ICF bit is set.

11.1.4 Low Power Modes

5/

Mode	Description
	No effect on Lite timer
SLOW	(this peripheral is driven directly by
	f _{OSC} /32)
WAIT	No effect on Lite timer
ACTIVE HALT	No effect on Lite timer
HALT	Lite timer stops counting


Figure 33. Input Capture Timing Diagram

11.1.5 Interrupts

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt	Exit from Active- Halt
Timebase Event	TBF	TBIE	Yes	No	Yes
IC Event	ICF	ICIE	1		No

Note: The TBF and ICF interrupt events are connected to separate interrupt vectors (see Interrupts chapter).

Timebase and IC events generate an interrupt if the enable bit is set in the LTCSR register and the interrupt mask in the CC register is reset (RIM instruction).

LITE TIMER (Cont'd)

11.1.6 Register Description

LITE TIMER CONTROL/STATUS REGISTER (LTCSR)

Read / Write

Reset Value: 0x00 0000 (x0h)

7							0
ICIE	ICF	тв	TBIE	TBF	WDGR	WDGE	WDGD

Bit 7 = ICIE Interrupt Enable

This bit is set and cleared by software. 0: Input Capture (IC) interrupt disabled 1: Input Capture (IC) interrupt enabled

Bit 6 = **ICF** Input Capture Flag

This bit is set by hardware and cleared by software by reading the LTICR register. Writing to this bit does not change the bit value.

0: No input capture

1: An input capture has occurred

Note: After an MCU reset, software must initialise the ICF bit by reading the LTICR register

Bit 5 = **TB** Timebase period selection

This bit is set and cleared by software.

- 0: Timebase period = $t_{OSC} * 8000 (1ms @ 8 MHz)$ 1: Timebase period = $t_{OSC} * 16000 (2ms @ 8$
- 1: Timebase period = t_{OSC} * 16000 (2ms @ 8 MHz)

Bit 4 = **TBIE** Timebase Interrupt enable

This bit is set and cleared by software.

- 0: Timebase (TB) interrupt disabled
- 1: Timebase (TB) interrupt enabled

Bit 3 = **TBF** Timebase Interrupt Flag

This bit is set by hardware and cleared by software reading the LTCSR register. Writing to this bit has no effect.

Table 13. Lite Timer Register Map and Reset Values

- 0: No counter overflow
- 1: A counter overflow has occurred

Bit 2 = **WDGRF** Force Reset/ Reset Status Flag

This bit is used in two ways: it is set by software to force a watchdog reset. It is set by hardware when a watchdog reset occurs and cleared by hardware or by software. It is cleared by hardware only when an LVD reset occurs. It can be cleared by software after a read access to the LTCSR register.

- 0: No watchdog reset occurred.
- 1: Force a watchdog reset (write), or, a watchdog reset occurred (read).

Bit 1 = WDGE Watchdog Enable

This bit is set and cleared by software.

0: Watchdog disabled

1: Watchdog enabled

Bit 0 = WDGD Watchdog Reset Delay

This bit is set by software. It is cleared by hardware at the end of each t_{WDG} period. 0: Watchdog reset not delayed 1: Watchdog reset delayed

LITE TIMER INPUT CAPTURE REGISTER

(LTICR)

Read only Reset Value: 0000 0000 (00h)

7							0	
ICR7	ICR6	ICR5	ICR4	ICR3	ICR2	ICR1	ICR0	

Bit 7:0 = ICR[7:0] Input Capture Value

These bits are read by software and cleared by hardware after a reset. If the ICF bit in the LTCSR is cleared, the value of the 8-bit up-counter will be captured when a rising or falling edge occurs on the LTIC pin.

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0B	LTCSR	ICIE	ICF	ТВ	TBIE	TBF	WDGRF	WDGE	WDGD
	Reset Value	0	x	0	0	0	0	0	0
0C	LTICR	ICR7	ICR6	ICR5	ICR4	ICR3	ICR2	ICR1	ICR0
	Reset Value	0	0	0	0	0	0	0	0

12-BIT AUTORELOAD TIMER (Cont'd)

11.2.3 Functional Description

PWM Mode

This mode allows a Pulse Width Modulated signals to be generated on the PWM0 output pin with minimum core processing overhead. The PWM0 output signal can be enabled or disabled using the OE0 bit in the PWMCR register. When this bit is set the PWM I/O pin is configured as output pushpull alternate function.

Note: CMPF0 is available in PWM mode (see PWM0CSR description on page 57).

PWM Frequency and Duty Cycle

The PWM signal frequency (f_{PWM}) is controlled by the counter period and the ATR register value.

 $f_{PWM} = f_{COUNTER} / (4096 - ATR)$

Following the above formula, if f_{CPU} is 8 MHz, the maximum value of f_{PWM} is 4 Mhz (ATR register value = 4094), and the minimum value is 2 kHz (ATR register value = 0).

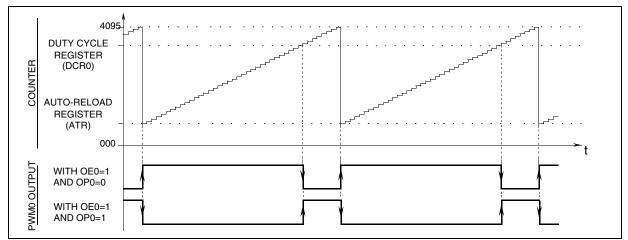
Note: The maximum value of ATR is 4094 because it must be lower than the DCR value which must be 4095 in this case.

At reset, the counter starts counting from 0.

Software must write the duty cycle value in the DCR0H and DCR0L preload registers. The DCR0H register must be written first. See caution below.

When a upcounter overflow occurs (OVF event), the ATR value is loaded in the upcounter, the preloaded Duty cycle value is transferred to the Duty Cycle register and the PWM0 signal is set to a high level. When the upcounter matches the DCRx value the PWM0 signals is set to a low level. To obtain a signal on the PWM0 pin, the contents of the DCR0 register must be greater than the contents of the ATR register.

The polarity bit can be used to invert the output signal.


The maximum available resolution for the PWM0 duty cycle is:

Resolution =
$$1 / (4096 - ATR)$$

Note: To get the maximum resolution (1/4096), the ATR register must be 0. With this maximum resolution and assuming that DCR=ATR, a 0% or 100% duty cycle can be obtained by changing the polarity.

Caution: As soon as the DCR0H is written, the compare function is disabled and will start only when the DCR0L value is written. If the DCR0H write occurs just before the compare event, the signal on the PWM output may not be set to a low level. In this case, the DCRx register should be updated just after an OVF event. If the DCR and ATR values are close, then the DCRx register shouldbe updated just before an OVF event, in order not to miss a compare event and to have the right signal applied on the PWM output.

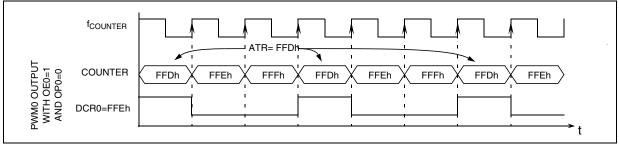

47/

Figure 35. PWM Function

12-BIT AUTORELOAD TIMER (Cont'd)

Figure 36. PWM Signal Example

Output Compare Mode

To use this function, the OE bit must be 0, otherwise the compare is done with the shadow register instead of the DCRx register. Software must then write a 12-bit value in the DCR0H and DCR0L registers. This value will be loaded immediately (without waiting for an OVF event).

The DCR0H must be written first, the output compare function starts only when the DCR0L value is written.

When the 12-bit upcounter (CNTR) reaches the value stored in the DCR0H and DCR0L registers, the CMPF0 bit in the PWM0CSR register is set and an interrupt request is generated if the CMPIE bit is set.

Note: The output compare function is only available for DCRx values other than 0 (reset value).

Caution: At each OVF event, the DCRx value is written in a shadow register, even if the DCR0L value has not yet been written (in this case, the shadow register will contain the new DCR0H value and the old DCR0L value), then:

- If OE=1 (PWM mode): the compare is done between the timer counter and the shadow register (and not DCRx)
- if OE=0 (OCMP mode): the compare is done between the timer counter and DCRx. There is no PWM signal.

57

The compare between DCRx or the shadow register and the timer counter is locked until DCR0L is written.

11.2.4 Low Power Modes

Mode	Description
SLOW	The input frequency is divided by 32
WAIT	No effect on AT timer
ACTIVE-HALT	AT timer halted except if CK0=1, CK1=0 and OVFIE=1
HALT	AT timer halted

11.2.5 Interrupts

Interrupt Event ¹⁾	Event Flag	Enable Control Bit		from	Exit from Active- Halt
Overflow Event	OVF	OVFIE	Yes	No	Yes ²⁾
CMP Event	CMPFx	CMPIE	Yes	No	No

Notes:

1. The interrupt events are connected to separate interrupt vectors (see Interrupts chapter).

They generate an interrupt if the enable bit is set in the ATCSR register and the interrupt mask in the CC register is reset (RIM instruction).

2. only if CK0=1and CK1=0

SERIAL PERIPHERAL INTERFACE (Cont'd) 11.3.8 Register Description CONTROL REGISTER (SPICR)

Read/Write

Reset Value: 0000 xxxx (0xh)

7							0
SPIE	SPE	SPR2	MSTR	CPOL	CPHA	SPR1	SPR0

Bit 7 = **SPIE** Serial Peripheral Interrupt Enable. This bit is set and cleared by software.

- 0: Interrupt is inhibited
- 1: An SPI interrupt is generated whenever SPIF=1, MODF=1 or OVR=1 in the SPICSR register

Bit 6 = **SPE** Serial Peripheral Output Enable.

This bit is set and cleared by software. It is also cleared by hardware when, in master mode, $\overline{SS}=0$ (see Section 11.3.5.1 Master Mode Fault (MODF)). The SPE bit is cleared by reset, so the SPI peripheral is not initially connected to the external pins.

0: I/O pins free for general purpose I/O 1: SPI I/O pin alternate functions enabled

Bit 5 = SPR2 Divider Enable.

This bit is set and cleared by software and is cleared by reset. It is used with the SPR[1:0] bits to set the baud rate. Refer to Table 15 SPI Master mode SCK Frequency.

0: Divider by 2 enabled

1: Divider by 2 disabled

Note: This bit has no effect in slave mode.

Bit 4 = MSTR Master Mode.

This bit is set and cleared by software. It is also cleared by hardware when, in master mode, $\overline{SS}=0$ (see Section 11.3.5.1 Master Mode Fault (MODF)).

0: Slave mode

5/

1: Master mode. The function of the SCK pin changes from an input to an output and the functions of the MISO and MOSI pins are reversed.

Bit 3 = **CPOL** Clock Polarity.

This bit is set and cleared by software. This bit determines the idle state of the serial Clock. The CPOL bit affects both the master and slave modes.

0: SCK pin has a low level idle state

1: SCK pin has a high level idle state

Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by resetting the SPE bit.

Bit 2 = CPHA Clock Phase.

This bit is set and cleared by software.

- 0: The first clock transition is the first data capture edge.
- 1: The second clock transition is the first capture edge.

Note: The slave must have the same CPOL and CPHA settings as the master.

Bits 1:0 = SPR[1:0] Serial Clock Frequency.

These bits are set and cleared by software. Used with the SPR2 bit, they select the baud rate of the SPI serial clock SCK output by the SPI in master mode.

Note: These 2 bits have no effect in slave mode.

Table 15. SPI Master mode SCK Frequency

Serial Clock	SPR2	SPR1	SPR0
f _{CPU} /4	1	0	0
f _{CPU} /8	0	0	0
f _{CPU} /16	0	0	1
f _{CPU} /32	1	1	0
f _{CPU} /64	0	1	0
f _{CPU} /128	0	1	1

13 ELECTRICAL CHARACTERISTICS

13.1 PARAMETER CONDITIONS

Unless otherwise specified, all voltages are referred to $\ensuremath{\mathsf{V}_{SS}}\xspace.$

13.1.1 Minimum and Maximum values

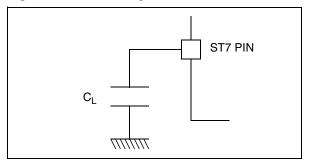
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A=25^{\circ}C$ and $T_A=T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

13.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A=25\,^\circ\text{C}, V_{DD}=5V$ (for the $4.5V{\le}V_{DD}{\le}5.5V$ voltage range), $V_{DD}=3.3V$ (for the $3V{\le}V_{DD}{\le}3.6V$ voltage range) and $V_{DD}=2.7V$ (for the $2.4V{\le}V_{DD}{\le}3V$ voltage range). They are given only as design guidelines and are not tested.

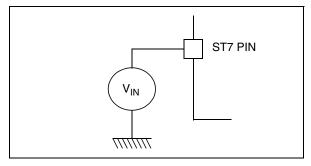
13.1.3 Typical curves


57

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

13.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 46.


Figure 46. Pin loading conditions

13.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 47.

Figure 47. Pin input voltage

vice consumption, the two current values must be

added (except for HALT mode for which the clock

13.4 SUPPLY CURRENT CHARACTERISTICS

The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total de-

13.4.1 Supply Current

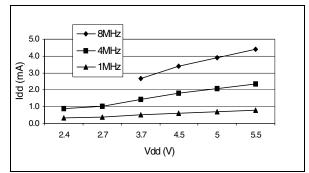
 $T_A = -40$ to $+85^{\circ}C$ unless otherwise specified

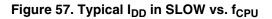
Symbol	Parameter		Conditions	Тур	Max	Unit
	Supply current in RUN mode		f _{CPU} =8MHz ¹⁾	4.50	7.00	
	Supply current in WAIT mode		f _{CPU} =8MHz ²⁾	1.75	2.70	mA
	Supply current in SLOW mode Supply current in SLOW WAIT mode		f _{CPU} =250kHz ³⁾	0.75	1.13	3
I _{DD}			f _{CPU} =250kHz ⁴⁾	0.65	1	
	Supply current in HALT mode ⁵⁾	V _{DD:}	-40°C≤T _A ≤+85°C	0.50	10	
			-40°C≤T _A ≤+105°C	TBD	TBD	μA
			T _A = +85°C	5	100	

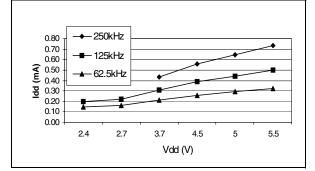
is stopped).

Notes:

47/


1. CPU running with memory access, all I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.


2. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.


3. SLOW mode selected with f_{CPU} based on f_{OSC} divided by 32. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.

4. SLOW-WAIT mode selected with f_{CPU} based on f_{OSC} divided by 32. All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled. **5.** All I/O pins in output mode with a static value at V_{SS} (no load), LVD disabled. Data based on characterization results, tested in production at V_{DD} max and f_{CPU} max.

Figure 56. Typical I_{DD} in RUN vs. f_{CPU}

13.6 MEMORY CHARACTERISTICS

 $T_A = -40^{\circ}C$ to 105°C, unless otherwise specified

13.6.1 RAM and Hardware Registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{RM}	Data retention mode ¹⁾	HALT mode (or RESET)	1.6			V

13.6.2 FLASH Program Memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Operating voltage for Flash write/erase		2.4		5.5	V
+	Programming time for 1~32 bytes ²⁾	T _A =-40 to +105°C		5	10	ms
t _{prog}	Programming time for 1.5 kBytes	T _A =+25°C		0.24	0.48	s
t _{RET}	Data retention 4)	T _A =+55°C ³⁾	20			years
N _{RW}	Write erase cycles	T _A =+25°C	10K ⁷⁾			cycles
I _{DD}	Supply current	Read / Write / Erase modes f _{CPU} = 8MHz, V _{DD} = 5.5V			2.6 ⁶⁾	mA
		No Read/No Write Mode			100	μΑ
		Power down mode / HALT		0	0.1	μΑ

13.6.3 EEPROM Data Memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Operating voltage for EEPROM write/erase		2.4		5.5	V
t _{prog}	Programming time for 1~32 bytes	T _A =-40 to +105°C		5	10	ms
t _{ret}	Data retention ⁴⁾	T _A =+55°C ³⁾	20			years
N _{RW}	Write erase cycles	T _A =+25°C	300K ⁷⁾			cycles

Notes:

1. Minimum V_{DD} supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware registers (only in HALT mode). Guaranteed by construction, not tested in production.

2. Up to 32 bytes can be programmed at a time.

3. The data retention time increases when the T_A decreases.

4. Data based on reliability test results and monitored in production.

5. Data based on characterization results, not tested in production.

6. Guaranteed by Design. Not tested in production.

7. Design target value pending full product characterization.

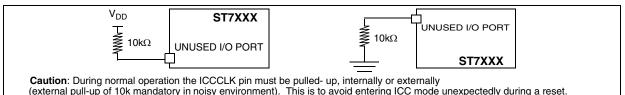
13.8 I/O PORT PIN CHARACTERISTICS

13.8.1 General Characteristics

Subject to general operating conditions for V_{DD}, f_{OSC}, and T_A unless otherwise specified.

Symbol	Parameter		Conditions		Тур	Max	Unit	
VIL	Input low level voltage					$0.3 \mathrm{xV}_{\mathrm{DD}}$	V	
V _{IH}	Input high level voltage			$0.7 \mathrm{xV}_{\mathrm{DD}}$		V _{DD} + 0.3		
V _{hys}	Schmitt trigger voltage hysteresis				400		mV	
١L	Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$				±1		
۱ _S	Static current consumption induced by each floating input pin ²⁾	Floatin	Floating input mode		400		μΑ	
Р	Weak pull-up equivalent resistor ³⁾	V _{IN} =V	V _{DD} =5V	50	120	250	kΩ	
R _{PU}	weak puil-up equivalent resistor?	SS	V _{DD} =3V		160		KS 2	
CIO	I/O pin capacitance				5		pF	
t _{f(IO)out}	Output high to low level fall time ¹⁾	C _L =50pF Between 10% and 90%			25		ns	
t _{r(IO)out}	Output low to high level rise time ¹⁾				25			
t _{w(IT)in}	External interrupt pulse time 4)			1			t _{CPU}	

Notes:


1. Data based on characterization results, not tested in production.

2. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see Figure 66). Static peak current value taken at a fixed V_{IN} value, based on design simulation and technology characteristics, not tested in production. This value depends on V_{DD} and temperature values.

3. The R_{PU} pull-up equivalent resistor is based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 63).

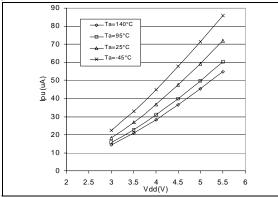
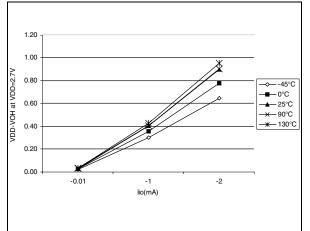

4. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source.

Figure 62. Two typical applications with unused I/O pin configured as input



(external pull-up of 10k mandatory in noisy environment). This is to avoid entering ICC mode unexpectedly during a reset. **Note:** I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of greater EMC robustness and lower cost.

Figure 63. Typical I_{PU} vs. V_{DD} with V_{IN}=V_{SS}

Figure 69. Typical V_{DD}-V_{OH} at V_{DD}=2.7V

Figure 70. Typical V_{DD} - V_{OH} at V_{DD} =3V

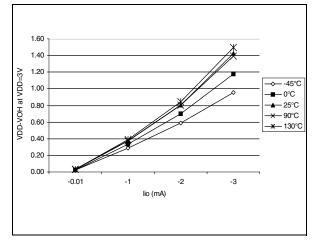
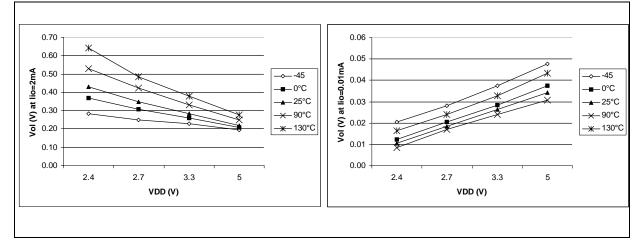
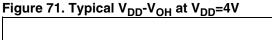




Figure 73. Typical V_{OL} vs. V_{DD} (standard I/Os)

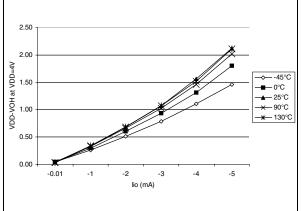
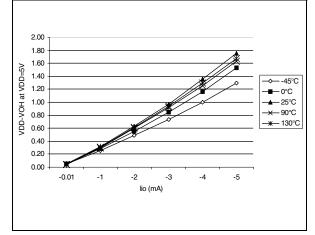



Figure 72. Typical V_{DD}-V_{OH} at V_{DD}=5V

57

ST7LITE0xY0 AN		STROM MICR e: November 2	OCONTROLLER OPT 2007)	ION LIST
Customer Address Contact Phone No Reference/FASTROM Code* *FASTROM code name is as FASTROM code must be ser	signed by STMicroele	ctronics.		· · · · · · · · · · · · · · · · · · ·
Memory size (check only on	e option): []1 K		[]1.5 K	
Device type (check only one		LITES2Y0 LITE02Y0	[] ST7PLITES5Y0 [] ST7PLITE05Y0	[] ST7PLITE09Y0
Warning: Addresses 1000h RCCR1 (see section 7.1 on	, 1001h, FFDEh and I page 24).	FDFh are re	served areas for ST to	program RCCR0 and
SO16 []	Tube Tape & Reel Tape & Reel No tters, digits, '.', '-', '/' an PDIP16 (15 char. max)	ау	
Sector 0 size:	[]0.5K	[] 1K	 [] 1.5K	
Readout Protection: FLASH write Protection:	[] Disabled [] Disabled	[] Enable [] Enable	d	
Clock Source Selection:	[] Internal RC	[] Externa	al Clock	
PLL	[] Disabled	[] PLLx4	[] PLLx8	
LVD Reset	[] Disabled	[] Mediun	t threshold n threshold : threshold	
Watchdog Selection: Watchdog Reset on Halt:	[] Software Activa [] Disabled	tion	[] Hardware A [] Enabled	Activation
Supply Operating Range in the	ne application:			
Date:				
Important note: Not all cont		le. See Table		
Please download the latest v www.st.com	ersion of this option lis	st from:		

57

Table 24. ST7 Application Notes

IDENTIFICATION	DESCRIPTION
AN1947	ST7MC PMAC SINE WAVE MOTOR CONTROL SOFTWARE LIBRARY
GENERAL PURPOSE	
AN1476	LOW COST POWER SUPPLY FOR HOME APPLIANCES
AN1526	ST7FLITE0 QUICK REFERENCE NOTE
AN1709	EMC DESIGN FOR ST MICROCONTROLLERS
AN1752	ST72324 QUICK REFERENCE NOTE
PRODUCT EVALUATION	
AN 910	PERFORMANCE BENCHMARKING
AN 990	ST7 BENEFITS VS INDUSTRY STANDARD
AN1077	OVERVIEW OF ENHANCED CAN CONTROLLERS FOR ST7 AND ST9 MCUS
AN1086	U435 CAN-DO SOLUTIONS FOR CAR MULTIPLEXING
AN1103	IMPROVED B-EMF DETECTION FOR LOW SPEED, LOW VOLTAGE WITH ST72141
AN1150	BENCHMARK ST72 VS PC16
AN1151	PERFORMANCE COMPARISON BETWEEN ST72254 & PC16F876
AN1278	LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS
PRODUCT MIGRATION	
AN1131	MIGRATING APPLICATIONS FROM ST72511/311/214/124 TO ST72521/321/324
AN1322	MIGRATING AN APPLICATION FROM ST7263 REV.B TO ST7263B
AN1365	GUIDELINES FOR MIGRATING ST72C254 APPLICATIONS TO ST72F264
AN1604	HOW TO USE ST7MDT1-TRAIN WITH ST72F264
AN2200	GUIDELINES FOR MIGRATING ST7LITE1X APPLICATIONS TO ST7FLITE1XB
PRODUCT OPTIMIZATION	
AN 982	USING ST7 WITH CERAMIC RESONATOR
AN1014	HOW TO MINIMIZE THE ST7 POWER CONSUMPTION
AN1015	SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC PERFORMANCE
AN1040	MONITORING THE VBUS SIGNAL FOR USB SELF-POWERED DEVICES
AN1070	ST7 CHECKSUM SELF-CHECKING CAPABILITY
AN1181	ELECTROSTATIC DISCHARGE SENSITIVE MEASUREMENT
AN1324	CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
AN1502	EMULATED DATA EEPROM WITH ST7 HDFLASH MEMORY
AN1529	EXTENDING THE CURRENT & VOLTAGE CAPABILITY ON THE ST7265 VDDF SUPPLY
AN1530	ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC OSCILLATOR
AN1605	USING AN ACTIVE RC TO WAKEUP THE ST7LITE0 FROM POWER SAVING MODE
AN1636	UNDERSTANDING AND MINIMIZING ADC CONVERSION ERRORS
AN1828	PIR (PASSIVE INFRARED) DETECTOR USING THE ST7FLITE05/09/SUPERLITE
AN1946	SENSORLESS BLDC MOTOR CONTROL AND BEMF SAMPLING METHODS WITH ST7MC
AN1953	PFC FOR ST7MC STARTER KIT
AN1971	ST7LITE0 MICROCONTROLLED BALLAST
PROGRAMMING AND TOOLS	
AN 978	ST7 VISUAL DEVELOP SOFTWARE KEY DEBUGGING FEATURES
AN 983	KEY FEATURES OF THE COSMIC ST7 C-COMPILER PACKAGE
AN 985	EXECUTING CODE IN ST7 RAM
AN 986	USING THE INDIRECT ADDRESSING MODE WITH ST7
AN 987	ST7 SERIAL TEST CONTROLLER PROGRAMMING
AN 988	STARTING WITH ST7 ASSEMBLY TOOL CHAIN
AN1039	ST7 MATH UTILITY ROUTINES