

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	1.5KB (1.5K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	16-DIP (0.300", 7.62mm)
Supplier Device Package	·
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7flite09y0b6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 DESCRIPTION

The ST7LITE0x and ST7SUPERLITE (ST7LITESx) are members of the ST7 microcontroller family. All ST7 devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set.

The ST7LITE0x and ST7SUPERLITE feature FLASH memory with byte-by-byte In-Circuit Programming (ICP) and In-Application Programming (IAP) capability.

Under software control, the ST7LITE0x and ST7SUPERLITE devices can be placed in WAIT, SLOW, or HALT mode, reducing power consumption when the application is in idle or standby state.

The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.

For easy reference, all parametric data are located in section 13 on page 81.

Figure 1. General Block Diagram

Pir	n°			Le	evel		Ро	ort / C	ontr	ol			
0	P16	Pin Nama	be		Ŧ		In	put		Out	put	Main Eurotion	Alternate Function
QFN2	SO16/DI		Τy	Indul	Outpu	float	ndm	int	ana	ОD	РР	(after reset)	
15	14	PA2/ATPWM0	I/O	C_T	HS	Х	Х			х	х	Port A2	Auto-Reload Timer PWM0
16	15	PA1	I/O	C_T	HS	Х	Х			Х	Х	Port A1	
17	16	PA0/LTIC	I/O	C_T	HS	Х	е	i0		Х	Х	Port A0	Lite Timer Input Capture

Note:

In the interrupt input column, " ei_x " defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.

57

REGISTER AND MEMORY MAP (Cont'd)

Figure 5. Memory Map (ST7SUPERLITE)

REGISTER AND MEMORY MAP (Cont'd)

Legend: x=undefined, R/W=read/write

Table 2. Hardware Register Map

57

Address	Block	Register Label	Register Name	Reset Status	Remarks	
0000h 0001h 0002h	Port A	PADR PADDR PAOR	Port A Data Register Port A Data Direction Register Port A Option Register	00h ¹⁾ 00h 40h	R/W R/W R/W	
0003h 0004h 0005h	Port B	PBDR PBDDR PBOR	Port B Data Register Port B Data Direction Register Port B Option Register	E0h ¹⁾ 00h 00h	R/W R/W R/W ²⁾	
0006h to 000Ah	Reserved area (5 bytes)					
000Bh 000Ch	LITE TIMER	LTCSR LTICR	Lite Timer Control/Status Register Lite Timer Input Capture Register	xxh xxh	R/W Read Only	
000Dh 000Eh 000Fh 0010h 0011h 0012h 0013h	AUTO-RELOAD TIMER	ATCSR CNTRH CNTRL ATRH ATRL PWMCR PWMOCSR	Timer Control/Status Register Counter Register High Counter Register Low Auto-Reload Register High Auto-Reload Register Low PWM Output Control Register PWM 0 Control/Status Register	00h 00h 00h 00h 00h 00h 00h	R/W Read Only Read Only R/W R/W R/W R/W	
0014h to 0016h			Reserved area (3 bytes)			
0017h 0018h	AUTO-RELOAD TIMER	DCR0H DCR0L	PWM 0 Duty Cycle Register High PWM 0 Duty Cycle Register Low	00h 00h	R/W R/W	
0019h to 002Eh			Reserved area (22 bytes)			
0002Fh	FLASH	FCSR	Flash Control/Status Register	00h	R/W	
00030h	EEPROM	EECSR	Data EEPROM Control/Status Register	00h	R/W	
0031h 0032h 0033h	SPI	SPIDR SPICR SPICSR	SPI Data I/O Register SPI Control Register SPI Control/Status Register	xxh 0xh 00h	R/W R/W R/W	
0034h 0035h 0036h	ADC	ADCCSR ADCDR ADCAMP	A/D Control Status Register A/D Data Register A/D Amplifier Control Register	00h 00h 00h	R/W Read Only R/W	
0037h	ITC	EICR	External Interrupt Control Register	00h	R/W	
0038h 0039h	CLOCKS	MCCSR RCCR	Main Clock Control/Status Register RC oscillator Control Register	00h FFh	R/W R/W	

5 DATA EEPROM

5.1 INTRODUCTION

The Electrically Erasable Programmable Read Only Memory can be used as a non-volatile backup for storing data. Using the EEPROM requires a basic access protocol described in this chapter.

5.2 MAIN FEATURES

- Up to 32 bytes programmed in the same cycle
- EEPROM mono-voltage (charge pump)
- Chained erase and programming cycles
- Internal control of the global programming cycle duration

Δ7/

- WAIT mode management
- Read-out protection

Figure 7. EEPROM Block Diagram

CPU REGISTERS (Cont'd) CONDITION CODE REGISTER (CC)

Read/Write

Reset Value: 111x1xxx

7							0
1	1	1	Н	I	Ν	Z	С

The 8-bit Condition Code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Bit 4 = **H** Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions.

0: No half carry has occurred.

1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines.

Bit 3 = I Interrupt mask.

This bit is set by hardware when entering in interrupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software.

- 0: Interrupts are enabled.
- 1: Interrupts are disabled.

This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM and JRNM instructions.

Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By default an interrupt routine is not interruptible

because the I bit is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the current interrupt routine.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It is a copy of the 7th bit of the result.

0: The result of the last operation is positive or null.

1: The result of the last operation is negative (that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = Z Zero.

This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

- 0: The result of the last operation is different from zero.
- 1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred.

1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

Figure 13. PLL Output Frequency Timing Diagram

When the PLL is started, after reset or wakeup from Halt mode or AWUFH mode, it outputs the clock after a delay of t_{STARTUP}.

When the PLL output signal reaches the operating frequency, the LOCKED bit in the SICSCR register is set. Full PLL accuracy (ACC_{PLL}) is reached after a stabilization time of t_{STAB} (see Figure 13 and 13.3.4 Internal RC Oscillator and PLL)

Refer to section 8.4.4 on page 36 for a description of the LOCKED bit in the SICSR register.

7.3 REGISTER DESCRIPTION

MAIN CLOCK CONTROL/STATUS REGISTER (MCCSR)

Read / Write Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	мсо	SMS

Bits 7:2 = Reserved, must be kept cleared.

Table 5. Clock Register Map and Reset Values

Bit 1 = MCO Main Clock Out enable

This bit is read/write by software and cleared by hardware after a reset. This bit allows to enable the MCO output clock.

- 0: MCO clock disabled, I/O port free for general purpose I/O.
- 1: MCO clock enabled.

Bit 0 = SMS Slow Mode select

This bit is read/write by software and cleared by hardware after a reset. This bit selects the input clock f_{OSC} or $f_{OSC}/32$.

0: Normal mode (f_{CPU} = f_{OSC}

1: Slow mode ($f_{CPU} = f_{OSC}/32$)

RC CONTROL REGISTER (RCCR)

Read / Write

Reset Value: 1111 1111 (FFh)

7							0
CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0

Bits 7:0 = **CR[7:0]** *RC* Oscillator Frequency Adjustment Bits

These bits must be written immediately after reset to adjust the RC oscillator frequency and to obtain an accuracy of 1%. The application can store the correct value for each voltage range in EEPROM and write it to this register at start-up.

00h = maximum available frequency

FFh = lowest available frequency

Note: To tune the oscillator, write a series of different values in the register until the correct frequency is reached. The fastest method is to use a dichotomy starting with 80h.

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0038h	MCCSR Reset Value	0	0	0	0	0	0	MCO 0	SMS 0
0039h	RCCR Reset Value	CR7 1	CR6 1	CR5 1	CR4 1	CR3 1	CR2 1	CR1 1	CR0 1

8 INTERRUPTS

The ST7 core may be interrupted by one of two different methods: Maskable hardware interrupts as listed in the Interrupt Mapping Table and a nonmaskable software interrupt (TRAP). The Interrupt processing flowchart is shown in Figure 18.

The maskable interrupts must be enabled by clearing the I bit in order to be serviced. However, disabled interrupts may be latched and processed when they are enabled (see external interrupts subsection).

Note: After reset, all interrupts are disabled.

When an interrupt has to be serviced:

- Normal processing is suspended at the end of the current instruction execution.
- The PC, X, A and CC registers are saved onto the stack.
- The I bit of the CC register is set to prevent additional interrupts.
- The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to the Interrupt Mapping Table for vector addresses).

The interrupt service routine should finish with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.

Note: As a consequence of the IRET instruction, the I bit is cleared and the main program resumes.

Priority Management

5/

By default, a servicing interrupt cannot be interrupted because the I bit is set by hardware entering in interrupt routine.

In the case when several interrupts are simultaneously pending, an hardware priority defines which one will be serviced first (see the Interrupt Mapping Table).

Interrupts and Low Power Mode

All interrupts allow the processor to leave the WAIT low power mode. Only external and specifically mentioned interrupts allow the processor to leave the HALT low power mode (refer to the "Exit from HALT" column in the Interrupt Mapping Table).

8.1 NON MASKABLE SOFTWARE INTERRUPT

This interrupt is entered when the TRAP instruction is executed regardless of the state of the I bit. It is serviced according to the flowchart in Figure 18.

8.2 EXTERNAL INTERRUPTS

External interrupt vectors can be loaded into the PC register if the corresponding external interrupt occurred and if the I bit is cleared. These interrupts allow the processor to leave the HALT low power mode.

The external interrupt polarity is selected through the miscellaneous register or interrupt register (if available).

An external interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine.

Caution: The type of sensitivity defined in the Miscellaneous or Interrupt register (if available) applies to the ei source. In case of a NANDed source (as described in the I/O ports section), a low level on an I/O pin, configured as input with interrupt, masks the interrupt request even in case of rising-edge sensitivity.

8.3 PERIPHERAL INTERRUPTS

Different peripheral interrupt flags in the status register are able to cause an interrupt when they are active if both:

- The I bit of the CC register is cleared.
- The corresponding enable bit is set in the control register.

If any of these two conditions is false, the interrupt is latched and thus remains pending.

Clearing an interrupt request is done by:

- Writing "0" to the corresponding bit in the status register or
- Access to the status register while the flag is set followed by a read or write of an associated register.

Note: The clearing sequence resets the internal latch. A pending interrupt (that is, waiting for being enabled) will therefore be lost if the clear sequence is executed.

8.4 SYSTEM INTEGRITY MANAGEMENT (SI)

The System Integrity Management block contains the Low voltage Detector (LVD) and Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.

Note: A reset can also be triggered following the detection of an illegal opcode or prebyte code. Refer to section 12.2.1 on page 78 for further details.

8.4.1 Low Voltage Detector (LVD)

The Low Voltage Detector function (LVD) generates a static reset when the V_{DD} supply voltage is below a $V_{IT-(LVD)}$ reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The V_{IT-(LVD)} reference value for a voltage drop is lower than the V_{IT+(LVD)} reference value for poweron in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD Reset circuitry generates a reset when V_{DD} is below:

 $- V_{IT+(LVD)}$ when V_{DD} is rising

 $- V_{IT-(LVD)}$ when V_{DD} is falling

The LVD function is illustrated in Figure 19.

The voltage threshold can be configured by option byte to be low, medium or high. See section 15.1 on page 112.

Provided the minimum V_{DD} value (guaranteed for the oscillator frequency) is above $V_{IT\mathchar`(LVD)},$ the MCU can only be in two modes:

- under full software control

- in static safe reset

In these conditions, secure operation is always ensured for the application without the need for external reset hardware.

During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

Notes:

The LVD is an optional function which can be selected by option byte. See section 15.1 on page 112.

It allows the device to be used without any external RESET circuitry.

If the LVD is disabled, an external circuitry must be used to ensure a proper power-on reset.

It is recommended to make sure that the V_{DD} supply voltage rises monotonously when the device is exiting from Reset, to ensure the application functions properly.

Caution: If an LVD reset occurs after a watchdog reset has occurred, the LVD will take priority and will clear the watchdog flag.

Figure 19. Low Voltage Detector vs Reset

POWER SAVING MODES (Cont'd)

9.3 WAIT MODE

WAIT mode places the MCU in a low power consumption mode by stopping the CPU.

This power saving mode is selected by calling the 'WFI' instruction.

All peripherals remain active. During WAIT mode, the I bit of the CC register is cleared, to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in WAIT mode until an interrupt or RESET occurs, whereupon the Program Counter branches to the starting address of the interrupt or Reset service routine.

The MCU will remain in WAIT mode until a Reset or an Interrupt occurs, causing it to wake up.

Refer to Figure 24.

Figure 24. WAIT Mode Flow-chart

Note:

1. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set during the interrupt routine and cleared when the CC register is popped.

POWER SAVING MODES (Cont'd)

9.4.2 HALT MODE

The HALT mode is the lowest power consumption mode of the MCU. It is entered by executing the 'HALT' instruction when active halt mode is disabled.

The MCU can exit HALT mode on reception of either a specific interrupt (see Table 6, "Interrupt Mapping," on page 30) or a RESET. When exiting HALT mode by means of a RESET or an interrupt, the oscillator is immediately turned on and the 256 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 28).

When entering HALT mode, the I bit in the CC register is forced to 0 to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes immediately.

In HALT mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator).

The compatibility of Watchdog operation with HALT mode is configured by the "WDGHALT" option bit of the option byte. The HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog RESET (see section 15.1 on page 112 for more details).

Notes:

1. WDGHALT is an option bit. See option byte section for more details.

2. Peripheral clocked with an external clock source can still be active.

3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 6, "Interrupt Mapping," on page 30 for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set during the interrupt routine and cleared when the CC register is popped.

5. If the PLL is enabled by option byte, it outputs the clock after a delay of t_{STARTUP} (see Figure 13).

Figure 28. HALT Mode Flow-chart

10 I/O PORTS

10.1 INTRODUCTION

The I/O ports offer different functional modes: – transfer of data through digital inputs and outputs

- and for specific pins:
- external interrupt generation
- alternate signal input/output for the on-chip peripherals.

An I/O port contains up to 8 pins. Each pin can be programmed independently as digital input (with or without interrupt generation) or digital output.

10.2 FUNCTIONAL DESCRIPTION

Each port has 2 main registers:

- Data Register (DR)
- Data Direction Register (DDR)
- and one optional register:
- Option Register (OR)

Each I/O pin may be programmed using the corresponding register bits in the DDR and OR registers: bit X corresponding to pin X of the port. The same correspondence is used for the DR register.

The following description takes into account the OR register, (for specific ports which do not provide this register refer to the I/O Port Implementation section). The generic I/O block diagram is shown in Figure 29

10.2.1 Input Modes

The input configuration is selected by clearing the corresponding DDR register bit.

In this case, reading the DR register returns the digital value applied to the external I/O pin.

Different input modes can be selected by software through the OR register.

Note: Writing the DR register modifies the latch value but does not affect the pin status.

External interrupt function

When an I/O is configured as Input with Interrupt, an event on this I/O can generate an external interrupt request to the CPU.

Each pin can independently generate an interrupt request. The interrupt sensitivity is independently programmable using the sensitivity bits in the EICR register.

Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout description and interrupt section). If several input pins are selected simultaneously as interrupt source, these are logically ANDed. For this reason if one of the interrupt pins is tied low, it may mask the others.

External interrupts are hardware interrupts. Fetching the corresponding interrupt vector automatically clears the request latch. Changing the sensitivity of a particular external interrupt clears this pending interrupt. This can be used to clear unwanted pending interrupts.

Spurious interrupts

When enabling/disabling an external interrupt by setting/resetting the related OR register bit, a spurious interrupt is generated if the pin level is low and its edge sensitivity includes falling/rising edge. This is due to the edge detector input which is switched to '1' when the external interrupt is disabled by the OR register.

To avoid this unwanted interrupt, a "safe" edge sensitivity (rising edge for enabling and falling edge for disabling) has to be selected before changing the OR register bit and configuring the appropriate sensitivity again.

Caution: In case a pin level change occurs during these operations (asynchronous signal input), as interrupts are generated according to the current sensitivity, it is advised to disable all interrupts before and to reenable them after the complete previous sequence in order to avoid an external interrupt occurring on the unwanted edge.

This corresponds to the following steps:

- 1. To enable an external interrupt:
 - set the interrupt mask with the SIM instruction (in cases where a pin level change could occur)
 - select rising edge
 - enable the external interrupt through the OR register
 - select the desired sensitivity if different from rising edge
 - reset the interrupt mask with the RIM instruction (in cases where a pin level change could occur)
- 2. To disable an external interrupt:
 - set the interrupt mask with the SIM instruction SIM (in cases where a pin level change could occur)
 - select falling edge
 - disable the external interrupt through the OR register
 - select rising edge

SERIAL PERIPHERAL INTERFACE (Cont'd)

57

Table 16. SPI Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
31	SPIDR Reset Value	MSB x	x	x	x	x	x	x	LSB x
32	SPICR Reset Value	SPIE 0	SPE 0	SPR2 0	MSTR 0	CPOL x	CPHA x	SPR1 x	SPR0 x
33	SPICSR Reset Value	SPIF 0	WCOL 0	OVR 0	MODF 0	0	SOD 0	SSM 0	SSI 0

12 INSTRUCTION SET

12.1 ST7 ADDRESSING MODES

The ST7 Core features 17 different addressing modes which can be classified in seven main groups:

Addressing Mode	Example
Inherent	nop
Immediate	ld A,#\$55
Direct	ld A,\$55
Indexed	ld A,(\$55,X)
Indirect	ld A,([\$55],X)
Relative	jrne loop
Bit operation	bset byte,#5

Table 18. ST7 Addressing Mode Overview

The ST7 Instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be subdivided in two submodes called long and short:

- Long addressing mode is more powerful because it can use the full 64 Kbyte address space, however it uses more bytes and more CPU cycles.
- Short addressing mode is less powerful because it can generally only access page zero (0000h -00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)

The ST7 Assembler optimizes the use of long and short addressing modes.

	Mode		Syntax	Destination/ Source	Pointer Address (Hex.)	Pointer Size (Hex.)	Length (Bytes)
Inherent			nop				+ 0
Immediate			ld A,#\$55				+ 1
Short	Direct		ld A,\$10	00FF			+ 1
Long	Direct		ld A,\$1000	0000FFFF			+ 2
No Offset	Direct	Indexed	ld A,(X)	00FF			+ 0 (with X register) + 1 (with Y register)
Short	Direct	Indexed	ld A,(\$10,X)	001FE			+ 1
Long	Direct	Indexed	ld A,(\$1000,X)	0000FFFF			+ 2
Short	Indirect		ld A,[\$10]	00FF	00FF	byte	+ 2
Long	Indirect		ld A,[\$10.w]	0000FFFF	00FF	word	+ 2
Short	Indirect	Indexed	ld A,([\$10],X)	001FE	00FF	byte	+ 2
Long	Indirect	Indexed	ld A,([\$10.w],X)	0000FFFF	00FF	word	+ 2
Relative	Direct		jrne loop	PC-128/PC+127 ¹⁾			+ 1
Relative	Indirect		jrne [\$10]	PC-128/PC+127 ¹⁾	00FF	byte	+ 2
Bit	Direct		bset \$10,#7	00FF			+ 1
Bit	Indirect		bset [\$10],#7	00FF	00FF	byte	+ 2
Bit	Direct	Relative	btjt \$10,#7,skip	00FF			+ 2
Bit	Indirect	Relative	btjt [\$10],#7,skip	00FF	00FF	byte	+ 3

Note:

57

1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx.

13 ELECTRICAL CHARACTERISTICS

13.1 PARAMETER CONDITIONS

Unless otherwise specified, all voltages are referred to $\ensuremath{\mathsf{V}_{SS}}\xspace.$

13.1.1 Minimum and Maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A=25^{\circ}C$ and $T_A=T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

13.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A=25\,^\circ\text{C}, V_{DD}=5V$ (for the $4.5V{\le}V_{DD}{\le}5.5V$ voltage range), $V_{DD}=3.3V$ (for the $3V{\le}V_{DD}{\le}3.6V$ voltage range) and $V_{DD}=2.7V$ (for the $2.4V{\le}V_{DD}{\le}3V$ voltage range). They are given only as design guidelines and are not tested.

13.1.3 Typical curves

57

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

13.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 46.

Figure 46. Pin loading conditions

13.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 47.

Figure 47. Pin input voltage

13.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi-

13.2.1 Voltage Characteristics

tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
V _{DD} - V _{SS}	Supply voltage	7.0	V
V _{IN}	Input voltage on any pin ^{1) & 2)}	$V_{\rm SS}\text{-}0.3$ to $V_{\rm DD}\text{+}0.3$	v
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	see section 13.7.2 on	page 93

13.2.2 Current Characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD}	Total current into V _{DD} power lines (source) 3)	75	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ³⁾	150	
	Output current sunk by any standard I/O and control pin	20	
I _{IO}	Output current sunk by any high sink I/O pin	40	
	Output current source by any I/Os and control pin	- 25	mA
2) & 4)	Injected current on RESET pin	± 5	
INJ(PIN)	Injected current on PB1 pin ⁵⁾	+5	
	Injected current on any other pin ⁶⁾	± 5	
$\Sigma I_{INJ(PIN)}^{2)}$	Total injected current (sum of all I/O and control pins) ⁶⁾	± 20	

13.2.3 Thermal Characteristics

Symbol	Ratings	Value	Unit			
T _{STG}	Storage temperature range	-65 to +150	°C			
Т _Ј	Maximum junction temperature (see Section 14.2 THERMAL CHARACTERISTICS)					

Notes:

1. Directly connecting the I/O pins to V_{DD} or V_{SS} could damage the device if an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: $10k\Omega$ for I/Os). Unused I/O pins must be tied in the same way to V_{DD} or V_{SS} according to their reset configuration. For reset pin, please refer to Figure 80.

2. $I_{INJ(PIN)}$ must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{INJ(PIN)}$ value. A positive injection is induced by V_{IN} - V_{DD} while a negative injection is induced by V_{IN} < V_{SS} . **3.** All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

4. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents throughout the device including the analog inputs. To avoid undesirable effects on the analog functions, care must be taken:

- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage is lower than the specified limits)

- Pure digital pins must have a negative injection less than 1.6mA. In addition, it is recommended to inject the current as far as possible from the analog input pins.

5. No negative current injection allowed on PB1 pin.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with $\Sigma I_{INJ(PIN)}$ maximum. mum current injection on four I/O port pins of the device.

13.5 CLOCK AND TIMING CHARACTERISTICS

Subject to general operating conditions for V_{DD}, f_{OSC}, and T_A.

13.5.1 General Timings

Symbol	Parameter 1)	Conditions	Min	Typ ²⁾	Max	Unit
t _{c(INST)}	Instruction cycle time	f _{CPU} =8MHz	2	3	12	t _{CPU}
			250	375	1500	ns
t _{v(IT)}	$ \begin{array}{l} \mbox{Interrupt reaction time} \ ^{3)} \\ t_{v(IT)} = \Delta t_{c(INST)} + \ 10 \end{array} $	f _{CPU} =8MHz	10		22	t _{CPU}
			1.25		2.75	μs

13.5.2 External Clock Source

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CLKINH}	CLKIN input pin high level voltage		$0.7 \mathrm{xV}_{\mathrm{DD}}$		V _{DD}	V
V _{CLKINL}	CLKIN input pin low level voltage		V _{SS}		$0.3 \mathrm{xV}_{\mathrm{DD}}$	v
t _{w(CLKINH)} t _{w(CLKINL)}	CLKIN high or low time ⁴⁾	see Figure 61	15			ns
t _{r(CLKIN)} t _{f(CLKIN)}	CLKIN rise or fall time ⁴⁾				15	113
١L	CLKIN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA

Notes:

47/

1. Guaranteed by Design. Not tested in production.

2. Data based on typical application software.

3. Time measured between interrupt event and interrupt vector fetch. $\Delta t_{c(INST)}$ is the number of t_{CPU} cycles needed to finish the current instruction execution.

4. Data based on design simulation and/or technology characteristics, not tested in production.

Figure 61. Typical Application with an External Clock Source

13.6 MEMORY CHARACTERISTICS

 $T_A = -40^{\circ}C$ to 105°C, unless otherwise specified

13.6.1 RAM and Hardware Registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{RM}	Data retention mode ¹⁾	HALT mode (or RESET)	1.6			V

13.6.2 FLASH Program Memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Operating voltage for Flash write/erase		2.4		5.5	V
t _{prog}	Programming time for 1~32 bytes ²⁾	T _A =-40 to +105°C		5	10	ms
	Programming time for 1.5 kBytes	T _A =+25°C		0.24	0.48	S
t _{RET}	Data retention ⁴⁾	T _A =+55°C ³⁾	20			years
N _{RW}	Write erase cycles	T _A =+25°C	10K ⁷⁾			cycles
I _{DD}	Supply current	Read / Write / Erase modes f _{CPU} = 8MHz, V _{DD} = 5.5V			2.6 ⁶⁾	mA
		No Read/No Write Mode			100	μΑ
		Power down mode / HALT		0	0.1	μΑ

13.6.3 EEPROM Data Memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Operating voltage for EEPROM write/erase		2.4		5.5	V
t _{prog}	Programming time for 1~32 bytes	T _A =-40 to +105°C		5	10	ms
t _{ret}	Data retention ⁴⁾	T _A =+55°C ³⁾	20			years
N _{RW}	Write erase cycles	T _A =+25°C	300K ⁷⁾			cycles

Notes:

1. Minimum V_{DD} supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware registers (only in HALT mode). Guaranteed by construction, not tested in production.

2. Up to 32 bytes can be programmed at a time.

3. The data retention time increases when the T_A decreases.

4. Data based on reliability test results and monitored in production.

5. Data based on characterization results, not tested in production.

6. Guaranteed by Design. Not tested in production.

7. Design target value pending full product characterization.

13.8 I/O PORT PIN CHARACTERISTICS

13.8.1 General Characteristics

Subject to general operating conditions for V_{DD}, f_{OSC}, and T_A unless otherwise specified.

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage			V _{SS} - 0.3		$0.3 x V_{DD}$	V
V _{IH}	Input high level voltage			$0.7 \mathrm{xV}_{\mathrm{DD}}$		V _{DD} + 0.3	
V _{hys}	Schmitt trigger voltage hysteresis				400		mV
١ _L	Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}				±1	
۱ _S	Static current consumption induced by each floating input pin ²⁾	Floating input mode			400		μA
B	Week pull up equivelent register ³	V _{IN} =V	V _{DD} =5V	50	120	250	kO
νPU	weak puil-up equivalent resistor	SS	V _{DD} =3V		160		K22
C _{IO}	I/O pin capacitance				5		pF
t _{f(IO)out}	Output high to low level fall time ¹⁾	C _L =50pF Between 10% and 90%			25		ne
t _{r(IO)out}	Output low to high level rise time ¹⁾				25		115
t _{w(IT)in}	External interrupt pulse time 4)			1			t _{CPU}

Notes:

1. Data based on characterization results, not tested in production.

2. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see Figure 66). Static peak current value taken at a fixed V_{IN} value, based on design simulation and technology characteristics, not tested in production. This value depends on V_{DD} and temperature values.

3. The R_{PU} pull-up equivalent resistor is based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 63).

4. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source.

Figure 62. Two typical applications with unused I/O pin configured as input

(external pull-up of 10k mandatory in noisy environment). This is to avoid entering ICC mode unexpectedly during a reset. **Note:** I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of greater EMC robustness and lower cost.

Figure 63. Typical I_{PU} vs. V_{DD} with V_{IN}=V_{SS}

JESD97. The maximum ratings related to soldering conditions are also marked on the inner box la-

ECOPACK is an ST trademark. ECOPACK speci-

fications are available at: www.st.com.

14 PACKAGE CHARACTERISTICS

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard

14.1 PACKAGE MECHANICAL DATA

5/

Figure 86. 20-Lead Very thin Fine pitch Quad Flat No-Lead Package

bel.