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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Notes:
1. The contents of the I/O port DR registers are readable only in output configuration. In input configura-
tion, the values of the I/O pins are returned instead of the DR register contents.
2. The bits associated with unavailable pins must always keep their reset value.

003Ah SI SICSR System Integrity Control/Status Register 0xh R/W

003Bh to 
007Fh 

Reserved area (69 bytes)

Address Block
Register 

Label
Register Name

Reset 
Status

Remarks
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ST7LITE0xY0, ST7LITESxY0
CPU REGISTERS (Cont’d)

Stack Pointer (SP) 
Read/Write

Reset Value: 00 FFh

The Stack Pointer is a 16-bit register which is al-
ways pointing to the next free location in the stack.
It is then decremented after data has been pushed
onto the stack and incremented before data is
popped from the stack (see Figure 12). 

Since the stack is 64 bytes deep, the 10 most sig-
nificant bits are forced by hardware. Following an
MCU Reset, or after a Reset Stack Pointer instruc-
tion (RSP), the Stack Pointer contains its reset val-
ue (the SP5 to SP0 bits are set) which is the stack
higher address.

The least significant byte of the Stack Pointer
(called S) can be directly accessed by a LD in-
struction.

Note: When the lower limit is exceeded, the Stack
Pointer wraps around to the stack upper limit, with-
out indicating the stack overflow. The previously
stored information is then overwritten and there-
fore lost. The stack also wraps in case of an under-
flow. 

The stack is used to save the return address dur-
ing a subroutine call and the CPU context during
an interrupt. The user may also directly manipulate
the stack by means of the PUSH and POP instruc-
tions. In the case of an interrupt, the PCL is stored
at the first location pointed to by the SP. Then the
other registers are stored in the next locations as
shown in Figure 12. 

– When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.

– On return from interrupt, the SP is incremented 
and the context is popped from the stack.

A subroutine call occupies two locations and an in-
terrupt five locations in the stack area.

Figure 12. Stack Manipulation Example
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ST7LITE0xY0, ST7LITESxY0
9 POWER SAVING MODES

9.1 INTRODUCTION

To give a large measure of flexibility to the applica-
tion in terms of power consumption, four main
power saving modes are implemented in the ST7
(see Figure 22): SLOW, WAIT (SLOW WAIT), AC-
TIVE HALT and HALT.

After a RESET the normal operating mode is se-
lected by default (RUN mode). This mode drives
the device (CPU and embedded peripherals) by
means of a master clock which is based on the
main oscillator frequency (fOSC).

From RUN mode, the different power saving
modes may be selected by setting the relevant
register bits or by calling the specific ST7 software
instruction whose action depends on the oscillator
status.

Figure 22. Power Saving Mode Transitions

9.2 SLOW MODE

This mode has two targets:

– To reduce power consumption by decreasing the 
internal clock in the device, 

– To adapt the internal clock frequency (fCPU) to 
the available supply voltage.

SLOW mode is controlled by the SMS bit in the
MCCSR register which enables or disables Slow
mode.

In this mode, the oscillator frequency is divided by
32. The CPU and peripherals are clocked at this
lower frequency.

Notes: 
SLOW-WAIT mode is activated when entering
WAIT mode while the device is already in SLOW
mode.
SLOW mode has no effect on the Lite Timer which
is already clocked at FOSC/32.

Figure 23. SLOW Mode Clock Transition
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ST7LITE0xY0, ST7LITESxY0
LITE TIMER (Cont’d)

11.1.3 Functional Description

The value of the 8-bit counter cannot be read or
written by software. After an MCU reset, it starts
incrementing from 0 at a frequency of fOSC/32. A
counter overflow event occurs when the counter
rolls over from F9h to 00h. If fOSC = 8 MHz, then
the time period between two counter overflow
events is 1 ms. This period can be doubled by set-
ting the TB bit in the LTCSR register.

When the timer overflows, the TBF bit is set by
hardware and an interrupt request is generated if
the TBIE is set. The TBF bit is cleared by software
reading the LTCSR register.

11.1.3.1 Watchdog

The watchdog  is  enabled using the WDGE bit.
The normal Watchdog timeout is 2ms (@ = 8 MHz
fOSC), after which it then generates a reset.

To prevent this watchdog reset occuring, software
must set  the WDGD bit.  The WDGD bit  is cleared
by hardware after tWDG. This means that software
must write to the WDGD bit at regular intervals to
prevent a watchdog reset occurring. Refer to Fig-
ure 32. 

If the watchdog is not enabled immediately after
reset, the first watchdog timeout will be shorter
than 2ms, because this period is counted starting
from reset. Moreover, if a 2ms period has already
elapsed after the last MCU reset, the watchdog re-
set  will take place as soon as the WDGE bit is set.
For these reasons, it is recommended to enable
the Watchdog immediately after reset or else to
set the WDGD bit before the WGDE bit so a
watchdog reset will not occur for at least  2ms. 

A Watchdog reset can be forced at any time by
setting the WDGRF bit. To generate a forced

watchdog reset, first watchdog has to be activated
by setting the WDGE bit and then the WDGRF bit
has to be set. 

The WDGRF bit also acts as a flag, indicating that
the Watchdog was the source of the reset. It is au-
tomatically cleared after it has been read.

Caution: When the WDGRF bit is set, software
must clear it, otherwise the next time the watchdog
is enabled (by hardware or software), the micro-
controller will be immediately reset. 

Hardware Watchdog Option
If Hardware Watchdog is selected by option byte,
the watchdog is always active and the WDGE bit in
the LTCSR is not used. 

Refer to the Option Byte description in the "device
configuration and ordering information" section.

Using Halt Mode with the Watchdog (option)
If the Watchdog reset on HALT option is not se-
lected by option byte, the Halt mode can be used
when the watchdog is enabled.

In this case, the HALT instruction stops the oscilla-
tor. When the oscillator is stopped, the Lite Timer
stops counting and is no longer able to generate a
Watchdog reset until the microcontroller receives
an external interrupt or a reset.

If an external interrupt is received, the WDG re-
starts counting after 256 CPU clocks. If a reset is
generated, the Watchdog is disabled (reset state).

If Halt mode with Watchdog is enabled by option
byte (No watchdog reset on HALT instruction), it is
recommended before executing the HALT instruc-
tion to refresh the WDG counter, to avoid an unex-
pected WDG reset immediately after waking up
the microcontroller.
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ST7LITE0xY0, ST7LITESxY0
11.3 SERIAL PERIPHERAL INTERFACE (SPI)

11.3.1 Introduction 
The Serial Peripheral Interface (SPI) allows full-
duplex, synchronous, serial communication with
external devices. An SPI system may consist of a
master and one or more slaves however the SPI
interface can not be a master in a multi-master
system.

11.3.2 Main Features 
■ Full duplex synchronous transfers (on 3 lines)
■ Simplex synchronous transfers (on 2 lines)
■ Master or slave operation 
■ Six master mode frequencies (fCPU/4 max.)
■ fCPU/2 max. slave mode frequency (see note)
■ SS Management by software or hardware
■ Programmable clock polarity and phase
■ End of transfer interrupt flag
■ Write collision, Master Mode Fault and Overrun

flags 

Note: In slave mode, continuous transmission is
not possible at maximum frequency due to the

software overhead for clearing status flags and to
initiate the next transmission sequence.

11.3.3 General Description
Figure 37 shows the serial peripheral interface
(SPI) block diagram. There are 3 registers:

– SPI Control Register (SPICR) 

– SPI Control/Status Register (SPICSR) 

– SPI Data Register (SPIDR)

The SPI is connected to external devices through
3 pins:

– MISO: Master In / Slave Out data 

– MOSI: Master Out / Slave In data

– SCK: Serial Clock out by SPI masters and in-
put by SPI slaves

– SS: Slave select:
This input signal acts as a ‘chip select’ to let
the SPI master communicate with slaves indi-
vidually and to avoid contention on the data
lines. Slave SS inputs can be driven by stand-
ard I/O ports on the master MCU.

Figure 37. Serial Peripheral Interface Block Diagram
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ST7LITE0xY0, ST7LITESxY0
SERIAL PERIPHERAL INTERFACE (Cont’d)

11.3.6 Low Power Modes

11.3.6.1 Using the SPI to wakeup the MCU from
Halt mode
In slave configuration, the SPI is able to wakeup
the ST7 device from HALT mode through a SPIF
interrupt. The data received is subsequently read
from the SPIDR register when the software is run-
ning (interrupt vector fetch). If multiple data trans-
fers have been performed before software clears
the SPIF bit, then the OVR bit is set by hardware.

Note: When waking up from Halt mode, if the SPI
remains in Slave mode, it is recommended to per-
form an extra communications cycle to bring the
SPI from Halt mode state to normal state. If the

SPI exits from Slave mode, it returns to normal
state immediately.

Caution: The SPI can wake up the ST7 from Halt
mode only if the Slave Select signal (external SS
pin or the SSI bit in the SPICSR register) is low
when the ST7 enters Halt mode. So if Slave selec-
tion is configured as external (see Section
11.3.3.2), make sure the master drives a low level
on the SS pin when the slave enters Halt mode.

11.3.7 Interrupts 

Note: The SPI interrupt events are connected to
the same interrupt vector (see Interrupts chapter). 
They generate an interrupt if the corresponding
Enable Control Bit is set and the interrupt mask in
the CC register is reset (RIM instruction).

Mode Description 

WAIT
No effect on SPI. 
SPI interrupt events cause the device to exit 
from WAIT mode.

HALT

SPI registers are frozen. 
In HALT mode, the SPI is inactive. SPI oper-
ation resumes when the MCU is woken up by 
an interrupt with “exit from HALT mode” ca-
pability. The data received is subsequently 
read from the SPIDR register when the soft-
ware is running (interrupt vector fetching). If 
several data are received before the wake-
up event, then an overrun error is generated. 
This error can be detected after the fetch of 
the interrupt routine that woke up the device.

Interrupt Event Event
Flag

Enable 
Control 

Bit

Exit 
from
Wait

Exit 
from 
Halt

SPI End of Trans-
fer Event

SPIF

SPIE

Yes Yes

Master Mode Fault 
Event

MODF Yes No

Overrun Error OVR Yes No
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ST7LITE0xY0, ST7LITESxY0
SERIAL PERIPHERAL INTERFACE (Cont’d)

11.3.8 Register Description
CONTROL REGISTER (SPICR)
Read/Write

Reset Value: 0000 xxxx (0xh)

Bit 7 = SPIE Serial Peripheral Interrupt Enable.
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An SPI interrupt is generated whenever 

SPIF=1, MODF=1 or OVR=1 in the SPICSR 
register 

Bit 6 = SPE Serial Peripheral Output Enable.
This bit is set and cleared by software. It is also
cleared by hardware when, in master mode, SS=0
(see Section 11.3.5.1 Master Mode Fault
(MODF)). The SPE bit is cleared by reset, so the
SPI peripheral is not initially connected to the ex-
ternal pins.
0: I/O pins free for general purpose I/O
1: SPI I/O pin alternate functions enabled

Bit 5 = SPR2 Divider Enable.
This bit is set and cleared by software and is
cleared by reset. It is used with the SPR[1:0] bits to
set the baud rate. Refer to Table 15 SPI Master
mode SCK Frequency.
0: Divider by 2 enabled
1: Divider by 2 disabled

Note: This bit has no effect in slave mode.

Bit 4 = MSTR Master Mode.
This bit is set and cleared by software. It is also
cleared by hardware when, in master mode, SS=0
(see Section 11.3.5.1 Master Mode Fault
(MODF)).
0: Slave mode
1: Master mode. The function of the SCK pin 

changes from an input to an output and the func-
tions of the MISO and MOSI pins are reversed.

Bit 3 = CPOL Clock Polarity.
This bit is set and cleared by software. This bit de-
termines the idle state of the serial Clock. The
CPOL bit affects both the master and slave
modes. 
0: SCK pin has a low level idle state 
1: SCK pin has a high level idle state 

Note: If CPOL is changed at the communication
byte boundaries, the SPI must be disabled by re-
setting the SPE bit.

Bit 2 = CPHA Clock Phase.
This bit is set and cleared by software.
0: The first clock transition is the first data capture 

edge.
1: The second clock transition is the first capture 

edge. 

Note: The slave must have the same CPOL and
CPHA settings as the master. 

Bits 1:0 = SPR[1:0] Serial Clock Frequency. 
These bits are set and cleared by software. Used
with the SPR2 bit, they select the baud rate of the
SPI serial clock SCK output by the SPI in master
mode. 

Note: These 2 bits have no effect in slave mode. 

Table 15. SPI Master mode SCK Frequency

7 0

SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0

Serial Clock SPR2 SPR1 SPR0

fCPU/4 1 0 0

fCPU/8 0 0 0

fCPU/16 0 0 1

fCPU/32 1 1 0

fCPU/64 0 1 0

fCPU/128 0 1 1
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ST7LITE0xY0, ST7LITESxY0
12 INSTRUCTION SET 

12.1 ST7 ADDRESSING MODES

The ST7 Core features 17 different addressing
modes which can be classified in seven main
groups:

The ST7 Instruction set is designed to minimize
the number of bytes required per instruction: To do
so, most of the addressing modes may be subdi-
vided in two submodes called long and short:

– Long addressing mode is more powerful be-
cause it can use the full 64 Kbyte address space, 
however it uses more bytes and more CPU cy-
cles.

– Short addressing mode is less powerful because 
it can generally only access page zero (0000h - 
00FFh range), but the instruction size is more 
compact, and faster. All memory to memory in-
structions use short addressing modes only 
(CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, 
INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)

The ST7 Assembler optimizes the use of long and
short addressing modes. 

Table 18. ST7 Addressing Mode Overview

Note:
1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx.

Addressing Mode Example

Inherent nop

Immediate ld   A,#$55

Direct ld   A,$55

Indexed ld   A,($55,X)

Indirect ld   A,([$55],X)

Relative jrne loop

Bit operation bset    byte,#5

Mode Syntax
Destination/

Source

Pointer 
Address

(Hex.)

Pointer 
Size

(Hex.)

Length
(Bytes)

Inherent nop + 0

Immediate ld A,#$55 + 1

Short Direct ld A,$10 00..FF + 1

Long Direct ld A,$1000 0000..FFFF + 2

No Offset Direct Indexed ld A,(X) 00..FF
+ 0 (with X register)
+ 1 (with Y register)

Short Direct Indexed ld A,($10,X) 00..1FE + 1

Long Direct Indexed ld A,($1000,X) 0000..FFFF + 2

Short Indirect ld A,[$10] 00..FF 00..FF byte + 2

Long Indirect ld A,[$10.w] 0000..FFFF 00..FF word + 2

Short Indirect Indexed ld A,([$10],X) 00..1FE 00..FF byte + 2

Long Indirect Indexed ld A,([$10.w],X) 0000..FFFF 00..FF word + 2

Relative Direct jrne loop PC-128/PC+1271) + 1

Relative Indirect jrne [$10] PC-128/PC+1271) 00..FF byte + 2

Bit Direct bset $10,#7 00..FF + 1

Bit Indirect bset [$10],#7 00..FF 00..FF byte + 2

Bit Direct Relative btjt $10,#7,skip 00..FF + 2

Bit Indirect Relative btjt [$10],#7,skip 00..FF 00..FF byte + 3
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ST7LITE0xY0, ST7LITESxY0
ST7 ADDRESSING MODES (cont’d)

12.1.6 Indirect Indexed (Short, Long)
This is a combination of indirect and short indexed
addressing modes. The operand is referenced by
its memory address, which is defined by the un-
signed addition of an index register value (X or Y)
with a pointer value located in memory. The point-
er address follows the opcode.

The indirect indexed addressing mode consists of
two submodes:

Indirect Indexed (Short)
The pointer address is a byte, the pointer size is a
byte, thus allowing 00 - 1FE addressing space,
and requires 1 byte after the opcode.

Indirect Indexed (Long)
The pointer address is a byte, the pointer size is a
word, thus allowing 64 Kbyte addressing space,
and requires 1 byte after the opcode.

Table 19. Instructions Supporting Direct,
Indexed, Indirect and Indirect Indexed
Addressing Modes

12.1.7 Relative Mode (Direct, Indirect)
This addressing mode is used to modify the PC
register value by adding an 8-bit signed offset to it.

The relative addressing mode consists of two sub-
modes:

Relative (Direct)
The offset follows the opcode.

Relative (Indirect)
The offset is defined in memory, of which the ad-
dress follows the opcode.

Long and Short 
Instructions

Function

LD Load

CP Compare

AND, OR, XOR Logical Operations

ADC, ADD, SUB, SBC
Arithmetic Addition/subtrac-
tion operations

BCP Bit Compare

Short Instructions Only Function

CLR Clear

INC, DEC Increment/Decrement

TNZ Test Negative or Zero

CPL, NEG 1 or 2 Complement

BSET, BRES Bit Operations

BTJT, BTJF
Bit Test and Jump Opera-
tions

SLL, SRL, SRA, RLC, 
RRC

Shift and Rotate Operations

SWAP Swap Nibbles

CALL, JP Call or Jump subroutine

Available Relative Direct/
Indirect Instructions

Function

JRxx Conditional Jump

CALLR Call Relative
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ST7LITE0xY0, ST7LITESxY0
12.2 INSTRUCTION GROUPS

The ST7 family devices use an Instruction Set
consisting of 63 instructions. The instructions may

be subdivided into 13 main groups as illustrated in
the following table:

Using a prebyte
The instructions are described with 1 to 4 bytes.

In order to extend the number of available op-
codes for an 8-bit CPU (256 opcodes), three differ-
ent prebyte opcodes are defined. These prebytes
modify the meaning of the instruction they pre-
cede.

The whole instruction becomes:

PC-2 End of previous instruction

PC-1 Prebyte

PC Opcode

PC+1 Additional word (0 to 2) according to the
number of bytes required to compute the
effective address

These prebytes enable instruction in Y as well as
indirect addressing modes to be implemented.
They precede the opcode of the instruction in X or
the instruction using direct addressing mode. The
prebytes are:

PDY 90 Replace an X based instruction using
immediate, direct, indexed, or inherent
addressing mode by a Y one.

PIX 92 Replace an instruction using direct, di-
rect bit or direct relative addressing
mode to an instruction using the corre-
sponding indirect addressing mode.
It also changes an instruction using X
indexed addressing mode to an instruc-
tion using indirect X indexed addressing
mode.

PIY 91 Replace an instruction using X indirect
indexed addressing mode by a Y one.

12.2.1 Illegal Opcode Reset
In order to provide enhanced robustness to the de-
vice against unexpected behavior, a system of ille-
gal opcode detection is implemented. If a code to
be executed does not correspond to any opcode
or prebyte value, a reset is generated. This, com-
bined with the Watchdog, allows the detection and
recovery from an unexpected fault or interference. 

Note: A valid prebyte associated with a valid op-
code forming an unauthorized combination does
not generate a reset.

Load and Transfer LD CLR

Stack operation PUSH POP RSP

Increment/Decrement INC DEC

Compare and Tests CP TNZ BCP

Logical operations AND OR XOR CPL NEG

Bit Operation BSET BRES

Conditional Bit Test and Branch BTJT BTJF

Arithmetic operations ADC ADD SUB SBC MUL

Shift and Rotates SLL SRL SRA RLC RRC SWAP SLA

Unconditional Jump or Call JRA JRT JRF JP CALL CALLR NOP RET

Conditional Branch JRxx

Interruption management TRAP WFI HALT IRET

Condition Code Flag modification SIM RIM SCF RCF
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ST7LITE0xY0, ST7LITESxY0
INSTRUCTION GROUPS (cont’d)

Mnemo Description Function/Example Dst Src H I N Z C

JRULE Jump if (C + Z = 1) Unsigned <=

LD Load dst <= src reg, M M, reg N Z

MUL Multiply X,A = X * A A, X, Y X, Y, A 0 0

NEG Negate (2's compl) neg $10 reg, M N Z C

NOP No Operation

OR OR operation A = A + M A M N Z

POP Pop from the Stack pop reg reg M

pop CC CC M H I N Z C

PUSH Push onto the Stack push Y M reg, CC

RCF Reset carry flag C = 0 0

RET Subroutine Return

RIM Enable Interrupts I = 0 0

RLC Rotate left true C C <= Dst <= C reg, M N Z C

RRC Rotate right true C C => Dst => C reg, M N Z C

RSP Reset Stack Pointer S = Max allowed

SBC Subtract with Carry A = A - M - C A M N Z C

SCF Set carry flag C = 1 1

SIM Disable Interrupts I = 1 1

SLA Shift left Arithmetic C <= Dst <= 0 reg, M N Z C

SLL Shift left Logic C <= Dst <= 0 reg, M N Z C

SRL Shift right Logic 0 => Dst => C reg, M 0 Z C

SRA Shift right Arithmetic Dst7 => Dst => C reg, M N Z C

SUB Subtraction A = A - M A M N Z C

SWAP SWAP nibbles Dst[7..4] <=> Dst[3..0] reg, M N Z

TNZ Test for Neg & Zero tnz  lbl1 N Z

TRAP S/W trap S/W interrupt 1

WFI Wait for Interrupt 0

XOR Exclusive OR A = A XOR M A M N Z
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ST7LITE0xY0, ST7LITESxY0
13.3.2 Operating Conditions with Low Voltage Detector (LVD) 
TA = -40 to 85°C, unless otherwise specified

Notes:
1. Not tested in production.
2. Not tested in production. The VDD rise time rate condition is needed to ensure a correct device power-on and LVD reset. 
When the VDD slope is outside these values, the LVD may not ensure a proper reset of the MCU. 

13.3.3 Auxiliary Voltage Detector (AVD) Thresholds
TA = -40 to 85°C, unless otherwise specified

Symbol Parameter Conditions Min Typ Max Unit

VIT+(LVD)
Reset release threshold
(VDD rise)

High Threshold
Med. Threshold
Low Threshold

4.00 1)

3.40 1) 
2.65 1)

4.25
3.60
2.90

4.50 
3.80 
3.15

V

VIT-(LVD)
Reset generation threshold
(VDD fall)

High Threshold
Med. Threshold
Low Threshold

3.80 
3.20 
2.40 

4.05
3.40 
2.70

4.30 1)

3.65 1)

2.90 1)

Vhys LVD voltage threshold hysteresis VIT+(LVD)-VIT-(LVD) 200 mV

VtPOR VDD rise time rate 2) 20 20000 µs/V

tg(VDD) Filtered glitch delay on VDD Not detected by the LVD 150 ns

IDD(LVD) LVD/AVD current consumption 220 µA

Symbol Parameter Conditions Min Typ Max Unit

VIT+(AVD)
1=>0 AVDF flag toggle threshold
(VDD rise)

High Threshold
Med. Threshold
Low Threshold

4.40
3.90
3.20

4.70
4.10
3.40

5.00
4.30
3.60

V

VIT-(AVD)
0=>1 AVDF flag toggle threshold
(VDD fall)

High Threshold
Med. Threshold
Low Threshold

4.30
3.70
2.90

4.60
3.90
3.20

4.90
4.10
3.40

Vhys AVD voltage threshold hysteresis VIT+(AVD)-VIT-(AVD) 150 mV

∆VIT-
Voltage drop between AVD flag set 
and LVD reset activation

VDD fall 0.45 V
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ST7LITE0xY0, ST7LITESxY0
13.3.4 Internal RC Oscillator and PLL
The ST7 internal clock can be supplied by an internal RC oscillator and PLL (selectable by option byte).

The RC oscillator and PLL characteristics are temperature-dependent and are grouped in two tables. 

13.3.4.1 Devices with “6” order code suffix (tested for TA = -40 to +85°C) @ VDD = 4.5 to 5.5V

Notes:
1. If the RC oscillator clock is selected, to improve clock stability and frequency accuracy, it is recommended to place a
decoupling capacitor, typically 100nF, between the VDD and VSS pins as close as possible to the ST7 device. 
2. See “INTERNAL RC OSCILLATOR ADJUSTMENT” on page 24
3. Data based on characterization results, not tested in production
4. Averaged over a 4ms period. After the LOCKED bit is set, a period of tSTAB is required to reach ACCPLL accuracy 
5. After the LOCKED bit is set ACCPLL is max. 10% until tSTAB has elapsed. See Figure 13 on page 25.
6. Guaranteed by design.

Symbol Parameter Conditions Min Typ Max Unit

VDD(RC) Internal RC Oscillator operating voltage 2.4 5.5

VVDD(x4PLL) x4 PLL operating voltage 2.4 3.3

VDD(x8PLL) x8 PLL operating voltage 3.3 5.5

tSTARTUP PLL Startup time 60
PLL input clock (fPLL)

cycles

Symbol Parameter Conditions Min Typ Max Unit

fRC 
1) Internal RC oscillator fre-

quency
RCCR = FF (reset value), TA=25°C, VDD=5V 760

kHz
RCCR = RCCR02 ),TA=25°C, VDD=5V 1000

ACCRC

Accuracy of Internal RC 
oscillator with 
RCCR=RCCR02)

TA=25°C,VDD=4.5 to 5.5V -1 +1 %

TA=-40 to +85°C, VDD=5V -5 +2 %

TA=0 to +85°C, VDD=4.5 to 5.5V -23) +23) %

IDD(RC)
RC oscillator current con-
sumption

TA=25°C,VDD=5V 9703) µA

tsu(RC) RC oscillator setup time TA=25°C,VDD=5V 102) µs

fPLL x8 PLL input clock 13) MHz

tLOCK PLL Lock time5) 2 ms

tSTAB PLL Stabilization time5) 4 ms

ACCPLL x8 PLL Accuracy
fRC = 1MHz@TA=25°C, VDD=4.5 to 5.5V 0.14) %

fRC = 1MHz@TA=-40 to +85°C, VDD=5V 0.14) %

tw(JIT) PLL jitter period fRC = 1MHz 86) kHz

JITPLL PLL jitter (∆fCPU/fCPU) 16) %

 IDD(PLL) PLL current consumption TA=25°C 6003) µA
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ST7LITE0xY0, ST7LITESxY0
OPERATING CONDITIONS (Cont’d)

Figure 54. PLLx4 Output vs CLKIN frequency

Note: fOSC = fCLKIN/2*PLL4

Figure 55. PLLx8 Output vs CLKIN frequency

Note: fOSC = fCLKIN/2*PLL8
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ST7LITE0xY0, ST7LITESxY0
13.6 MEMORY CHARACTERISTICS

TA = -40°C to 105°C, unless otherwise specified

13.6.1 RAM and Hardware Registers  

13.6.2 FLASH Program Memory 

13.6.3 EEPROM Data Memory 

Notes:
1. Minimum VDD supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware reg-
isters (only in HALT mode). Guaranteed by construction, not tested in production.
2. Up to 32 bytes can be programmed at a time.
3. The data retention time increases when the TA decreases.
4. Data based on reliability test results and monitored in production.
5. Data based on characterization results, not tested in production.
6. Guaranteed by Design. Not tested in production.
7. Design target value pending full product characterization.

Symbol Parameter  Conditions Min Typ Max Unit

VRM Data retention mode 1) HALT mode (or RESET) 1.6 V

Symbol Parameter  Conditions Min Typ Max Unit

VDD Operating voltage for Flash write/erase 2.4 5.5 V

tprog
Programming time for 1~32 bytes 2) TA=−40 to +105°C 5 10 ms

Programming time for 1.5 kBytes TA=+25°C 0.24 0.48 s

tRET Data retention 4) TA=+55°C3) 20 years

NRW Write erase cycles TA=+25°C 10K 7) cycles

IDD Supply current

Read / Write / Erase 
modes 

fCPU = 8MHz, VDD = 5.5V
2.6 6) mA

No Read/No Write Mode 100 µA
Power down mode / HALT 0 0.1 µA

Symbol Parameter  Conditions Min Typ Max Unit

VDD
Operating voltage for EEPROM 
write/erase

2.4 5.5 V

tprog Programming time for 1~32 bytes TA=−40 to +105°C 5 10 ms

tret Data retention 4) TA=+55°C 3) 20 years

NRW Write erase cycles TA=+25°C 300K 7) cycles
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ST7LITE0xY0, ST7LITESxY0
I/O PORT PIN CHARACTERISTICS (Cont’d)

13.8.2 Output Driving Current 
Subject to general operating conditions for VDD, fCPU, and TA unless otherwise specified. 

Notes:
1. The IIO current sunk must always respect the absolute maximum rating specified in Section 13.2.2 and the sum of IIO
(I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced must always respect the absolute maximum rating specified in Section 13.2.2 and the sum of
IIO (I/O ports and control pins) must not exceed IVDD. 
3. Not tested in production, based on characterization results.

Symbol Parameter Conditions Min Max Unit

VOL 
1)

Output low level voltage for a standard I/O pin 
when 8 pins are sunk at same time
(see Figure 65)

V
D

D
=

5V

IIO=+5mA TA≤85°C
TA≥85°C

1.0
1.2

V

IIO=+2mA TA≤85°C
TA≥85°C

0.4
0.5

Output low level voltage for a high sink I/O pin 
when 4 pins are sunk at same time
(see Figure 66)

IIO=+20mA,TA≤85°C
TA≥85°C

1.3
1.5

IIO=+8mA TA≤85°C
TA≥85°C

0.75
0.85

VOH 
2)

Output high level voltage for an I/O pin
when 4 pins are sourced at same time
(see Figure 72)

IIO=-5mA, TA≤85°C
TA≥85°C

VDD-1.5
VDD-1.6

IIO=-2mA TA≤85°C
TA≥85°C

VDD-0.8
VDD-1.0

VOL 
1)3)

Output low level voltage for a standard I/O pin 
when 8 pins are sunk at same time
(see Figure 64)

V
D

D
=

3.
3V

IIO=+2mA TA≤85°C
TA≥85°C

0.5
0.6

Output low level voltage for a high sink I/O pin 
when 4 pins are sunk at same time

IIO=+8mA TA≤85°C
TA≥85°C

0.5
0.6

VOH 
2)3) Output high level voltage for an I/O pin

when 4 pins are sourced at same time
IIO=-2mA TA≤85°C

TA≥85°C
VDD-0.8
VDD-1.0

VOL 
1)3)

Output low level voltage for a standard I/O pin 
when 8 pins are sunk at same time

V
D

D
=

2.
7V

IIO=+2mA TA≤85°C
TA≥85°C

0.6
0.7

Output low level voltage for a high sink I/O pin 
when 4 pins are sunk at same time

IIO=+8mA TA≤85°C
TA≥85°C

0.6
0.7

VOH 
2)3)

Output high level voltage for an I/O pin
when 4 pins are sourced at same time
(see Figure 69)

IIO=-2mA TA≤85°C
TA≥85°C

VDD-0.9
VDD-1.0
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ST7LITE0xY0, ST7LITESxY0
13.9 CONTROL PIN CHARACTERISTICS

13.9.1 Asynchronous RESET Pin
TA = -40°C to 105°C, unless otherwise specified 

Notes:
1. Data based on characterization results, not tested in production.
2. The IIO current sunk must always respect the absolute maximum rating specified in section 13.2.2 on page 82 and the
sum of IIO (I/O ports and control pins) must not exceed IVSS.
3. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltages on RESET pin between
VILmax and VDD
4. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on
RESET pin with a duration below th(RSTL)in can be ignored.

Symbol Parameter Conditions Min Typ Max Unit

VIL Input low level voltage VSS - 0.3 0.3xVDD
V

VIH Input high level voltage 0.7xVDD VDD + 0.3

Vhys Schmitt trigger voltage hysteresis 1) 2 V

VOL Output low level voltage 2) VDD=5V

IIO=+5mA TA≤85°C
TA≤105°C 0.5

1.0
1.2

V
IIO=+2mA TA≤85°C

TA≤105°C 0.2
0.4
0.5

RON Pull-up equivalent resistor 3) 1) VDD=5V 20 40 80 kΩ

tw(RSTL)out Generated reset pulse duration Internal reset sources 30 µs

th(RSTL)in External reset pulse hold time 4) 20 µs

tg(RSTL)in Filtered glitch duration 200 ns
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ST7LITE0xY0, ST7LITESxY0
ADC CHARACTERISTICS (Cont’d)

Figure 82. RAIN max. vs fADC with CAIN=0pF1) Figure 83. Recommended CAIN/RAIN values2)

Notes:
1. CPARASITIC represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad ca-
pacitance (3pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
2. This graph shows that depending on the input signal variation (fAIN), CAIN can be increased for stabilization and to allow
the use of a larger serial resistor (RAIN). It is valid for all fADC frequencies ≤ 4MHz. 

13.11.1 General PCB Design Guidelines
To obtain best results, some general design and
layout rules should be followed when designing
the application PCB to shield the noise-sensitive,
analog physical interface from noise-generating
CMOS logic signals.

Properly place components and route the signal
traces on the PCB to shield the analog inputs. An-

alog signals paths should run over the analog
ground plane and be as short as possible. Isolate
analog signals from digital signals that may switch
while the analog inputs are being sampled by the
A/D converter. Do not toggle digital outputs on the
same I/O port as the A/D input being converted.
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ST7LITE0xY0, ST7LITESxY0
Figure 87. 16-Pin Plastic Dual In-Line Package, 300-mil Width

Figure 88. 16-Pin Plastic Small Outline Package, 150-mil Width

Dim
mm inches1)

Note 1.  Values in inches are converted from mm 
and rounded to 4 decimal digits.

Min Typ Max Min Typ Max

A   5.33 0.2098

A1 0.38 0.0150

A2 2.92 3.30 4.95 0.1150 0.1299 0.1949

b 0.36 0.46 0.56 0.0142 0.0181 0.0220

b2 1.14 1.52 1.78 0.0449 0.0598 0.0701

b3 0.76 0.99 1.14 0.0299 0.0390 0.0449

c 0.20 0.25 0.36 0.0079 0.0098 0.0142

D 18.67 19.18 19.69 0.7350 0.7551 0.7752

D1 0.13 0.0051

e 2.54 0.1000

E 7.62 7.87 8.26 0.3000 0.3098 0.3252

E1 6.10 6.35 7.11 0.2402 0.2500 0.2799

L 2.92 3.30 3.81 0.1150 0.1299 0.1500

eB 10.92 0.4299

Number of Pins

N 16

c

E

E1

eB

L

AA2
A1

e
bb2

b3D1 

D

Dim.
mm inches1)

Note 1.  Values in inches are converted from mm 
and rounded to 4 decimal digits.

Min Typ Max Min Typ Max

A 1.35 1.75 0.0531 0.0689

A1 0.10 0.25 0.0039 0.0098

B 0.33 0.51 0.0130 0.0201

C 0.19 0.25 0.0075 0.0098

D 9.80
10.0

0
0.3858 0.3937

E 3.80 4.00 0.1496 0.1575

e 1.27 0.0500

H 5.80 6.20 0.2283 0.2441

α 0° 8° 0° 8°

L 0.40 1.27 0.0157 0.0500

Number of Pins

N 16
                                          

E

H
A1 Cα

45× 

AA1

B

D

e

16 9

1 8

L
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AN1071 HALF DUPLEX USB-TO-SERIAL BRIDGE USING THE ST72611 USB MICROCONTROLLER
AN1106 TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7

AN1179
PROGRAMMING ST7 FLASH MICROCONTROLLERS IN REMOTE ISP MODE (IN-SITU PRO-
GRAMMING)

AN1446 USING THE ST72521 EMULATOR TO DEBUG AN ST72324 TARGET APPLICATION
AN1477 EMULATED DATA EEPROM WITH XFLASH MEMORY
AN1527 DEVELOPING A USB SMARTCARD READER WITH ST7SCR
AN1575 ON-BOARD PROGRAMMING METHODS FOR XFLASH AND HDFLASH ST7 MCUS
AN1576 IN-APPLICATION PROGRAMMING (IAP) DRIVERS FOR ST7 HDFLASH OR XFLASH MCUS
AN1577 DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION FOR ST7 USB APPLICATIONS
AN1601 SOFTWARE IMPLEMENTATION FOR ST7DALI-EVAL
AN1603 USING THE ST7 USB DEVICE FIRMWARE UPGRADE DEVELOPMENT KIT (DFU-DK)
AN1635 ST7 CUSTOMER ROM CODE RELEASE INFORMATION
AN1754 DATA LOGGING PROGRAM FOR TESTING ST7 APPLICATIONS VIA ICC
AN1796 FIELD UPDATES FOR FLASH BASED ST7 APPLICATIONS USING A PC COMM PORT
AN1900 HARDWARE IMPLEMENTATION FOR ST7DALI-EVAL
AN1904 ST7MC THREE-PHASE AC INDUCTION MOTOR CONTROL SOFTWARE LIBRARY
AN1905 ST7MC THREE-PHASE BLDC MOTOR CONTROL SOFTWARE LIBRARY
SYSTEM OPTIMIZATION
AN1711 SOFTWARE TECHNIQUES FOR COMPENSATING ST7 ADC ERRORS
AN1827 IMPLEMENTATION OF SIGMA-DELTA ADC WITH ST7FLITE05/09
AN2009 PWM MANAGEMENT FOR 3-PHASE BLDC MOTOR DRIVES USING THE ST7FMC
AN2030 BACK EMF DETECTION DURING PWM ON TIME BY ST7MC

Table 24. ST7 Application Notes

IDENTIFICATION DESCRIPTION
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