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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F1704/8
FIGURE 1-1: PIC16(L)F1704/8 BLOCK DIAGRAM
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PIC16(L)F1704/8
3.0 MEMORY ORGANIZATION

These devices contain the following types of memory: 

• Program Memory

- Configuration Words

- Device ID

- User ID

- Flash Program Memory

• Data Memory

- Core Registers

- Special Function Registers

- General Purpose RAM

- Common RAM

The following features are associated with access and
control of program memory and data memory:

• PCL and PCLATH

• Stack

• Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program
counter capable of addressing a 32K x 14 program
memory space. Table 3-1 shows the memory sizes
implemented for the PIC16(L)F1704/8 family. Accessing
a location above these boundaries will cause a
wrap-around within the implemented memory space.
The Reset vector is at 0000h and the interrupt vector is
at 0004h (see Figure 3-1).

 

Note 1: The method to access Flash memory
through the PMCON registers is described
in Section 10.0 “Flash Program Memory
Control”.

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device
Program Memory Space 

(Words)
Last Program Memory 

Address
High-Endurance Flash 

Memory Address Range(1)

PIC16(L)F1704/8 4,096 0FFFh 0F80h - 0FFFh

Note 1: High-endurance Flash applies to the low byte of each address in the range.
 2013-2015 Microchip Technology Inc. DS40001715D-page 19



PIC16(L)F1704/8
10.0 FLASH PROGRAM MEMORY 
CONTROL

The Flash program memory is readable and writable
during normal operation over the full VDD range.
Program memory is indirectly addressed using Special
Function Registers (SFRs). The SFRs used to access
program memory are:

• PMCON1

• PMCON2

• PMDATL

• PMDATH

• PMADRL

• PMADRH

When accessing the program memory, the
PMDATH:PMDATL register pair forms a 2-byte word
that holds the 14-bit data for read/write, and the
PMADRH:PMADRL register pair forms a 2-byte word
that holds the 15-bit address of the program memory
location being read.

The write time is controlled by an on-chip timer. The
write/erase voltages are generated by an on-chip charge
pump rated to operate over the operating voltage range
of the device.

The Flash program memory can be protected in two
ways; by code protection (CP bit in Configuration Words)
and write protection (WRT<1:0> bits in Configuration
Words). 

Code protection (CP = 0)(1), disables access, reading
and writing, to the Flash program memory via external
device programmers. Code protection does not affect
the self-write and erase functionality. Code protection
can only be reset by a device programmer performing
a Bulk Erase to the device, clearing all Flash program
memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a
portion or all of the Flash program memory as defined
by the bits WRT<1:0>. Write protection does not affect
a device programmers ability to read, write or erase the
device. 

10.1 PMADRL and PMADRH Registers

The PMADRH:PMADRL register pair can address up
to a maximum of 32K words of program memory. When
selecting a program address value, the MSB of the
address is written to the PMADRH register and the LSB
is written to the PMADRL register.

10.1.1 PMCON1 AND PMCON2 
REGISTERS

PMCON1 is the control register for Flash program
memory accesses.

Control bits RD and WR initiate read and write,
respectively. These bits cannot be cleared, only set, in
software. They are cleared by hardware at completion
of the read or write operation. The inability to clear the
WR bit in software prevents the accidental, premature
termination of a write operation.

The WREN bit, when set, will allow a write operation to
occur. On power-up, the WREN bit is clear. The
WRERR bit is set when a write operation is interrupted
by a Reset during normal operation. In these situations,
following Reset, the user can check the WRERR bit
and execute the appropriate error handling routine.

The PMCON2 register is a write-only register. Attempting
to read the PMCON2 register will return all ‘0’s. 

To enable writes to the program memory, a specific
pattern (the unlock sequence), must be written to the
PMCON2 register. The required unlock sequence
prevents inadvertent writes to the program memory
write latches and Flash program memory. 

10.2 Flash Program Memory Overview

It is important to understand the Flash program memory
structure for erase and programming operations. Flash
program memory is arranged in rows. A row consists of
a fixed number of 14-bit program memory words. A row
is the minimum size that can be erased by user software.

After a row has been erased, the user can reprogram
all or a portion of this row. Data to be written into the
program memory row is written to 14-bit wide data write
latches. These write latches are not directly accessible
to the user, but may be loaded via sequential writes to
the PMDATH:PMDATL register pair.

See Table 10-1 for Erase Row size and the number of
write latches for Flash program memory.

Note 1: Code protection of the entire Flash
program memory array is enabled by
clearing the CP bit of Configuration Words.

Note: If the user wants to modify only a portion
of a previously programmed row, then the
contents of the entire row must be read
and saved in RAM prior to the erase.
Then, new data and retained data can be
written into the write latches to reprogram
the row of Flash program memory.
However, any unprogrammed locations
can be written without first erasing the row.
In this case, it is not necessary to save and
rewrite the other previously programmed
locations.
DS40001715D-page 102  2013-2015 Microchip Technology Inc.



PIC16(L)F1704/8
13.0 INTERRUPT-ON-CHANGE

All pins on all ports can be configured to operate as
Interrupt-On-Change (IOC) pins. An interrupt can be
generated by detecting a signal that has either a rising
edge or a falling edge. Any individual pin, or combination
of pins, can be configured to generate an interrupt. The
interrupt-on-change module has the following features:

• Interrupt-on-Change enable (Master Switch)

• Individual pin configuration

• Rising and falling edge detection

• Individual pin interrupt flags

Figure 13-1 is a block diagram of the IOC module.

13.1 Enabling the Module

To allow individual pins to generate an interrupt, the
IOCIE bit of the INTCON register must be set. If the
IOCIE bit is disabled, the edge detection on the pin will
still occur, but an interrupt will not be generated.

13.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge
detector are present. To enable a pin to detect a rising
edge, the associated bit of the IOCxP register is set. To
enable a pin to detect a falling edge, the associated bit
of the IOCxN register is set.

A pin can be configured to detect rising and falling
edges simultaneously by setting the associated bits in
both of the IOCxP and IOCxN registers.

13.3 Interrupt Flags

The bits located in the IOCxF registers are status flags
that correspond to the interrupt-on-change pins of each
port. If an expected edge is detected on an appropriately
enabled pin, then the status flag for that pin will be set,
and an interrupt will be generated if the IOCIE bit is set.
The IOCIF bit of the INTCON register reflects the status
of all IOCxF bits.

13.4 Clearing Interrupt Flags

The individual status flags, (IOCxF register bits), can be
cleared by resetting them to zero. If another edge is
detected during this clearing operation, the associated
status flag will be set at the end of the sequence,
regardless of the value actually being written.

In order to ensure that no detected edge is lost while
clearing flags, only AND operations masking out known
changed bits should be performed. The following
sequence is an example of what should be performed.

EXAMPLE 13-1: CLEARING INTERRUPT 
FLAGS
(PORTA EXAMPLE)

13.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake
the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the affected
IOCxF register will be updated prior to the first instruction
executed out of Sleep. 

MOVLW 0xff
XORWF IOCAF, W
ANDWF IOCAF, F
 2013-2015 Microchip Technology Inc. DS40001715D-page 143



PIC16(L)F1704/8
15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the
user must wait at least 200 s after the ADC input
multiplexer is connected to the temperature indicator
output before the conversion is performed. In addition,
the user must wait 200 s between sequential
conversions of the temperature indicator output.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR      

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on page

FVRCON FVREN FVRRDY TSEN TSRNG CDFVR<1:0> ADFVR<1:0> 151

Legend: Shaded cells are unused by the temperature indicator module.
 2013-2015 Microchip Technology Inc. DS40001715D-page 153
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16.2 Comparator Control

Each comparator has two control registers: CMxCON0
and CMxCON1.

The CMxCON0 register (see Register 16-1) contains
Control and Status bits for the following:

• Enable

• Output

• Output polarity

• Zero latency filter

• Speed/Power selection

• Hysteresis enable

• Output synchronization

The CMxCON1 register (see Register 16-2) contains
Control bits for the following:

• Interrupt enable

• Interrupt edge polarity

• Positive input channel selection

• Negative input channel selection

16.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables
the comparator for operation. Clearing the CxON bit
disables the comparator resulting in minimum current
consumption.

16.2.2 COMPARATOR OUTPUT 
SELECTION

The output of the comparator can be monitored by
reading either the CxOUT bit of the CMxCON0 register
or the MCxOUT bit of the CMOUT register. In order to
make the output available for an external connection,
the following conditions must be true:

• Desired pin PPS control

• Corresponding TRIS bit must be cleared

• CxON bit of the CMxCON0 register must be set

16.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally
equivalent to swapping the comparator inputs. The
polarity of the comparator output can be inverted by
setting the CxPOL bit of the CMxCON0 register.
Clearing the CxPOL bit results in a non-inverted output.

Table 16-2 shows the output state versus input
conditions, including polarity control.

16.2.4 COMPARATOR SPEED/POWER 
SELECTION

The trade-off between speed or power can be
optimized during program execution with the CxSP
control bit. The default state for this bit is ‘1’, which
selects the Normal-Speed mode. Device power
consumption can be optimized at the cost of slower
comparator propagation delay by clearing the CxSP bit
to ‘0’.

Note 1: The internal output of the comparator is
latched with each instruction cycle.
Unless otherwise specified, external
outputs are not latched.

TABLE 16-2: COMPARATOR OUTPUT 
STATE VS. INPUT 
CONDITIONS

Input Condition CxPOL CxOUT

CxVN > CxVP 0 0

CxVN < CxVP 0 1

CxVN > CxVP 1 1

CxVN < CxVP 1 0
DS40001715D-page 156  2013-2015 Microchip Technology Inc.
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17.1 PWMx Pin Configuration

All PWM outputs are multiplexed with the PORT data
latch. The user must configure the pins as outputs by
clearing the associated TRIS bits.

17.1.1 FUNDAMENTAL OPERATION

The PWM module produces a 10-bit resolution output.
Timer2 and PR2 set the period of the PWM. The
PWMxDCL and PWMxDCH registers configure the
duty cycle. The period is common to all PWM modules,
whereas the duty cycle is independently controlled.

All PWM outputs associated with Timer2 are set when
TMR2 is cleared. Each PWMx is cleared when TMR2
is equal to the value specified in the corresponding
PWMxDCH (8 MSb) and PWMxDCL<7:6> (2 LSb)
registers. When the value is greater than or equal to
PR2, the PWM output is never cleared (100% duty
cycle).

17.1.2 PWM OUTPUT POLARITY

The output polarity is inverted by setting the PWMxPOL
bit of the PWMxCON register.

17.1.3 PWM PERIOD

The PWM period is specified by the PR2 register of
Timer2. The PWM period can be calculated using the
formula of Equation 17-1.

EQUATION 17-1: PWM PERIOD

When TMR2 is equal to PR2, the following three events
occur on the next increment cycle:

• TMR2 is cleared

• The PWM output is active. (Exception: When the 
PWM duty cycle = 0%, the PWM output will 
remain inactive.)

• The PWMxDCH and PWMxDCL register values 
are latched into the buffers.

17.1.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value
to the PWMxDCH and PWMxDCL register pair. The
PWMxDCH register contains the eight MSbs and the
PWMxDCL<7:6>, the two LSbs. The PWMxDCH and
PWMxDCL registers can be written to at any time.

Equation 17-2 is used to calculate the PWM pulse
width.

Equation 17-3 is used to calculate the PWM duty cycle
ratio.

EQUATION 17-2: PULSE WIDTH

EQUATION 17-3: DUTY CYCLE RATIO

The 8-bit timer TMR2 register is concatenated with the
two Least Significant bits of 1/FOSC, adjusted by the
Timer2 prescaler to create the 10-bit time base. The
system clock is used if the Timer2 prescaler is set to 1:1.

Note: The Timer2 postscaler is not used in the
determination of the PWM frequency. The
postscaler could be used to have a servo
update rate at a different frequency than the
PWM output.

Note: The PWMxDCH and PWMxDCL registers
are double buffered. The buffers are updated
when Timer2 matches PR2. Care should be
taken to update both registers before the
timer match occurs.

PWM Period PR2  1+  4 TOSC  =

(TMR2 Prescale Value)

Note: TOSC = 1/FOSC

Note: The Timer2 postscaler has no effect on the
PWM operation.

Pulse Width PWMxDCH:PWMxDCL<7:6>    =

TOSC     (TMR2 Prescale Value)

Note: TOSC = 1/FOSC

Duty Cycle Ratio
PWMxDCH:PWMxDCL<7:6> 

4 PR2 1+ 
-----------------------------------------------------------------------------------=
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19.1.2 DATA GATING

Outputs from the input multiplexers are directed to the
desired logic function input through the data gating
stage. Each data gate can direct any combination of the
four selected inputs.

The gate stage is more than just signal direction. The
gate can be configured to direct each input signal as
inverted or non-inverted data. Directed signals are
ANDed together in each gate. The output of each gate
can be inverted before going on to the logic function
stage. 

The gating is in essence a 1-to-4 input
AND/NAND/OR/NOR gate. When every input is
inverted and the output is inverted, the gate is an OR of
all enabled data inputs. When the inputs and output are
not inverted, the gate is an AND or all enabled inputs.

Table 19-2 summarizes the basic logic that can be 
obtained in gate 1 by using the gate logic select bits. 
The table shows the logic of four input variables, but 
each gate can be configured to use less than four. If 
no inputs are selected, the output will be zero or one, 
depending on the gate output polarity bit.

It is possible (but not recommended) to select both the
true and negated values of an input. When this is done,
the gate output is zero, regardless of the other inputs,
but may emit logic glitches (transient-induced pulses).
If the output of the channel must be zero or one, the
recommended method is to set all gate bits to zero and
use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select
registers as follows:

• Gate 1: CLCxGLS0 (Register 19-7)

• Gate 2: CLCxGLS1 (Register 19-8)

• Gate 3: CLCxGLS2 (Register 19-9)

• Gate 4: CLCxGLS3 (Register 19-10)

Register number suffixes are different than the gate
numbers because other variations of this module have
multiple gate selections in the same register.

Data gating is indicated in the right side of Figure 19-2.
Only one gate is shown in detail. The remaining three
gates are configured identically with the exception that
the data enables correspond to the enables for that
gate.

19.1.3 LOGIC FUNCTION

There are eight available logic functions including:

• AND-OR

• OR-XOR

• AND

• S-R Latch

• D Flip-Flop with Set and Reset

• D Flip-Flop with Reset

• J-K Flip-Flop with Reset

• Transparent Latch with Set and Reset

Logic functions are shown in Figure 19-3. Each logic
function has four inputs and one output. The four inputs
are the four data gate outputs of the previous stage.
The output is fed to the inversion stage and from there
to other peripherals, an output pin, and back to the
CLCx itself.

19.1.4 OUTPUT POLARITY

The last stage in the configurable logic cell is the output
polarity. Setting the LCxPOL bit of the CLCxCON
register inverts the output signal from the logic stage.
Changing the polarity while the interrupts are enabled
will cause an interrupt for the resulting output transition.

Note: Data gating is undefined at power-up.

TABLE 19-2: DATA GATING LOGIC

CLCxGLS0 LCxG1POL Gate Logic

0x55 1 AND

0x55 0 NAND

0xAA 1 NOR

0xAA 0 OR

0x00 0 Logic 0

0x00 1 Logic 1
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TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Name Bit7 Bit6 Bit5 Bit4 BIt3 Bit2 Bit1 Bit0
Register 
on Page

ANSELA — — — ANSA4 — ANSA2 ANSA1 ANSA0 122

ANSELB(1) — — ANSB5 ANSB4 — — — — 128

ANSELC ANSC7(1) ANSC6(1) ANSC5(2) ANSC4(2) ANSC3 ANSC2 ANSC1 ANSC0 133

CLC1CON LC1EN — LC1OUT LC1INTP LC1INTN LC1MODE<2:0> 207

CLC2CON LC2EN — LC2OUT LC2INTP LC2INTN LC2MODE<2:0> 207

CLC3CON LC3EN — LC3OUT LC3INTP LC3INTN LC3MODE<2:0> 207

CLCDATA — — — — — MLC3OUT MLC2OUT MLC1OUT 215

CLC1GLS0 LC1G1D4T LC1G1D4N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T LC1G1D1N 211

CLC1GLS1 LC1G2D4T LC1G2D4N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T LC1G2D1N 212

CLC1GLS2 LC1G3D4T LC1G3D4N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T LC1G3D1N 213

CLC1GLS3 LC1G4D4T LC1G4D4N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T LC1G4D1N 214

CLC1POL LC1POL — — — LC1G4POL LC1G3POL LC1G2POL LC1G1POL 208

CLC1SEL0 — — — LC1D1S<4:0> 209

CLC1SEL1 — — — LC1D2S<4:0> 209

CLC1SEL2 — — — LC1D3S<4:0> 209

CLC1SEL3 — — — LC1D4S<4:0> 210

CLC2GLS0 LC2G1D4T LC2G1D4N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T LC2G1D1N 211

CLC2GLS1 LC2G2D4T LC2G2D4N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T LC2G2D1N 212

CLC2GLS2 LC2G3D4T LC2G3D4N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T LC2G3D1N 213

CLC2GLS3 LC2G4D4T LC2G4D4N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T LC2G4D1N 214

CLC2POL LC2POL — — — LC2G4POL LC2G3POL LC2G2POL LC2G1POL 208

CLC2SEL0 — — — LC2D1S<4:0> 209

CLC2SEL1 — — — LC2D2S<4:0> 209

CLC2SEL2 — — — LC2D3S<4:0> 209

CLC2SEL3 — — — LC2D4S<4:0> 210

CLC3GLS0 LC3G1D4T LC3G1D4N LC3G1D3T LC3G1D3N LC3G1D2T LC3G1D2N LC3G1D1T LC3G1D1N 211

CLC3GLS1 LC3G2D4T LC3G2D4N LC3G2D3T LC3G2D3N LC3G2D2T LC3G2D2N LC3G2D1T LC3G2D1N 212

CLC3GLS2 LC3G3D4T LC3G3D4N LC3G3D3T LC3G3D3N LC3G3D2T LC3G3D2N LC3G3D1T LC3G3D1N 213

CLC3GLS3 LC3G4D4T LC3G4D4N LC3G4D3T LC3G4D3N LC3G4D2T LC3G4D2N LC3G4D1T LC3G4D1N 214

CLC3POL LC3POL — — — LC3G4POL LC3G3POL LC3G2POL LC3G1POL 208

CLC3SEL0 — — — LC3D1S<4:0> 209

CLC3SEL1 — — — LC3D2S<4:0> 209

CLC3SEL2 — — — LC3D3S<4:0> 209

CLC3SEL3 — — — LC3D4S<4:0> 210

CLCxPPS — — — CLCxPPS<4:0> 138, 139

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 85

PIE3 — — COGIE ZCDIE — CLC3IE CLC2IE CLC1IE 88

PIR3 — — COGIF ZCDIF — CLC3IF CLC2IF CLC1IF 91

RxyPPS — — — RxyPPS<4:0> 140

TRISA — — TRISA5 TRISA4 —(3) TRISA2 TRISA1 TRISA0 121

TRISB(4) TRISB7 TRISB6 TRISB5 TRISB4 — — — — 127

TRISC TRISC7(4) TRISC6(4) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 132

Legend: — = unimplemented read as ‘0’. Shaded cells are not used for CLC module.
Note 1: PIC16(L)F1708 only.

2: PIC16(L)F1704 only.
3: Unimplemented, read as ‘1’.
DS40001715D-page 216  2013-2015 Microchip Technology Inc.



PIC16(L)F1704/8
23.9 Register Definitions: ZCD Control

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

TABLE 23-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE  

REGISTER 23-1: ZCDxCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-0/0 U-0 R-x/x R/W-0/0 U-0 U-0 R/W-0/0 R/W-0/0

ZCDxEN — ZCDxOUT ZCDxPOL — — ZCDxINTP ZCDxINTN

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = value depends on configuration bits

bit 7 ZCDxEN: Zero-Cross Detection Enable bit(1)

1 = Zero-cross detect is enabled. ZCD pin is forced to output to source and sink current.
0 = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls.

bit 6 Unimplemented: Read as ‘0’

bit 5 ZCDxOUT: Zero-Cross Detection Logic Level bit

ZCDxPOL bit = 0:
1 = ZCD pin is sinking current
0 = ZCD pin is sourcing current
ZCDxPOL bit = 1:
1 = ZCD pin is sourcing current
0 = ZCD pin is sinking current

bit 4 ZCDxPOL: Zero-Cross Detection Logic Output Polarity bit
1 = ZCD logic output is inverted
0 = ZCD logic output is not inverted

bit 3-2 Unimplemented: Read as ‘0’

bit 1 ZCDxINTP: Zero-Cross Positive Edge Interrupt Enable bit

1 = ZCDIF bit is set on low-to-high ZCDx_output transition
0 = ZCDIF bit is unaffected by low-to-high ZCDx_output transition

bit 0 ZCDxINTN: Zero-Cross Negative Edge Interrupt Enable bit

1 = ZCDIF bit is set on high-to-low ZCDx_output transition
0 = ZCDIF bit is unaffected by high-to-low ZCDx_output transition

Note 1: The ZCDxEN bit has no effect when the ZCDDIS Configuration bit is cleared.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on page

PIE3 — — COGIE ZCDIE — — — — 88

PIR3 — — CWGIF ZCDIF — — — — 91

ZCD1CON ZCD1EN — ZCD1OUT ZCD1POL — — ZCD1INTP ZCD1INTN 241

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the ZCD module.

Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0
Register 
on Page

CONFIG2 13:8 — — LVP DEBUG LPBOR BORV STVREN PLLEN 51

7:0 ZCDDIS — — — — — WRT<1:0>

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the ZCD module.
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27.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized
Counter mode for the CCP module to use the capture
feature. In Asynchronous Counter mode, the capture
operation may not work. 

See Section 25.0 “Timer1 Module with Gate
Control” for more information on configuring Timer1.

27.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture
interrupt may be generated. The user should keep the
CCPxIE interrupt enable bit of the PIEx register clear to
avoid false interrupts. Additionally, the user should
clear the CCPxIF interrupt flag bit of the PIRx register
following any change in Operating mode.

27.1.4 CCP PRESCALER

There are four prescaler settings specified by the
CCPxM<3:0> bits of the CCPxCON register. Whenever
the CCP module is turned off, or the CCP module is not
in Capture mode, the prescaler counter is cleared. Any
Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not
clear the prescaler and may generate a false interrupt. To
avoid this unexpected operation, turn the module off by
clearing the CCPxCON register before changing the
prescaler. Example 27-1 demonstrates the code to
perform this function.

EXAMPLE 27-1: CHANGING BETWEEN 
CAPTURE PRESCALERS

27.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for
proper operation. There are two options for driving the
Timer1 module in Capture mode. It can be driven by the
instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by FOSC/4, Timer1 will not
increment during Sleep. When the device wakes from
Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1
is clocked by an external clock source.

27.2 Compare Mode

The Compare mode function described in this section
is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1
resource. The 16-bit value of the CCPRxH:CCPRxL
register pair is constantly compared against the 16-bit
value of the TMR1H:TMR1L register pair. When a
match occurs, one of the following events can occur:

• Toggle the CCPx output

• Set the CCPx output

• Clear the CCPx output

• Generate an Auto-conversion Trigger

• Generate a Software Interrupt

The action on the pin is based on the value of the
CCPxM<3:0> control bits of the CCPxCON register. At
the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 27-2 shows a simplified diagram of the compare
operation.

FIGURE 27-2: COMPARE MODE 
OPERATION BLOCK 
DIAGRAM

Note: Clocking Timer1 from the system clock
(FOSC) should not be used in Capture
mode. In order for Capture mode to
recognize the trigger event on the CCPx
pin, Timer1 must be clocked from the
instruction clock (FOSC/4) or from an
external clock source.

BANKSEL CCPxCON ;Set Bank bits to point
;to CCPxCON

CLRF CCPxCON ;Turn CCP module off
MOVLW NEW_CAPT_PS;Load the W reg with

;the new prescaler
;move value and CCP ON

MOVWF CCPxCON ;Load CCPxCON with this
;value

CCPRxH CCPRxL

TMR1H TMR1L

Comparator
Q S

R

Output
Logic

Auto-conversion Trigger

Set CCPxIF Interrupt Flag
(PIRx)

Match

TRIS

CCPxM<3:0>
Mode Select

Output Enable

Pin
CCPx 4
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28.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as
external clock pulses appear on SCK. When the last
bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock
line must match the proper Idle state. The clock line can
be observed by reading the SCK pin. The Idle state is
determined by the CKP bit of the SSPCON1 register.

While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive
data. The shift register is clocked from the SCK pin
input and when a byte is received, the device will
generate an interrupt. If enabled, the device will
wake-up from Sleep.

28.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a
daisy-chain configuration. The first slave output is
connected to the second slave input, the second slave
output is connected to the third slave input, and so on.
The final slave output is connected to the master input.
Each slave sends out, during a second group of clock
pulses, an exact copy of what was received during the
first group of clock pulses. The whole chain acts as
one large communication shift register. The
daisy-chain feature only requires a single Slave Select
line from the master device.

Figure 28-7 shows the block diagram of a typical
daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent
byte on the bus is required by the slave. Setting the
BOEN bit of the SSPCON3 register will enable writes
to the SSPBUF register, even if the previous byte has
not been read. This allows the software to ignore data
that may not apply to it.

28.2.5 SLAVE SELECT 
SYNCHRONIZATION

The Slave Select can also be used to synchronize
communication. The Slave Select line is held high until
the master device is ready to communicate. When the
Slave Select line is pulled low, the slave knows that a
new transmission is starting. 

If the slave fails to receive the communication properly,
it will be reset at the end of the transmission, when the
Slave Select line returns to a high state. The slave is
then ready to receive a new transmission when the
Slave Select line is pulled low again. If the Slave Select
line is not used, there is a risk that the slave will
eventually become out of sync with the master. If the
slave misses a bit, it will always be one bit off in future
transmissions. Use of the Slave Select line allows the
slave and master to align themselves at the beginning
of each transmission.

The SS pin allows a Synchronous Slave mode. The
SPI must be in Slave mode with SS pin control enabled
(SSPCON1<3:0> = 0100). 

When the SS pin is low, transmission and reception are
enabled and the SDO pin is driven. 

When the SS pin goes high, the SDO pin is no longer
driven, even if in the middle of a transmitted byte and
becomes a floating output. External pull-up/pull-down
resistors may be desirable depending on the
application.    

When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SS pin to
a high level or clearing the SSPEN bit.

Note 1: When the SPI is in Slave mode with SS pin
control enabled (SSPCON1<3:0> =
0100), the SPI module will reset if the SS
pin is set to VDD.

2: When the SPI is used in Slave mode with
CKE set; the user must enable SS pin
control.

3: While operated in SPI Slave mode the
SMP bit of the SSPSTAT register must
remain clear.
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28.4.5 START CONDITION

The I2C specification defines a Start condition as a
transition of SDA from a high to a low state while SCL
line is high. A Start condition is always generated by
the master and signifies the transition of the bus from
an Idle to an Active state. Figure 28-12 shows wave
forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the
module samples the SDA line low before asserting it
low. This does not conform to the I2C Specification that
states no bus collision can occur on a Start.

28.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from
low-to-high state while the SCL line is high.

28.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid.
A master can issue a Restart if it wishes to hold the
bus after terminating the current transfer. A Restart
has the same effect on the slave that a Start would,
resetting all slave logic and preparing it to clock in an
address. The master may want to address the same or
another slave. Figure 28-13 shows the wave form for a
Restart condition.

In 10-bit Addressing Slave mode a Restart is required
for the master to clock data out of the addressed
slave. Once a slave has been fully addressed,
matching both high and low address bytes, the master
can issue a Restart and the high address byte with the
R/W bit set. The slave logic will then hold the clock
and prepare to clock out data.

After a full match with R/W clear in 10-bit mode, a prior
match flag is set and maintained until a Stop condition, a
high address with R/W clear, or high address match fails.

28.4.8 START/STOP CONDITION INTERRUPT 
MASKING

The SCIE and PCIE bits of the SSPCON3 register can
enable the generation of an interrupt in Slave modes
that do not typically support this function. Slave modes
where interrupt on Start and Stop detect are already
enabled, these bits will have no effect. 

FIGURE 28-12: I2C START AND STOP CONDITIONS

FIGURE 28-13: I2C RESTART CONDITION 

Note: At least one SCL low time must appear
before a Stop is valid, therefore, if the SDA
line goes low then high again while the SCL
line stays high, only the Start condition is
detected.

SDA

SCL

P

Stop

Condition

S

Start

Condition

Change of

Data Allowed

Change of

Data Allowed

Restart

Condition

Sr

Change of

Data Allowed
Change of

Data Allowed
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28.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set. The received address is
loaded into the SSPBUF register, and an ACK pulse is
sent by the slave on the ninth bit. 

Following the ACK, slave hardware clears the CKP bit
and the SCL pin is held low (see Section 28.5.6
“Clock Stretching” for more detail). By stretching the
clock, the master will be unable to assert another clock
pulse until the slave is done preparing the transmit
data. 

The transmit data must be loaded into the SSPBUF
register which also loads the SSPSR register. Then the
SCL pin should be released by setting the CKP bit of
the SSPCON1 register. The eight data bits are shifted
out on the falling edge of the SCL input. This ensures
that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on
the rising edge of the ninth SCL input pulse. This ACK
value is copied to the ACKSTAT bit of the SSPCON2
register. If ACKSTAT is set (not ACK), then the data
transfer is complete. In this case, when the not ACK is
latched by the slave, the slave goes idle and waits for
another occurrence of the Start bit. If the SDA line was
low (ACK), the next transmit data must be loaded into
the SSPBUF register. Again, the SCL pin must be
released by setting bit CKP.

An MSSP interrupt is generated for each data transfer
byte. The SSPIF bit must be cleared by software and
the SSPSTAT register is used to determine the status
of the byte. The SSPIF bit is set on the falling edge of
the ninth clock pulse.

28.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting
data out on the SDA line. If a bus collision is detected
and the SBCDE bit of the SSPCON3 register is set, the
BCLIF bit of the PIR register is set. Once a bus collision
is detected, the slave goes idle and waits to be
addressed again. User software can use the BCLIF bit
to handle a slave bus collision.

28.5.3.2 7-bit Transmission

A master device can transmit a read request to a
slave, and then clock data out of the slave. The list
below outlines what software for a slave will need to
do to accomplish a standard transmission.
Figure 28-18 can be used as a reference to this list.

1. Master sends a Start condition on SDA and
SCL.

2. S bit of SSPSTAT is set; SSPIF is set if interrupt
on Start detect is enabled.

3. Matching address with R/W bit set is received by
the Slave setting SSPIF bit.

4. Slave hardware generates an ACK and sets
SSPIF.

5. SSPIF bit is cleared by user.

6. Software reads the received address from
SSPBUF, clearing BF.

7. R/W is set so CKP was automatically cleared
after the ACK.

8. The slave software loads the transmit data into
SSPBUF.

9. CKP bit is set releasing SCL, allowing the
master to clock the data out of the slave.

10. SSPIF is set after the ACK response from the
master is loaded into the ACKSTAT register.

11. SSPIF bit is cleared.

12. The slave software checks the ACKSTAT bit to
see if the master wants to clock out more data.

13. Steps 9-13 are repeated for each transmitted
byte.

14. If the master sends a not ACK; the clock is not
held, but SSPIF is still set.

15. The master sends a Restart condition or a Stop.

16. The slave is no longer addressed.

Note 1: If the master ACKs the clock will be
stretched.

2: ACKSTAT is the only bit updated on the
rising edge of SCL (9th) rather than the
falling.
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28.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 28-5) is
available in I2C Slave mode as a mask for the value
held in the SSPSR register during an address
comparison operation. A zero (‘0’) bit in the SSPMSK
register has the effect of making the corresponding bit
of the received address a “don’t care”.

This register is reset to all ‘1’s upon any Reset
condition and, therefore, has no effect on standard
SSP operation until written with a mask value.

The SSP Mask register is active during:

• 7-bit Address mode: address compare of A<7:1>.

• 10-bit Address mode: address compare of A<7:0> 
only. The SSP mask has no effect during the 
reception of the first (high) byte of the address.

28.6 I2C Master Mode

Master mode is enabled by setting and clearing the
appropriate SSPM bits in the SSPCON1 register and
by setting the SSPEN bit. In Master mode, the SDA and
SCK pins must be configured as inputs. The MSSP
peripheral hardware will override the output driver TRIS
controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt
generation on the detection of the Start and Stop
conditions. The Stop (P) and Start (S) bits are cleared
from a Reset or when the MSSP module is disabled.
Control of the I2C bus may be taken when the P bit is
set, or the bus is Idle.

In Firmware Controlled Master mode, user code
conducts all I2C bus operations based on Start and
Stop bit condition detection. Start and Stop condition
detection is the only active circuitry in this mode. All
other communication is done by the user software
directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag
bit, SSPIF, to be set (SSP interrupt, if enabled):

• Start condition detected

• Stop condition detected

• Data transfer byte transmitted/received

• Acknowledge transmitted/received

• Repeated Start generated

Note 1: The MSSP module, when configured in
I2C Master mode, does not allow queuing
of events. For instance, the user is not
allowed to initiate a Start condition and
immediately write the SSPBUF register to
initiate transmission before the Start
condition is complete. In this case, the
SSPBUF will not be written to and the
WCOL bit will be set, indicating that a
write to the SSPBUF did not occur

2: When in Master mode, Start/Stop
detection is masked and an interrupt is
generated when the SEN/PEN bit is
cleared and the generation is complete.
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TABLE 29-3: BAUD RATE FORMULAS

TABLE 29-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR 

Configuration Bits
BRG/EUSART Mode Baud Rate Formula

SYNC BRG16 BRGH

0 0 0 8-bit/Asynchronous FOSC/[64 (n+1)]

0 0 1 8-bit/Asynchronous
FOSC/[16 (n+1)]

0 1 0 16-bit/Asynchronous

0 1 1 16-bit/Asynchronous

FOSC/[4 (n+1)]1 0 x 8-bit/Synchronous

1 1 x 16-bit/Synchronous

Legend: x = Don’t care, n = value of SPBRGH, SPBRGL register pair.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

BAUD1CON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 336

RC1STA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 335

SP1BRGL BRG<7:0> 337

SP1BRGH BRG<15:8> 337

TX1STA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 334

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.
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31.2 Instruction Descriptions 

ADDFSR Add Literal to FSRn 

Syntax: [ label ] ADDFSR   FSRn, k

Operands: -32  k  31
n  [ 0, 1]

Operation: FSR(n) + k  FSR(n)

Status Affected: None

Description: The signed 6-bit literal ‘k’ is added to 
the contents of the FSRnH:FSRnL 
register pair.

FSRn is limited to the range 
0000h-FFFFh. Moving beyond these 
bounds will cause the FSR to 
wrap-around.

ADDLW Add literal and W

Syntax: [ label ]  ADDLW     k

Operands: 0  k  255

Operation: (W) + k  (W)

Status Affected: C, DC, Z

Description: The contents of the W register are 
added to the 8-bit literal ‘k’ and the 
result is placed in the W register.

ADDWF Add W and f

Syntax: [ label ]  ADDWF     f,d

Operands: 0  f  127
d 0,1

Operation: (W) + (f)  (destination)

Status Affected: C, DC, Z

Description: Add the contents of the W register 
with register ‘f’. If ‘d’ is ‘0’, the result is 
stored in the W register. If ‘d’ is ‘1’, the 
result is stored back in register ‘f’.

ADDWFC ADD W and CARRY bit to f

Syntax: [ label ] ADDWFC      f {,d}

Operands: 0  f  127
d [0,1]

Operation: (W) + (f) + (C)  dest

Status Affected: C, DC, Z

Description: Add W, the Carry flag and data mem-
ory location ‘f’. If ‘d’ is ‘0’, the result is 
placed in W. If ‘d’ is ‘1’, the result is 
placed in data memory location ‘f’. 

ANDLW AND literal with W

Syntax: [ label ]  ANDLW     k

Operands: 0  k  255

Operation: (W) .AND. (k)  (W)

Status Affected: Z

Description: The contents of W register are 
AND’ed with the 8-bit literal ‘k’. The 
result is placed in the W register.

ANDWF AND W with f

Syntax: [ label ]  ANDWF     f,d

Operands: 0  f  127
d 0,1

Operation: (W) .AND. (f)  (destination)

Status Affected: Z

Description: AND the W register with register ‘f’. If 
‘d’ is ‘0’, the result is stored in the W 
register. If ‘d’ is ‘1’, the result is stored 
back in register ‘f’.

ASRF Arithmetic Right Shift

Syntax: [ label ] ASRF    f {,d}

Operands: 0  f  127
d [0,1]

Operation: (f<7>) dest<7>
(f<7:1>)  dest<6:0>,
(f<0>)  C,

Status Affected: C, Z

Description: The contents of register ‘f’ are shifted 
one bit to the right through the Carry 
flag. The MSb remains unchanged. If 
‘d’ is ‘0’, the result is placed in W. If ‘d’ 
is ‘1’, the result is stored back in 
register ‘f’. 

   register f   C
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32.3 DC Characteristics 

TABLE 32-1: SUPPLY VOLTAGE

PIC16LF1704/8 Standard Operating Conditions (unless otherwise stated)

PIC16F1704/8 Standard Operating Conditions (unless otherwise stated)

Param. 
No.

Sym. Characteristic Min. Typ.† Max. Units Conditions

D001 VDD Supply Voltage

PIC16LF1704/8 1.8
2.5

—
—

3.6
3.6

V
V

FOSC  16 MHz
FOSC  32 MHz (Note 2)

D001 PIC16F1704/8 2.3
2.5

—
—

5.5
5.5

V
V

FOSC  16 MHz:
FOSC  32 MHz (Note 2)

D002* VDR RAM Data Retention Voltage(1)

PIC16LF1704/8 1.5 — — V Device in Sleep mode

D002* PIC16F1704/8 1.7 — — V Device in Sleep mode

D002A* VPOR Power-on Reset Release Voltage(3)

PIC16LF1704/8 — 1.6 — V

D002A* PIC16F1704/8 — 1.6 — V

D002B* VPORR* Power-on Reset Rearm Voltage(3)

PIC16LF1704/8 — 0.8 — V

D002B* PIC16F1704/8 — 1.5 — V

D003 VFVR Fixed Voltage Reference Voltage

1x gain (1.024 nominal) -4 — +4 % VDD 2.5V, -40°C to 85°C

2x gain (2.048 nominal) -4 — +4 % VDD 2.5V, -40°C to 85°C

4x gain (4.096 nominal) -5 — +5 % VDD 4.75V, -40°C to 85°C

D004* SVDD VDD Rise Rate to ensure internal
Power-on Reset signal(2)

0.05 — — V/ms See Section 5.1 “Power-On Reset 
(POR)” for details.

* These parameters are characterized but not tested.
† Data in “Typ.” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not 

tested.
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.
3: See Figure 32-3: POR and POR Rearm with Slow Rising VDD.
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TABLE 32-8: OSCILLATOR PARAMETERS 

FIGURE 32-6: HFINTOSC AND MFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND 
TEMPERATURE 

Standard Operating Conditions (unless otherwise stated)

Param. 
No.

Sym. Characteristic
Freq.

Tolerance
Min. Typ.† Max. Units Conditions

OS08 HFOSC Internal Calibrated HFINTOSC 
Frequency(1)

±2% — 16.0 — MHz 3.2V, 25°C

OS08A MFOSC Internal Calibrated MFINTOSC 
Frequency(1)

±2% — 500 — kHz

OS09 LFOSC Internal LFINTOSC Frequency — — 31 — kHz -40°C  TA  +125°C

OS10* TIOSC ST HFINTOSC
Wake-up from Sleep Start-up Time

— — 3.2 8 s

MFINTOSC
Wake-up from Sleep Start-up Time

— — 24 35 s

* These parameters are characterized but not tested.
† Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not 

tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current
consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.
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TABLE 32-25: I2C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Param.
No.

Symbol Characteristic Min. Max. Units Conditions

SP100* THIGH Clock high time 100 kHz mode 4.0 — s Device must operate at a 
minimum of 1.5 MHz

400 kHz mode 0.6 — s Device must operate at a 
minimum of 10 MHz

SSP module 1.5 TCY — —

SP101* TLOW Clock low time 100 kHz mode 4.7 — s Device must operate at a 
minimum of 1.5 MHz

400 kHz mode 1.3 — s Device must operate at a 
minimum of 10 MHz

SSP module 1.5 TCY — —

SP102* TR SDA and SCL rise 
time

100 kHz mode — 1000 ns

400 kHz mode 20 + 0.1CB 300 ns CB is specified to be from 
10-400 pF 

SP103* TF SDA and SCL fall 
time

100 kHz mode — 250 ns

400 kHz mode 20 + 0.1CB 250 ns CB is specified to be from 
10-400 pF 

SP106* THD:DAT Data input hold time 100 kHz mode 0 — ns

400 kHz mode 0 0.9 s

SP107* TSU:DAT Data input setup 
time

100 kHz mode 250 — ns (Note 2)

400 kHz mode 100 — ns

SP109* TAA Output valid from 
clock

100 kHz mode — 3500 ns (Note 1)

400 kHz mode — — ns

SP110* TBUF Bus free time 100 kHz mode 4.7 — s Time the bus must be free 
before a new transmission 
can start

400 kHz mode 1.3 — s

SP111 CB Bus capacitive loading —  400 pF 

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region 
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but the 
requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not 
stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it 
must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the 
Standard mode I2C bus specification), before the SCL line is released. 
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