

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1704t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables

TABLE 1: 14/16-PIN ALLOCATION TABLE (PIC16(L)F1704)

I/O ⁽²⁾	PDIP/SOIC/SSOP	QFN	ADC	Reference	Comparator	Op Amp	DAC	Zero Cross	Timers	ССР	MWd	500	MSSP	EUSART	CLC	Interrupt	Pull-up	Basic
RA0	13	12	AN0	VREF-	C1IN+	_	DAC1OUT1	—	—		_	—	_	—	_	IOC	Y	ICSPDAT
RA1	12	11	AN1	VREF+	C1IN0- C2IN0-		—	—	_			_	—	_		IOC	Y	ICSPCLK
RA2	11	10	AN2	_	-	_	DAC1OUT2	ZCD	T0CKI ⁽¹⁾	_	-	COGIN ⁽¹⁾	_	Ι	_	INT ⁽¹⁾ IOC	Y	
RA3	4	3	—	—	_	—	—	_	—	_	_	—	_	_	_	IOC	Y	MCLR VPP
RA4	3	2	AN3	_	_	—	—	_	T1G ⁽¹⁾ SOSCO	_	—	_	_	_	_	IOC	Y	CLKOUT OSC2
RA5	2	1	-	—	-	—	—	—	T1CKI ⁽¹⁾ SOSCI	-	_	_	_	_	CLCIN3 ⁽¹⁾	IOC	Y	CLKIN OSC1
RC0	10	9	AN4	—	C2IN+	OPA1IN+	—	_	—	-	—	_	SCK ⁽¹⁾ SCL ⁽³⁾	_	-	IOC	Y	
RC1	9	8	AN5	_	C1IN1- C2IN1-	OPA1IN-	—	_	—	-	_	—	SDI ⁽¹⁾ SDA ⁽³⁾	_	CLCIN2 ⁽¹⁾	IOC	Y	_
RC2	8	7	AN6	—	C1IN2- C2IN2-	OPA1OUT	—	—	—	—	—	—	—	_	_	IOC	Y	_
RC3	7	6	AN7	—	C1IN3- C2IN3-	OPA2OUT	—	—	—	CCP2 ⁽¹⁾	_	—	<u>SS</u> (1)	—	CLCIN0 ⁽¹⁾	IOC	Y	_
RC4	6	5	_	_	_	OPA2IN-	_	_	_	_	_	_	_	CK ⁽¹⁾	CLCIN1 ⁽¹⁾	IOC	Y	_
RC5	5	4	_	_		OPA2IN+	_	_	—	CCP1 ⁽¹⁾		_	_	RX ^(1,3)		IOC	Y	_
Vdd	1	16	-	_	-	_	_	_	_	-	-	_	—	-	-	_	_	Vdd
Vss	14	13		—		_	—	—	-		_	—	—	—	-	—	—	Vss
	_	_	_	—	C10UT	_	—	_	—	CPP1	PWM3OUT	COGA	SDA ⁽³⁾	СК	CLC10UT	—	—	_
OUT ⁽²⁾	_	_		_	C2OUT				—	CPP2	PWM4OUT	COGB	SCL ⁽³⁾	DT ⁽³⁾	CLC2OUT	_	—	_
20.	—	—	—	—	_	_	_	—	—	_	_	COGC	SDO	TX	CLC3OUT	—	—	_
	—	—	—	—	—	—	—	—	—	—	—	COGD	SCK	—	—	—	—	—
Note 1	1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 12-1.																	

Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 12-1.

All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-3.
 These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

6.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

6.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

FIGURE 6-8: TWO-SPEED START-UP

6.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, Secondary Oscillator and RC).

FIGURE 6-9: FSCM BLOCK DIAGRAM

6.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 6-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

6.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

6.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

6.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note:	Due to the wide range of oscillator start-up
	times, the Fail-Safe circuit is not active
	during oscillator start-up (i.e., after exiting
	Reset or Sleep). After an appropriate
	amount of time, the user should check the
	Status bits in the OSCSTAT register to
	verify the oscillator start-up and that the
	system clock switchover has successfully
	completed.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
_	_	COGIE	ZCDIE	-	CLC3IE	CLC2IE	CLC1IE	
bit 7			•			•	bit 0	
Legend:								
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is :	set	'0' = Bit is clea	ared					
bit 7-6	Unimplemer	nted: Read as '0'						
bit 5	COGIE: CO	G Auto-Shutdow	n Interrupt Er	nable bit				
	1 = COG in	terrupt enabled						
	0 = COG in	terrupt disabled						
bit 4	ZCDIE: Zero	o-Cross Detectio	n Interrupt Er	nable bit				
	1 = ZCD int	errupt enabled						
	0 = ZCD int	errupt disabled						
bit 3	Unimplemer	nted: Read as '0'						
bit 2	CLC3IE: CL	C3 Interrupt Ena	able bit					
	1 = CLC3 ir	nterrupt enabled						
	0 = CLC3 ir	nterrupt disabled						
bit 1	CLC2IE: CL	C2 Interrupt Ena	able bit					
	1 = CLC2 ir	1 = CLC2 interrupt enabled						
	0 = CLC2 in	0 = CLC2 interrupt disabled						
bit 0	CLC1IE: CLC1 Interrupt Enable bit							
	1 = CLC1 interrupt enabled							
	0 = CLC1 in	iterrupt disabled						
Note:	Note: Bit PEIE of the INTCON register must be							

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

									_
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>				SCS<1:0>		77
STATUS	—	_	—	TO	PD	Z	DC	С	23
WDTCON	—	_		١	VDTPS<4:0	>		SWDTEN	100

 TABLE 9-3:
 SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4:	SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			FCMEN	IESO	CLKOUTEN	BOREN<1:0>			40
CONFIGI	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		F	OSC<2:0	>	49

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR ; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, ; stored in little endian format ; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH: ADDRL ; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM) ; BCF INTCON,GIE ; Disable ints so required sequences will execute properly ; Bank 3 BANKSEL PMADRH MOVF ADDRH,W ; Load initial address MOVWF PMADRH MOVF ADDRL,W MOVWF PMADRL LOW DATA_ADDR ; Load initial data address MOVLW MOVWF FSROL ; MOVLW HIGH DATA_ADDR ; Load initial data address MOVWF FSR0H ; PMCON1,CFGS ; Not configuration space BCF BSF PMCON1,WREN ; Enable writes PMCON1,LWLO ; Only Load Write Latches BSF LOOP MOVIW FSR0++ ; Load first data byte into lower MOVWF PMDATT. ; ; Load second data byte into upper MOVIW FSR0++ MOVWF PMDATH MOVF ; Check if lower bits of address are '00000' PMADRL,W ; Check if we're on the last of 32 addresses XORLW 0x1F ANDLW 0x1F BTFSC STATUS,Z ; Exit if last of 32 words, GOTO START_WRITE ; MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h Required Sequence MOVLW 0AAh MOVWF PMCON2 ; Write AAh BSF ; Set WR bit to begin write PMCON1,WR NOP ; NOP instructions are forced as processor ; loads program memory write latches NOP INCF PMADRL, F ; Still loading latches Increment address GOTO LOOP ; Write next latches START_WRITE BCF PMCON1,LWLO ; No more loading latches - Actually start Flash program ; memory write MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h Required Sequence MOVLW 0AAh ; MOVWF PMCON2 ; Write AAh BSF PMCON1,WR ; Set WR bit to begin write NOP ; NOP instructions are forced as processor writes ; all the program memory write latches simultaneously NOP ; to program memory. ; After NOPs, the processor ; stalls until the self-write process in complete ; after write processor continues with 3rd instruction PMCON1,WREN BCF ; Disable writes BSF INTCON,GIE ; Enable interrupts

11.3 PORTB Registers (PIC16(L)F1708 only)

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 11-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

11.3.1 DIRECTION CONTROL

The TRISB register (Register 11-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.3.2 OPEN-DRAIN CONTROL

The ODCONB register (Register 11-14) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.3.3 SLEW RATE CONTROL

The SLRCONB register (Register 11-15) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.3.4 INPUT THRESHOLD CONTROL

The INLVLB register (Register 11-16) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 32-4: I/O Ports for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.3.5 ANALOG CONTROL

The ANSELB register (Register 11-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog				
	mode after Reset. To use any pins as				
	digital general purpose or peripheral				
	inputs, the corresponding ANSEL bits				
	must be initialized to '0' by user software.				

11.3.6 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information. Analog input functions, such as ADC and Op Amp inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELB register. Digital output functions may continue to control the pin when it is in Analog mode.

REGISTER 11-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0		
ODB7	ODB6	ODB5	ODB4	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					

'1' = Bit is set	'0' = Bit is cleared
bit 7-4	ODB<7:4>: PORTB Open-Drain Enable bits
	For RB<7:4> pins, respectively
	1 = Port pin operates as open-drain drive (sink current only)
	0 = Port pin operates as standard push-pull drive (source and sink current)

bit 3-0 Unimplemented: Read as '0'

REGISTER 11-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
SLRB7	SLRB6	SLRB5	SLRB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	SLRB<7:4>: PORTB Slew Rate Enable bits
	For RB<7:4> pins, respectively
	1 = Port pin slew rate is limited
	0 = Port pin slews at maximum rate
bit 3-0	Unimplemented: Read as '0'

REGISTER 11-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	
INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	—	—	
bit 7 bit 0								

Legend:			
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
bit 7-4	INLVLB<7 For RB<7: 1 = ST inp 0 = TTL in	:4>: PORTB Input Level Se 4> pins, respectively ut used for PORT reads and put used for PORT reads ar	elect bits d interrupt-on-change nd interrupt-on-change

bit 3-0 **Unimplemented:** Read as '0'

19.1.5 CLCx SETUP STEPS

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 19-1).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- · Clear all TRIS bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxPOLy bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the associated PIE registers.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

19.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR registers will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · LCxON bit of the CLCxCON register
- · CLCxIE bit of the associated PIE registers
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the associated PIR registers, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

19.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the CLCxOUT bits in the individual CLCxCON registers.

19.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

19.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP2CON	—		DC2B	<1:0>		CCP2M<3:0>				
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	86	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89	
PR2	Timer2 Mo	dule Period	Register						256*	
T2CON	—		T2OUTPS<3:0> TMR2ON T2CKPS<1:0>						258	
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					256*	

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

27.4 Register Definitions: CCP Control

REGISTER 27-1: CCPxCON: CCPx CONTROL REGISTER

11.0	11.0						P/M/_0/0
0-0	0-0		rt/ VV-U/U	K/W-U/U	CCPxM<3:0>		
		DCXB	<1.02		CUFXI	//<3.0/	hit 0
DIL 7							Dit 0
Logond							
D - Doodoblo I	hit		ait		ontod hit roop	1 00 (0)	
				0 = 0 minipien			they Deest
	angeo	x = Bit is unkn	lown	-n/n = value a	I POR and BO	R/value at all t	other Reset
'1' = Bit is set		0° = Bit is clea	ared				
h # 7 C		tode Dood oo fe	_ '				
DIT 7-6	Unimplement)	C			
DIT 5-4	DCXB<1:0>:	PVVM Duty Cyc	cie Least Signi	ficant bits			
	Unused	<u>.</u>					
	Compare mod	<u>le:</u>					
	Unused						
	PWM mode: These bits are	e the two LSbs	of the PWM d	uty cycle. The e	eight MSbs are	found in CCPI	RxL.
bit 3-0	CCPxM<3:0>	: CCPx Mode	Select bits				
	11xx = PWM	mode					
	1011 = Comp	are mode: A	uto-conversion	Trigger (sets	CCPxIF bit),	starts ADC	conversion if
	1010 = Comp	are mode: gen	erate software	e interrupt only			
	1001 = Comp	are mode: clea	ar output on co	mpare match (set CCPxIF)		
	1000 = Comp	are mode: set	output on com	pare match (se	t CCPxIF)		
	0111 = Capt u	ire mode: ever	y 16th rising e	dge			
	0110 = Captu	ire mode: ever	y 4th rising edg	ge			
	0101 = Captu	ire mode: ever	y rising edge				
	0100 = Captu	ire mode: ever	y falling edge				
	0011 = Rese r	rved					
	0010 = Comp	are mode: tog	gle output on r	natch			
	0001 = Reser	rved					
	0000 = Captu	ire/Compare/P	WM off (resets	CCPx module)		

28.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

28.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

28.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

28.4.3 SDA AND SCL PINS

Selection of any l^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note 1:	Data is tied to output zero when an I^2C mode is enabled.
2:	Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPDATPPS registers. The SCL input is selected with the SSPCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

28.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 28-2: I²C BUS TERMS

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN
bit 7					1		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit				
	Asynchronous	<u>s mode</u> :					
	1 = Auto-bauc	timer overflov	ved				
	0 = Auto-bauc	d timer did not modo:	overflow				
	Don't care	<u>moue</u> .					
bit 6	RCIDL: Recei	ve Idle Flag bi	t				
	Asynchronous	s mode:					
	1 = Receiver i	is Idle					
	0 = Start bit ha	as been receiv	ed and the re	ceiver is receiv	ling		
	Don't care						
bit 5	Unimplement	ted: Read as '	0'				
bit 4	SCKP: Synch	ronous Clock F	Polarity Select	t bit			
	Asynchronous	<u>s mode</u> :					
	1 = Transmit i 0 = Transmit r	nverted data to non-inverted da	o the TX/CK p ata to the TX/	in CK pin			
	Synchronous	mode:		11			
	1 = Data is clo0 = Data is clo	ocked on rising	edge of the c	CIOCK			
bit 3	BRG16: 16-bi	t Baud Rate G	enerator bit				
	1 = 16-bit Ba	ud Rate Gener	ator is used				
	0 = 8-bit Bau	d Rate Genera	tor is used				
bit 2	Unimplement	ted: Read as '	0'				
bit 1	WUE: Wake-u	up Enable bit					
	Asynchronous	<u>s mode</u> :	C. III	N			
	1 = Receiver will autom	is waiting for a atically clear at	falling edge.	No character v	will be received,	byte RCIF will	be set. WUE
	0 = Receiver i	is operating no	rmally				
	Synchronous	mode:					
	Don't care						
bit 0	ABDEN: Auto	-Baud Detect I	Enable bit				
	Asynchronous	s mode:					
	1 = Auto-Bau	d Detect mode	e is enabled (o	clears when au	to-baud is comp	lete)	
	<u>Synchronous</u>	mode:					
	Don't care						

REGISTER 29-3: BAUD1CON: BAUD RATE CONTROL REGISTER

PIC16LF1704/8			Standard Operating Conditions (unless otherwise stated) Low-Power Sleep Mode							
PIC16F1704/8			Low-Po	Low-Power Sleep Mode, VREGPM = 1						
Param.	Device Characteristics	Min		Max.	Max.			Conditions		
No.	Device Characteristics	wiin.	тур.т	+85°C	+125°C	Units	Vdd	Note		
D030		—	250	—	_	μA	1.8	ADC Current (Note 3),		
			250	—	—	μA	3.0	conversion in progress		
D030		—	280	_	_	μA	2.3	ADC Current (Note 3),		
		—	280	_	_	μA	3.0	conversion in progress		
		—	280	—	_	μA	5.0			
D031		—	250	650	_	μA	3.0	Op Amp (High-power)		
D031		—	250	650	_	μA	3.0	Op Amp (High-power)		
			350	850	—	μA	5.0]		
D032		—	250	600	_	μA	1.8	Comparator, CxSP = 1		
		—	300	650	_	μA	3.0			
D032		—	280	600		μA	2.3	Comparator, CxSP = 1		
		—	300	650	_	μA	3.0	VREGPM = 0		
			310	650		μA	5.0			

TABLE 32-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC oscillator source is FRC.

FIGURE 32-20: SPI SLAVE MODE TIMING (CKE = 1)

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-26: IDD Maximum, HFINTOSC Mode. PIC16F1704/8 Only.

FIGURE 33-27: IDD Typical, HS Oscillator, 25°C. PIC16LF1704/8 Only.

FIGURE 33-28: IDD Maximum, HS Oscillator. PIC16LF1704/8 Only.

FIGURE 33-29: IDD Typical, HS Oscillator, 25°C. PIC16F1704/8 Only.

FIGURE 33-30: IDD Maximum, HS Oscillator. PIC16F1704/8 Only.

16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

			•		
	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		16		
Pitch	e	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E		4.00 BSC		
Exposed Pad Width	E2	2.50	2.65	2.80	
Overall Length	D		4.00 BSC		
Exposed Pad Length	D2	2.50	2.65	2.80	
Contact Width	b	0.25	0.30	0.35	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-127B

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

L L	MILLIMETERS				
Dimension Lim	its	MIN	NOM	MAX	
Number of Pins	N		20		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1	7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.20	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2