E·XFL

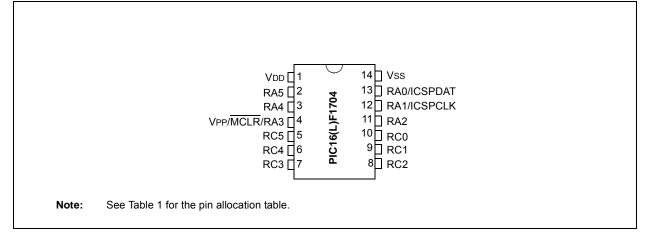
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

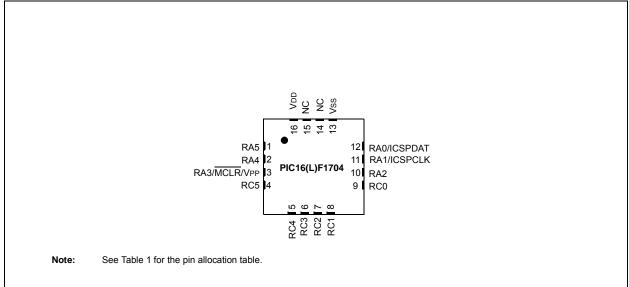
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1708-i-p

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

3.4.5 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-9 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	0-31	•	•	•	•						
x00h or x80h	INDF0		this location ical register)		XXXX XXXX	uuuu uuuu					
x01h or x81h	INDF1		this location ical register)		nts of FSR1H	/FSR1L to a	ddress data r	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program Co	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	—	_	-	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Dat	ta Memory A	ddress 0 Lo	w Pointer					0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Dat	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Dat	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Dat	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	_	_	_	BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Re	Working Register								uuuu uuuu
x0Ahor x8Ah	PCLATH	_	Write Buffer		-000 0000	-000 0000					
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-9: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

4.6 Device ID and Revision ID

The 14-bit device ID word is located at 8006h and the 14-bit revision ID is located at 8005h. These locations are read-only and cannot be erased or modified. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

4.7 Register Definitions: Device and Revision

REGISTER 4-3: DEVID: DEVICE ID REGISTER

	R	R	R	R	R	R
			DEV<	:13:8>		
	bit 13					bit 8
D	D	D	D	D	D	R
Ν	ĸ		<7:0>	N	Ν	N
						bit 0
-	R	bit 13	bit 13 R R R	DEV<	DEV<13:8> bit 13	DEV<13:8> bit 13

Legend:

R = Readable bit

'1' = Bit is set

'0' = Bit is cleared

bit 13-0 DEV<13:0>: Device ID bits

Device	DEVID<13:0> Values									
PIC16F1704	11 0000 0100 0011 (3043h)									
PIC16LF1704	11 0000 0100 0101 (3045h)									
PIC16F1708	11 0000 0100 0010 (3042h)									
PIC16LF1708	11 0000 0100 0100 (3044h)									

REGISTER 4-4: REVID: REVISION ID REGISTER

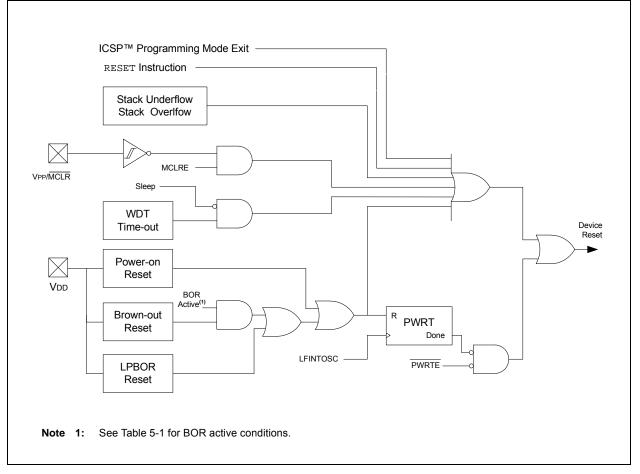
	R	R	R	R	R	R
			REV<	:13:8>		
	bit 13					bit 8
R	R	R	R	R	R	R
		REV	<7:0>			
						bit 0
	R	bit 13	bit 13	REV<	R R R R R R	REV<13:8> bit 13

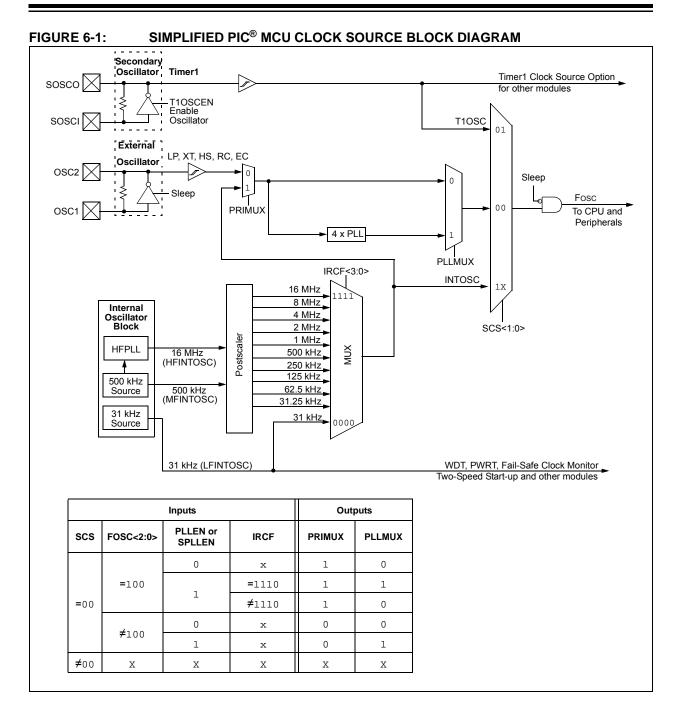
Legend:

R = Readable bit '1' = Bit is set '0' = Bit is cleared

bit 13-0 **REV<13:0>:** Revision ID bits

5.0 RESETS


There are multiple ways to reset this device:


- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Low-Power Brown-Out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- · Programming mode exit

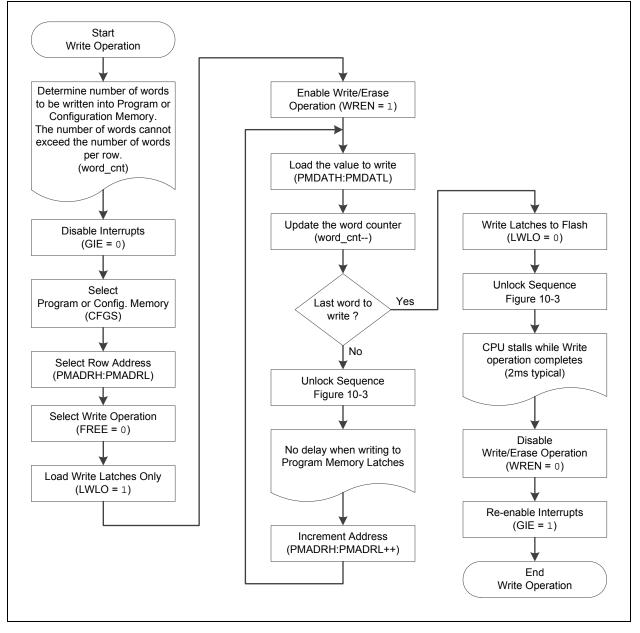
To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

7.6 Register Definitions: Interrupt Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		atorrupt Epoble	hit				
		nterrupt Enable all active interru					
	1 = Disables a 0 = Disables a		ipis				
bit 6	PEIE: Periphe	eral Interrupt E	nable bit				
		all active periph		3			
		all peripheral ir	-				
bit 5		er0 Overflow Ir		e bit			
		he Timer0 inter the Timer0 inte					
bit 4		ternal Interrupt	•				
DIL 4		he INT externa					
		the INT externa					
bit 3	IOCIE: Interru	upt-on-Change	Enable bit				
		he interrupt-on					
	0 = Disables f	the interrupt-or	i-change				
bit 2		er0 Overflow In		it			
		jister has overf					
	-	gister did not ov					
bit 1		ternal Interrupt	•				
		external interrup		ır			
bit 0		pt-on-Change					
bit 0		east one of the			anged state		
		he interrupt-on-					
Note 1: The		is road only a	nd cleared wh	on all the inter	rupt-on-change	flags in the IO(NE register


REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

R/W-0/	0 R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1G	IF ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7				1	I	1	bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is u	unchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7		Timer1 Gate Inte	errupt Flag bit				
	1 = Interrupt						
bit 6		t is not pending g-to-Digital Con	wortor (ADC)	Interrupt Elea k	sit		
DILO	1 = Interrupt	• •		Interrupt Flag i	JIL		
		t is not pending					
bit 5	RCIF: USAF	RT Receive Inter	rrupt Flag bit				
	1 = Interrupt						
		t is not pending					
bit 4		RT Transmit Inte	rrupt Flag bit				
	1 = Interrupt 0 = Interrupt	t is penaing					
bit 3	-	nchronous Seria	al Port (MSSP) Interrupt Flag	bit		
	1 = Interrupt		(,			
	0 = Interrupt	t is not pending					
bit 2		CP1 Interrupt Fla	ng bit				
	1 = Interrupt						
bit 1	•	t is not pending ner2 to PR2 Inte	rrunt Eloa bit				
DILI	1 = Interrupt		Filling bit				
	•	t is not pending					
bit 0	•	ner1 Overflow Ir	nterrupt Flag	oit			
	1 = Interrupt						
	0 = Interrup	t is not pending					
Note:	Interrupt flag bits	are set when ar	interrupt				
	condition occurs,	regardless of th	e state of				
	its corresponding Enable bit, GIE,						
	User software	should ens	•				
	appropriate inter	rupt flag bits a					
	prior to enabling	an interrupt.					

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

FIGURE 10-6: FLASH PROGRAM MEMORY WRITE FLOWCHART

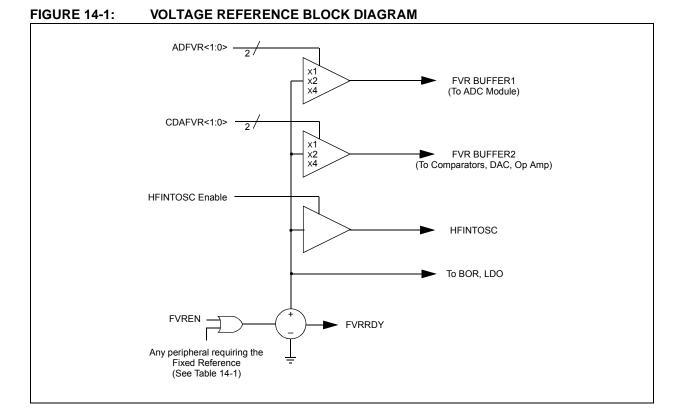
14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers


The output of the FVR supplied to the ADC, Comparators, and DAC is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 20.0 "Analog-to-Digital Converter (ADC) Module"** for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 22.0 "8-Bit Digital-to-Analog Converter (DAC1) Module" and Section 16.0 "Comparator Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See Figure 33-74: Wake from Sleep, VREGPM = 0.

© 2013-2015 Microchip Technology Inc.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
	TRIGSE	EL<3:0> ⁽¹⁾		_	—	_	_
bit 7						· · · · · · · · · · · · · · · · · · ·	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is se	•	'0' = Bit is cle	ared				
bit 7-4	TRIGSEL<3	:0>: Auto-Conv	ersion Triager	Selection bits(1)		
		auto-conversior					
	0001 = CC		r ingger eereet	00			
	0010 = CC	P2					
	0011 = Time	er0 – T0 overflo	_{DW} (2)				
		er1 – T1 overflo					
	0101 = Time	er2 – T2_match					
		nparator C1 – C					
	0111 = Con	nparator C2 – C	2OUT_sync				
		C1 – LC1_out					
		C2 – LC2_out					
		C3 – LC3_out					
	1011 = Res						
		er4 – T4_match					
		er6 – T6_match	ו				
	1110 = Res						
	1111 = Res						
bit 3-0	Unimpleme	nted: Read as	0'				
Note 1: ⊤	his is a rising ed	dge sensitive in	out for all sour	ces.			

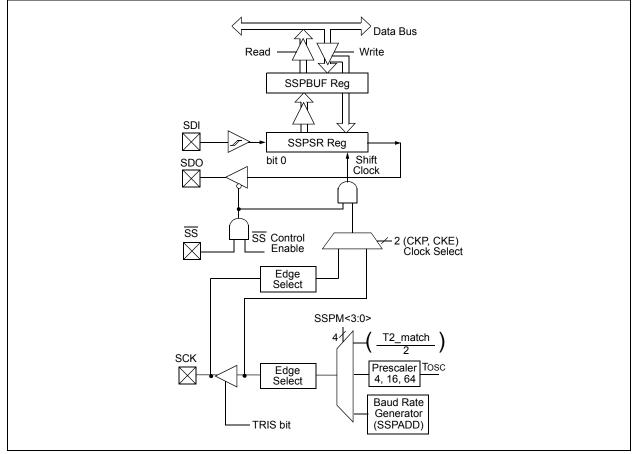
REGISTER 20-3: ADCON2: ADC CONTROL REGISTER 2

- This is a rising edge sensitive input for all sources. Note 1:
 - 2: Signal also sets its corresponding interrupt flag.

28.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

28.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:


- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

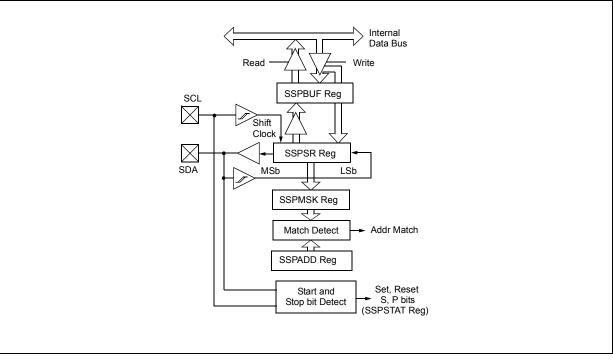

- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 28-1 is a block diagram of the SPI interface module.

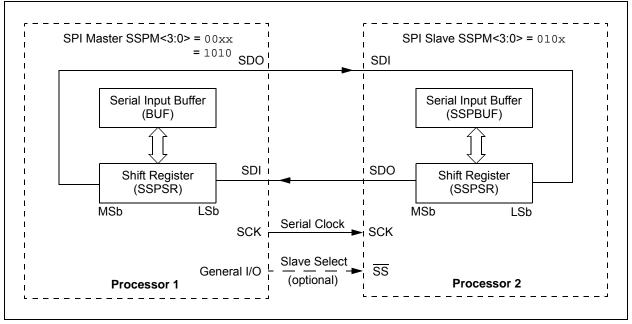


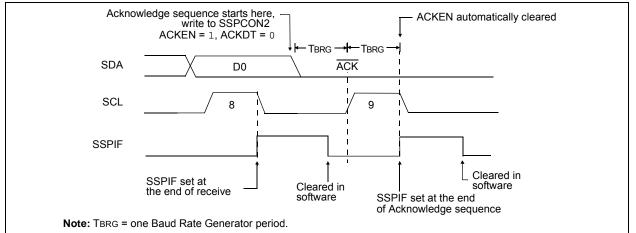
FIGURE 28-5: SPI MASTER/SLAVE CONNECTION

28.6.8 ACKNOWLEDGE SEQUENCE TIMING

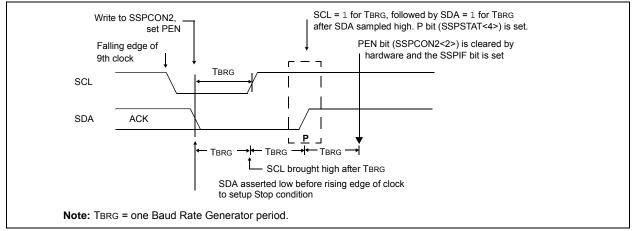
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 28-30).

28.6.8.1 WCOL Status Flag

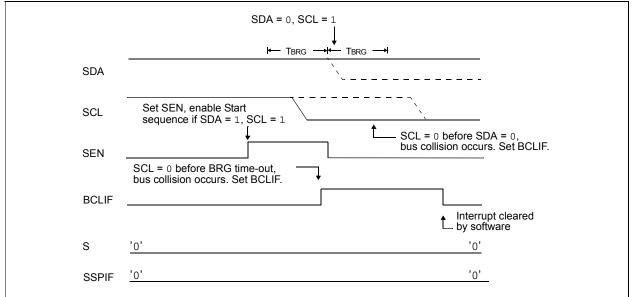
If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

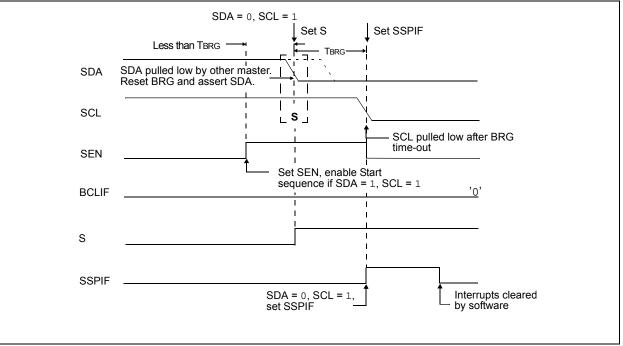

28.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 28-31).


28.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).


FIGURE 28-30: ACKNOWLEDGE SEQUENCE WAVEFORM



					SYNC	C = 0, BRGH	l = 1, BRC	616 = 0				
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Fosc	: = 3.686	4 MHz	Fos	c = 1.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	—	_		_		_	_	300	0.16	207
1200	—	_	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	_	—		_	115.2k	0.00	1	_	_	—

TABLE 29-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

					SYNC	C = 0, BRGH	l = 0, BRC	616 = 1				
BAUD	Foso	: = 32.00	0 MHz	Fosc	= 20.00	0 MHz	Fosc	: = 18.43	2 MHz	Fosc	= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 1				
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Fosc	: = 3.686	4 MHz	Fos	c = 1.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_	_	—	_	_	115.2k	0.00	1	—	_	_

TABLE 29-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
ANSELA	-	—		ANSA4		ANSA2	ANSA1	ANSA0	122			
ANSELB ⁽¹⁾	_	_	ANSB5	ANSB4		_	_	_	128			
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5(2)	ANSC4 ⁽²⁾	ANSC3	ANSC2	ANSC1	ANSC0	133			
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	336			
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85			
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	86			
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89			
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	335			
RxyPPS	_	_	_		ſ	RxyPPS<4:0	>		140			
SP1BRGL				BRG<	7:0>				337			
SP1BRGH				BRG<	15:8>				337			
TRISA	_	_	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	121			
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	_	_	127			
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISA0	132			
TX1REG			EUS	ART Transm	it Data Regis	ster			326*			
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	334			

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission. * Page provides register information.

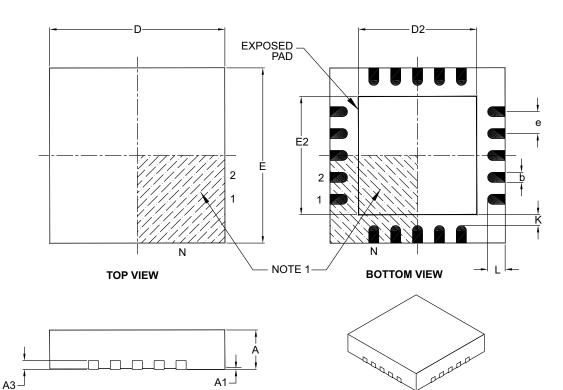
Note 1: PIC16(L)F1708 only.

2: PIC16(L)F1704 only.

3: Unimplemented, read as '1'.

DECFSZ	Decrement f, Skip if 0		
Syntax:	[label] DECFSZ f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0		
Status Affected:	None		
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.		

GOTO	Unconditional Branch			
Syntax:	[<i>label</i>] GOTO k			
Operands:	$0 \le k \le 2047$			
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>			
Status Affected:	None			
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.			


INCFSZ	Increment f, Skip if 0			
Syntax:	[label] INCFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.			

IORLW	Inclusive OR literal with W			
Syntax:	[<i>label</i>] IORLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .OR. $k \rightarrow$ (W)			
Status Affected:	Z			
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.			

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	20		
Pitch	е	0.50 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	2.60	2.70	2.80
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.60	2.70	2.80
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B