Microchip Technology - PIC16F1708-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1708-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC16(L)F1708 PIN OUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/VREF-/C1IN+/	RA0	TTL/ST	CMOS	General purpose I/O.
DAC1OUT/ICSPDAT	AN0	AN		ADC Channel 0 input.
	VREF-	AN		ADC Negative Voltage Reference input.
	C1IN+	AN	_	Comparator C1 positive input.
	DAC10UT		AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/C2IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
ICSPCLK	AN1	AN	—	ADC Channel 1 input.
	VREF+	AN	—	ADC Voltage Reference input.
	C1IN0-	AN	—	Comparator C2 negative input.
	C2IN0-	AN		Comparator C3 negative input.
	ICSPCLK	ST	—	Serial Programming Clock.
RA2/AN2/DAC1OUT2/ZCD/	RA2	TTL/ST	CMOS	General purpose I/O.
T0CKI ⁽¹⁾ /COGIN ⁽¹⁾ /INT ⁽¹⁾	AN2	AN		ADC Channel 2 input.
	DAC10UT2	_	AN	Digital-to-Analog Converter output.
	ZCD	_	AN	Zero-Cross Detection Current Source/Sink.
	T0CKI	ST	_	Timer0 clock input.
	COGIN	ST	CMOS	Complementary Output Generator input.
	INT	ST		External interrupt.
RA3/MCLR/VPP	RA3	TTL/ST	CMOS	General purpose I/O.
	MCLR	ST	_	Master Clear with internal pull-up.
	VPP	ΗV		Programming voltage.
RA4/AN3/T1G ⁽¹⁾ /SOSCO/	RA4	TTL/ST	CMOS	General purpose I/O.
OSC2/CLKOUT	AN3	AN		ADC Channel 3 input.
	T1G	ST		Timer1 gate input.
	SOSCO	XTAL	XTAL	Secondary Oscillator Connection.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
RA5/T1CKI/SOSCI/	RA5	TTL/ST	CMOS	General purpose I/O.
CLCIN3 ⁽¹⁾ /OSC1/CLKIN	T1CKI	ST	_	Timer1 clock input.
	SOSCI	XTAL	XTAL	Secondary Oscillator Connection.
	CLCIN3	ST	_	Configurable Logic Cell source input.
	OSC1		XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	ST	—	External clock input (EC mode).
RB4/AN10/OPA1IN-/SCK ⁽¹⁾ /	RB4	TTL/ST	CMOS	General purpose I/O.
SDA ⁽³⁾	AN10	AN	—	ADC Channel 10 input.
	OPA1IN-	AN	—	Operational Amplifier 1 inverting input.
	SCK	ST	CMOS	SPI clock.
	SDA	l ² C	OD	I ² C data input/output.
legend: AN = Analog input or c	utout CMOS	= CMOS	compatil	OD = Open Drain

Legend:AN = Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levelsI²C= Schmitt Trigger input with I²CHV = High VoltageXTAL= Crystal levelsI= Schmitt Trigger input with I²C

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 12-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-3.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

Note 1: The method to access Flash memory through the PMCON registers is described in Section 10.0 "Flash Program Memory Control".

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device	Device Program Memory Space (Words)		High-Endurance Flash Memory Address Range ⁽¹⁾	
PIC16(L)F1704/8	4,096	0FFFh	0F80h - 0FFFh	

Note 1: High-endurance Flash applies to the low byte of each address in the range.

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1704/8 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	c 29										
E8Ch											
E8Fh	_	Unimplement	Unimplemented								
E90h	RA0PPS	_	—	_			RA0PPS<4:0	>		0 0000	u uuuu
E91h	RA1PPS	_	_	_			RA1PPS<4:0	>		0 0000	u uuuu
E92h	RA2PPS	_	_	_			RA2PPS<4:0	>		0 0000	u uuuu
E93h	-	Unimplement	ted							—	—
E94h	RA4PPS	—	_	_			RA4PPS<4:0	>		0 0000	u uuuu
E95h	RA5PPS	—	_	-			RA5PPS<4:0	>		0 0000	u uuuu
E96h	-	Unimplement	ted							—	—
E97h	_	Unimplement	Unimplemented							—	—
E98h		Unimplement	Unimplemented								_
E99h	_	Unimplement	Unimplemented								—
E9Ah	_	Unimplement	Unimplemented								—
E9Bh	—	Unimplement	ted							—	—
E9Ch	RB4PPS ⁽³⁾	—	—	_			RB4PPS<4:0	>		0 0000	u uuuu
E9Dh	RB5PPS ⁽³⁾	_	_	_			RB5PPS<4:0	>		0 0000	u uuuu
E9Eh	RB6PPS ⁽⁴⁾	—	—	_			RB6PPS<4:0	>		0 0000	u uuuu
E9Fh	RB7PPS ⁽³⁾	_	_	_			RB7PPS<4:0	>		0 0000	u uuuu
EA0h	RC0PPS	_	_	_			RC0PPS<4:0	>		0 0000	u uuuu
EA1h	RC1PPS	_	_	_			RC1PPS<4:0	>		0 0000	u uuuu
EA2h	RC2PPS	_	_	_			RC2PPS<4:0	>		0 0000	u uuuu
EA3h	RC3PPS	_	_	_			RC3PPS<4:0	>		0 0000	u uuuu
EA4h	RC4PPS	_	_	_			RC4PPS<4:0	>		0 0000	u uuuu
EA5h	RC5PPS	_	_	_	— RC5PPS<4:0>					0 0000	u uuuu
EA6h	RC6PPS ⁽⁴⁾	_	_	-	- RC6PPS<4:0>					0 0000	u uuuu
EA7h	RC7PPS ⁽⁴⁾	_	_	_	– RC7PPS<4:0>						u uuuu
EA8h											
 EEFh	_	Unimplement	ted							_	_

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

PIC16(L)F1704 only. 2:

3:

PIC16(L)F1708 only. Unimplemented on PIC16LF1704/8. 4:

6.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The postscaled output of the 16 MHz HFINTOSC, 500 kHz MFINTOSC, and 31 kHz LFINTOSC connect to a multiplexer (see Figure 6-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 32 MHz (requires 4x PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<3:0> bits
	of the OSCCON register are set to '0111'
	and the frequency selection is set to
	500 kHz. The user can modify the IRCF
	bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

6.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
 - Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the SPLLEN option will not be available.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

6.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

6.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

FIGURE 6-8: TWO-SPEED START-UP

6.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, Secondary Oscillator and RC).

FIGURE 6-9: FSCM BLOCK DIAGRAM

6.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 6-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

6.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

6.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

6.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note:	Due to the wide range of oscillator start-up
	times, the Fail-Safe circuit is not active
	during oscillator start-up (i.e., after exiting
	Reset or Sleep). After an appropriate
	amount of time, the user should check the
	Status bits in the OSCSTAT register to
	verify the oscillator start-up and that the
	system clock switchover has successfully
	completed.

9.6 Register Definitions: Watchdog Control

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_				WDTPS<4:0>(1)		SWDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-m/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as ')'				
bit 5-1	WDTPS<4:0>	Watchdog Tir	mer Period S	elect bits ⁽¹⁾			
	Bit Value = P	Prescale Rate					
	11111 = Res	served. Results	s in minimum	interval (1:32)			
	•						
	•						
	10011 = Res	served. Results	s in minimum	interval (1:32)			
	10010 = 1 :8	388608 (2 ²³) (I	nterval 256s	nominal)			
	10001 = 1:4	194304 (2 ²²) (I	nterval 128s	nominal)			
	10000 = 1:2	097152 (2 ²¹) (I	nterval 64s n	ominal)			
	01111 = 1:1	048576 (2 ²⁰) (I	nterval 32s n	ominal)			
	01110 = 1:5	24288 (2 ¹⁹) (In	terval 16s no	minal)			
	01101 = 12	$31072 (2^{10}) (10)$	terval as non	ninal)			
	01011 = 1.6	5536 (Interval	2s nominal)	Reset value)			
	01010 = 1:3	2768 (Interval	1s nominal)				
	01001 = 1:1	6384 (Interval	512 ms nomii	nal)			
	01000 = 1:8	192 (Interval 2	56 ms nomina	al)			
	00111 = 1:4	096 (Interval 12	28 ms nomina	al)			
	00110 = 1:2	048 (Interval 64	4 ms nominal)			
	00101 = 1:1	024 (Interval 32	2 ms nominal)			
	00100 - 1.3	56 (Interval 8 n	ns nominal)				
	00011 = 1.2 00010 = 1.1	28 (Interval 4 n	ns nominal)				
	00001 = 1:6	4 (Interval 2 m	s nominal)				
	00000 = 1:3	2 (Interval 1 m	s nominal)				
bit 0	SWDTEN: So	oftware Enable/	Disable for W	/atchdog Timer	bit		
	<u>If WDTE<1:0></u>	> = <u>1x</u> :					
	This bit is igno	ored.					
	It WDTE<1:0>	<u>> = 01</u> :					
		urned off					
	This bit is igno	ored.					

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	122
INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	124
LATA	_	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	122
ODCONA	—	—	ODA5	ODA4	_	ODA2	ODA1	ODA0	123
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			244
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	121
SLRCONA	—	—	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	124
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	121
WPUA	_		WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	123

TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.**Note 1:**Unimplemented, read as '1'.

TABLE 11-3: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>		40
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		WDTE<1:0> FOSC<2:0>			49

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
CxINTP	CxINTN		CxPCH<2:0>			CxNCH<2:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	CxINTP: Con 1 = The CxIF 0 = No intern	nparator Interru interrupt flag v upt flag will be	ipt on Positive will be set upo set on a positi	Going Edge E n a positive goi ve going edge	nable bits ing edge of the of the CxOUT	CxOUT bit bit			
bit 6	CxINTN: Comparator Interrupt on Negative Going Edge Enable bits 1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative going edge of the CxOUT bit								
bit 5-3	CxPCH<2:0>: Comparator Positive Input Channel Select bits 111 = CxVP connects to AGND 110 = CxVP connects to FVR Buffer 2 101 = CxVP connects to VDAC 100 = CxVP unconnected, input floating 011 = CxVP unconnected, input floating 010 = CxVP unconnected, input floating 001 = CxVN unconnected, input floating 001 = CxVN unconnected, input floating 000 = CxVP connects to CxIN+ pin								
bit 2-0	CxNCH<2:0> 111 = CxVN 110 = CxVN 101 = CxVN 100 = CxVN 011 = CxVN 010 = CxVN 001 = CxVN 000 = CxVN	Comparator I connects to AC connects to FV unconnected, i unconnected, i connects to Cx connects to Cx connects to Cx connects to Cx	Negative Input GND (R Buffer 2 nput floating nput floating IN3- pin IN2- pin IN2- pin IN1- pin IN0- pin	Channel Selec	ct bits				

REGISTER 16-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

17.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 17-4.

EQUATION 17-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 17-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

17.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

17.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

17.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

FIGURE 18-10: HALF-BRIDGE MODE COG OPERATION WITH CCP1 AND PHASE DELAY

FIGURE 18-11: PUSH-PULL MODE COG OPERATION WITH CCP1

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
	GxRIS6	GxRIS5	GxRIS4	GxRIS3	GxRIS2	GxRIS1	GxRIS0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on condit	ion		
bit 7	Unimplemen	ted: Read as '	0'					
bit 6	GxRIS6: COO	Gx Rising Even	t Input Sourc	e 6 Enable bit				
	1 = PWM3 or	utput is enable	d as a rising e	event input				
		as no effect on	the rising eve	ent				
DIT 5	GxRIS5: COGx Rising Event Input Source 5 Enable bit							
	1 = CCP2 ou 0 = CCP2 ou	itput is enabled	ect on the risi	ng event				
bit 4 GxRIS4: COGx Rising Event Input Source 4 Enable bit 1 = CCP1 is enabled as a rising event input 0 = CCP1 has no effect on the rising event								
bit 3 GxRIS3: COGx Rising Event Input Source 3 Enable bit								
	1 = CLC1 out	tput is enabled	as a rising ev	vent input				
hit 2		Lput has no end	t Input Source	ng event				
DIL Z	1 = Compara	3x Rising Even	enabled as a	rising event in	out			
	0 = Compara	ator 2 output is	is no effect or	the rising event in	nt			
bit 1	GxRIS1: COO	Gx Rising Even	t Input Sourc	e 1 Enable bit				
	1 = Compara	ator 1 output is	enabled as a	rising event in	out			
			is no effect of	i the fising eve	nt			
DIT U		SX RISING EVEN		e U Enable bit	led ee rising ev	ant input		
	1 = Pin select 0 = Pin select	ted with COGX	PPS control I	has no effect of	neu as rising even	en input nt		

REGISTER 18-3: COGxRIS: COG RISING EVENT INPUT SELECTION REGISTER

PIC16(L)F1704/8 S. RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

28.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 28-30).

28.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

28.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 28-31).

28.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 28-30: ACKNOWLEDGE SEQUENCE WAVEFORM

29.3 Register Definitions: EUSART Control

REGISTER 29-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7						<u> </u>	bit 0
							,
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronous Don't care Synchronous 1 = Master r 0 = Slave m	Source Select <u>s mode</u> : <u>mode</u> : node (clock ge ode (clock fron	bit nerated intern	ally from BRG)		
bit 6	 0 = Slave mode (clock from external source) TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 						
bit 5	TXEN: Transmit Enable bit ⁽¹⁾ 1 = Transmit enabled 0 = Transmit disabled						
bit 4	SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode						
bit 3	bit 3 SENDB: Send Break Character bit <u>Asynchronous mode</u> : 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed <u>Synchronous mode</u> : Don't care						
bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode							
bit 1	it 1 TRMT: Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full						
bit 0	bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.						
Note 1: SR	EN/CREN over	rides TXEN in	Sync mode.				

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	
ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	
bit 7					1		bit 0	
Legend:								
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese					
'1' = Bit is set		'0' = Bit is cleared						
bit 7 ABDOVF: Auto-Baud Detect Overflow bit								
	Asynchronous	<u>s mode</u> :						
	1 = Auto-bauc	timer overflov	ved					
	0 = Auto-bauc	d timer did not modo:	overflow					
	Don't care	<u>moue</u> .						
bit 6	RCIDL: Recei	ve Idle Flag bi	t					
	Asynchronous	s mode:						
	1 = Receiver i	is Idle						
	0 = Start bit ha	as been receiv	ed and the re	ceiver is receiv	ling			
	Don't care							
bit 5	Unimplemented: Read as '0'							
bit 4	SCKP: Synchronous Clock Polarity Select bit							
	Asynchronous	<u>s mode</u> :						
	 1 = Transmit inverted data to the TX/CK pin 0 = Transmit non-inverted data to the TX/CK pin 							
	Synchronous	mode:		11				
	 1 = Data is clocked on rising edge of the clock 0 = Data is clocked on falling edge of the clock 							
bit 3	BRG16: 16-bi	t Baud Rate G	enerator bit					
	1 = 16-bit Ba	ud Rate Gener	ator is used					
	0 = 8-bit Bau	d Rate Genera	tor is used					
bit 2	Unimplement	ted: Read as '	0'					
bit 1	WUE: Wake-u	up Enable bit						
	Asynchronous	<u>s mode</u> :	C. III	N				
	1 = Receiver will autom	r is waiting for a falling edge. No character will be received, byte RCIF will be set. WUE						
	0 = Receiver i	Receiver is operating normally						
Synchronous mode:								
	Don't care							
bit 0	ABDEN: Auto	-Baud Detect I	Enable bit					
	Asynchronous	s mode:						
	1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete)							
	<u>Synchronous</u>	mode:						
	Don't care							

REGISTER 29-3: BAUD1CON: BAUD RATE CONTROL REGISTER

LSLF	Logical Left Shift	
Syntax:	[<i>label</i>]LSLF f{,d}	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	$(f<7>) \rightarrow C$ $(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$	
Status Affected:	C, Z	
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.	
	C ← register f ← 0	

LSRF	Logical Right Shift
Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

0→	register f	→ C

MOVF	Move f	
Syntax:	[<i>label</i>] MOVF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	$(f) \rightarrow (dest)$	
Status Affected:	Z	
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.	
Words:	1	
Cycles:	1	
Example:	MOVF FSR, 0	
	After Instruction W = value in FSR register Z = 1	

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-61: Brown-out Reset Voltage, Low Trip Point (BORV = 1). PIC16LF1704/8 Only.

FIGURE 33-62: Brown-out Reset Hysteresis, Low Trip Point (BORV = 1). PIC16LF1704/8 Only.

FIGURE 33-63: Brown-out Reset Voltage, High Trip Point (BORV = 1). PIC16F1704/8 Only.

FIGURE 33-64: Brown-out Reset Hysteresis, Low Trip Point (BORV = 1). PIC16F1704/8 Only.

FIGURE 33-65: Brown-out Reset Voltage, High Trip Point (BORV = 0).

FIGURE 33-66: Brown-out Reset Hysteresis, High Trip Point (BORV = 0).

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-73: POR Rearm Voltage, Normal Power Mode. PIC16LF1704/8 Only.

FIGURE 33-74: Wake from Sleep, VREGPM = 0.

VREGPM = 1.

FIGURE 33-76: FVR Stabilization Period. PIC16LF1704/8 Only.

FIGURE 33-77:ADC 10-Bit Mode,Single-Ended DNL, VDD = 3.0V, TAD = 1 us, $25^{\circ}C$.

FIGURE 33-78: ADC 10-Bit Mode, Single-Ended DNL, VDD = 3.0V, TAD = 4 us, $25^{\circ}C$.