

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1708t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and

FIGURE 2-1: CORE BLOCK DIAGRAM

Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 6-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

6.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended, unless either FSCM or Two-Speed Start-Up are enabled. In this case, code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 6.4 "Two-Speed Clock Start-up Mode"**).

IGURE 6-7:	INTERNAL OSCILLATOR SWITCH TIMING
MUNICISIO/ MUNICISIO HFINTOSC/ MUNICISIO LFINTOSC	LEINTOGO (FBCM and WDY disables d)
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
HEINTOSCI HEINTOSCI MEINTOSCI LFINTOSC	
IRCF <3:0>	≠ 0 X = 0
System Clock	
CHINTOSC	19970302899970300 1997030289993 to 7007 a service fito service 2007931 19970300 to 1007 a service fito service service fito service service fito service servi
HERRESSO MEDNYCER:	
880,8 ×363×	2-5-X X X
System Clock	
Noth: See	Table 6-1 for more information.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 or PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	are are	set,
	regardless	of the		state	of	any	other
	enable bits						

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST		
Change INTOSC divider (IRCF bits)	Unaffected		

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION (PIC16(L)F1704)

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u
	—	—			xxxPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all						R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on periph	eral	
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	xxxPPS<4:0>	>: Peripheral xx	x Input Selec	tion bits			
	11xxx = Res	erved. Do not u	ise.				
	1011 D						
	1011x = Res	erved. Do not l	ise.				
	10101 = Peri	pheral input is i					
	10100 = Peri	pheral input is i					
	10011 - Peri	pheral input is i					
	10010 - Peli	pheral input is i					
	10000 = Peri	pheral input is I	RC0				
	01xxx = Res	erved. Do not ι	ise.				
	0011x = Res	erved. Do not u	ise.				
	00101 = Peri	pheral input is	RA5				
	00100 = Peri	pheral input is	RA4				
	00011 = Peri	, pheral input is l	RA3				
	00010 = Peri	pheral input is	RA2				
	00001 = Peri	pheral input is	RA1				
	00000 = Peri	pheral input is	RA0				

FIGURE 18-1: EXAMPLE OF FULL-BRIDGE APPLICATION

DS40001715D-page 170

19.6 Register Definitions: CLC Control

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
LCxEN	—	LCxOUT	LCxINTP	LCxINTN	LCxMODE<2:0>			
bit 7							bit 0	
Legend:								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	LCxEN: Conf	igurable Logic	Cell Enable b	it				
	1 = Configura	able logic cell i	s enabled and	I mixing input s	ignals			
		able logic cell is	s disabled and	d has logic zero	output			
bit 6	Unimplemen	ted: Read as '	0'					
bit 5	LCxOUT: Cor	nfigurable Logi	c Cell Data Ou	utput bit				
	Read-only: log	gic cell output	data, after LC	xPOL; sampled	I from lcx_out v	vire.		
bit 4	LCxINTP: Co	onfigurable Log	ic Cell Positive	e Edge Going I	nterrupt Enable) bit		
	1 = CLCxIFv	will be set wher	n a rising edge	e occurs on lcx	_out			
hit 2			ia Coll Nagativ	vo Edgo Coing	Interrupt Engl	lo hit		
DIL 3		vill be set where	no cell Negativ	e cours on lev				
	0 = CLCxIF v	will not be set	r a railing eug		_001			
bit 2-0	LCxMODE<2	:0>: Configura	ble Logic Cell	Functional Mo	de bits			
	111 = Cell is	1-input transpa	arent latch wit	h S and R				
	110 = Cell is	J-K flip-flop wi	th R					
	101 = Cell is 2-input D flip-flop with R							
100 = Cell is 1-input D flip-flop with S and R								
011 = Cell is S-R latch 010 = Cell is 4-input AND								
	001 = Cell is	OR-XOR						
	000 = Cell is AND-OR							

REGISTER 19-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

20.3 Register Definitions: ADC Control

REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—			CHS<4:0>			GO/DONE	ADON		
bit 7									
Legend:									
R = Readab	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BC	DR/Value at all o	other Resets		
'1' = Bit is se	et	'0' = Bit is cle	ared						
bit 7	Unimplemer	nted: Read as '	0'						
bit 6-2	CHS<4:0>: A	Analog Channel	Select bits						
	11111 = FVF	R Buffer1 Outp	ut ⁽²⁾						
	11110 = DA	C_output ⁽¹⁾							
	11101 = Ten	nperature Indica	ator ⁽³⁾						
	11100 = Res	served. No char	nnel connecteo	b					
	11011 = Res	served. No char	nnel connecteo	d.					
	•								
	•								
	01100 - Pe	served No cha	anel connected	Ч					
	01011 = AN	11		u.					
	01011 = AN	10							
	01001 = AN	9							
	01000 = AN	8							
	00111 = AN	7							
	00110 = AN	6							
	00101 = AN	5							
	00100 = AN	4							
	00011 = AN	3							
	00010 = AN	2							
	00001 = AN	1							
	00000 = AN	0							
bit 1	GO/DONE: A	ADC Conversion	n Status bit						
	1 = ADC con	version cycle ir	n progress. Se	tting this bit sta	irts an ADC coi	nversion cycle.	1.1		
		s automatically	cleared by har	dware when th	e ADC convers	sion has comple	eted.		
			lea/not in prot	Jiess					
bit 0	ADON: ADC	Enable bit							
	1 = ADC is enabled								
	0 = ADC IS d		isumes no ope	erading current					
Note 1: S	ee Section 22.0	"8-Bit Digital-	to-Analog Co	onverter (DAC	1) Module" for	more information	on.		
2 : S	ee Section 14.0	"Fixed Voltag	e Reference ((FVR)" for more	e information.				
3 : S	ee Section 15.0) "Temperature	Indicator Mo	dule" for more	e information.				

FIGURE 25-4: TIMER1 GATE TOGGLE MODE

28.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

28.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 28-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPCON3 register will enable writes to the SSPBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

28.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 0100).

When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven.

When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
2:	When the SPI is used in Slave mode with CKE set; the user must enable \overline{SS} pin control.
3:	While operated in SPI Slave mode the

SMP bit of the SSPSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

FIGURE 28-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
											 [
	A : : :			· ·	, ,		c		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3
Vorse to Sisterative Vorse			8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	* * * *	4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	. /	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		* * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · ·
507		1/5 ; ; ; ;	,,,,,,,,	,	, ~, , , , , , , , , , , , , , , , , ,	. % 	 c 	, / ~		, 553 , , , , , , , , , , , , , , , , , ,	
inout Saustia		2002 7 	2 2 2 2 4 4 2 2 2	5 5 7 7 7	: : : : :		2 2 2 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	: ; ; ;		2 0 2 2	
SSP3F Frieropt Filling	• • • •	; ; ; ;	6 6 9 9 9	< < : : : :	e - - - 	: : : :	5 5 5 5 5 5		2	: : : : : :	
98298 & 892802	,		2 2 2 2	> ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	s s		2 2 2 2	> ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 5 4 5 4		
Varias Codisson Generation Science					****						

FIGURE 28-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SS SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) Write to SSPBUF XxXX										
SDO ——	<u></u>	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
SDI ——	1 1 1	bit 7		$\frac{1}{2}$	\sim		\sim	\sim	bit 0	
Input Sample	1 1 1 1	<u> </u>	1	1	1	<u>↑</u>	†	1	1	
SSPIF Interrupt Flag	1 1 1 1		1 1 1 1 1 1	1 1 1 1 1 1	I I I I I	 	1 1 1 1 1	 	 	
SSPSR to SSPBUF	1 1	1 1 1	 	1 1 1 1	1 1 1	1 1 1 1	1 1 1	1 1 1		۱ چ.
Wite Coissies Astacion polive										۱ ۱

PIC16(L)F1704/8 S. RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

28.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 28-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 28-39).

FIGURE 28-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 28-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0		
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D		
bit 7		b							
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all of	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	SPEN: Serial	Port Enable bit	t						
	1 = Serial po	rt enabled	d in Reset)						
bit 6	RX9 · 9-Bit Re	ceive Enable h	hit						
bit o	1 = Selects 9	-bit reception							
	0 = Selects 8	B-bit reception							
bit 5	SREN: Single	e Receive Enab	le bit						
	Asynchronous	<u>s mode</u> :							
	Don't care								
	Synchronous	mode – Maste	<u>r:</u>						
	1 = Enables	single receive							
	This bit is clea	ared after recep	otion is comple	ete.					
	<u>Synchronous</u>	mode – Slave							
	Don't care								
bit 4	CREN: Contin	nuous Receive	Enable bit						
	Asynchronous	<u>s mode</u> :							
	1 = Enables	receiver							
	0 = Disables	receiver mode							
	1 = Enables	<u>continuous rec</u>	eive until enat	ole bit CREN i	s cleared (CREN	l overrides SRF	=N)		
	0 = Disables	continuous rec	eive						
bit 3	ADDEN: Add	ress Detect En	able bit						
	Asynchronous	<u>s mode 9-bit (R</u>	<u>X9 = 1)</u> :						
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	ffer when RSR	<8> is set		
	0 = Disables	address detect	tion, all bytes $x_0 = 0$	are received a	and ninth bit can	be used as par	ity bit		
	Don't care		<u> </u>						
hit 2	FFRR: Frami	na Error bit							
Sit 2	1 = Framing	error (can be u	pdated by rea	idina RCRFG	register and rece	eive next valid b	ovte)		
	0 = No framin	ng error					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
bit 1	OERR: Overr	un Error bit							
	1 = Overrun 0 = No overr	error (can be cl un error	eared by clea	ring bit CREN)				
bit 0	RX9D: Ninth	bit of Received	Data						
	This can be a	ddress/data bit	or a parity bit	and must be	calculated by us	er firmware.			

REGISTER 29-2: RC1STA: RECEIVE STATUS AND CONTROL REGISTER

RETFIE	Return from Interrupt
Syntax:	[<i>label</i>] RETFIE k
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

RETURN	Return from Subroutine			
Syntax:	[label] RETURN			
Operands:	None			
Operation:	$TOS\toPC$			
Status Affected:	None			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.			

RETLW	Return with literal in W	DIE	Detete Left f through Corry		
Syntax:	[label] RETLW k	RLF	Rotate Left I through Carry		
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d		
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC None	Operands: Operation: Status Affected: unter is Description: e stack (the 2-cycle	$0 \le f \le 127$ $d \in [0,1]$ See description below		
Status Affected					
Description: The W register is loaded w literal 'k'. The program cou- loaded from the top of the return address). This is a 2 instruction.			С		
	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.		The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is		
Words:	1		stored back in register 1.		
Cycles:	2				
Example:	CALL TABLE;W contains table	Words:	1		
	; offset value	Cycles:	1		
TABLE	•	Example:	RLF REG1,0		
	•		Before Instruction		
	ADDWF PC ;W = offset		REG1 = 1110 0110		
	RETLW KI ;Begin table		C = 0		
	REILW KZ /		After Instruction		
	•		REG1 = 1110 0110		
	•		$W = 1100 \ 1100$		
	RETLW kn ; End of table		C = 1		
	Before Instruction W = 0x07 After Instruction W = value of k8				

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-115: Absolute Value of DAC DNL Error, VDD = 3.0V, VREF = VDD.

FIGURE 33-116: Absolute Value of DAC INL Error, VDD = 3.0V, VREF = VDD.

FIGURE 33-117: Absolute Value of DAC DNL Error, VDD = 5.0V, VREF = VDD, PIC16F1704/8 Only.

FIGURE 33-118: ZCD Pin Voltage. Typical Measured Values.

FIGURE 33-119: ZCD Response Time over Voltage, Typical Measured Values.

FIGURE 33-120: ZCD Pin Current over ZCD Pin Voltage, Typical Measured Values from -40°C to 125°C.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	14		
Pitch	е	0.65 BSC		
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E	6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	4.90	5.00	5.10
Foot Length	L	0.45	0.60	0.75
Footprint	(L1)	1.00 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

For the most current package drawings, please see the Microchip Packaging Specification located at

	Units		MILLIMETERS	5
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		20	
Pitch	е		0.65 BSC	
Overall Height	A	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	_
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1		1.25 REF	
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

http://www.microchip.com/packaging

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Jnits MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX
Number of Pins	N		20	
Pitch	е	0.50 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E		4.00 BSC	
Exposed Pad Width	E2	2.60	2.70	2.80
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.60	2.70	2.80
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	_

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B