

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

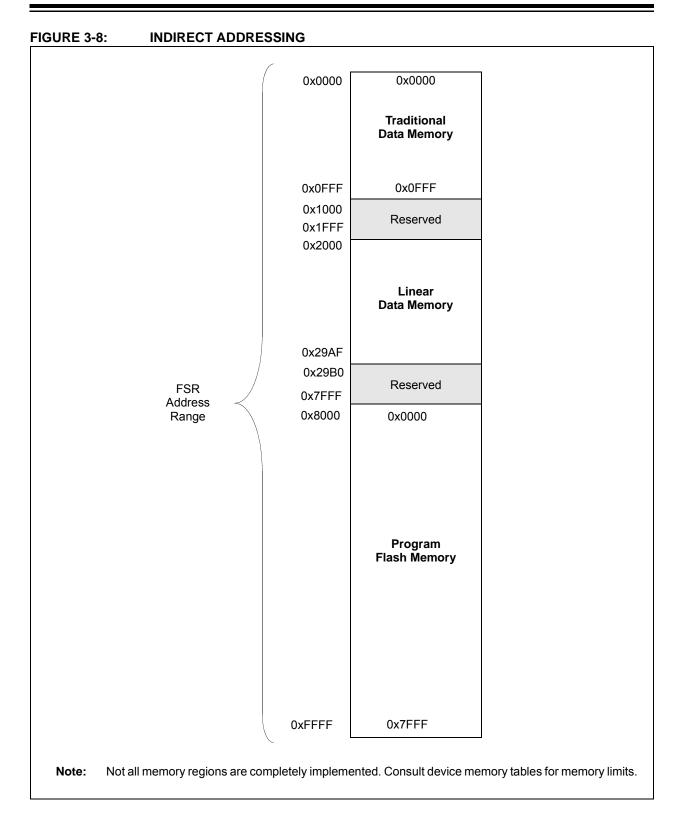
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1704-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k7		•		•	•	•			•	•
38Ch	INLVLA	_	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111
38Dh	INLVLB ⁽³⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	_	—	1111	1111
38Eh	INLVLC	INLVLC7 ⁽³⁾	INLVLC6(3)	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
38Fh	—	Unimplement	ted							—	—
390h	—	Unimplement	ted							_	—
391h	IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	_	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h	IOCBP ⁽³⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	—	0000	0000
395h	IOCBN ⁽³⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—	0000	0000
396h	IOCBF ⁽³⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	_	0000	0000
397h	IOCCP	IOCCP7 ⁽³⁾	IOCCP6 ⁽³⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IIOCCP1	IOCCP0	0000 0000	0000 0000
398h	IOCCN	IOCCN7 ⁽³⁾	IOCCN6 ⁽³⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IIOCCN1	IOCCN0	0000 0000	0000 0000
399h	IOCCF	IOCCF7 ⁽³⁾	IOCCF6 ⁽³⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IIOCCF1	IOCCF0	0000 0000	0000 0000
39Ah	_	Unimplement	ted							_	_
39Fh											
Banl	k 8									•	T
40Ch 414h	_	Unimplement	ted							-	-
415h	TMR4	Holding Regi	ster for the Lea	ast Significant	Byte of the 16	-bit TMR4 Re	gister			xxxx xxxx	uuuu uuuu
416h	PR4	Holding Regi	ster for the Mo	st Significant	Byte of the 16-	bit TMR4 Reg	ister			xxxx xxxx	uuuu uuuu
417h	T4CON	_		T4OUT	PS<3:0>		TMR4ON	T4CKF	PS<1:0>	-000 0000	-000 0000
418h 41Bh	_	Unimplement	ted							-	_
41Ch	TMR6	Holding Regi	ster for the Lea	ast Significant	Byte of the 16	-bit TMR6 Re	gister			XXXX XXXX	uuuu uuuu
41Dh	PR6	Holding Regi	ster for the Mo	st Significant	Byte of the 16-	bit TMR6 Reg	ister			XXXX XXXX	uuuu uuuu
41Eh	T6CON	_		T6OUT	PS<3:0>		TMR6ON	T6CKF	PS<1:0>	-000 0000	-000 0000
41Fh	—	Unimplement	ted							—	—
Banl	k 9										
48Ch to 49Fh	_	Unimplement	ted							_	_
Banl	k 10										
50Ch											
 510h	—	Unimplement	ted							_	-
511h	OPA1CON	OPA1EN	OPA1SP	_	OPA1UG	_	_	OPA1P	CH<1:0>	00-000	00-000
512h	_	Unimplement	ted							_	_
514h	00400011	0.001051/	004000		0040110			0.01157	011.4.6		
515h	OPA2CON	OPA2EN	OPA2SP	_	OPA2UG	—	—	OPA2P	CH<1:0>	00-000	00-000
516h 51Fh	—	Unimplement	ted							-	-

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-10:**


Note

Unimplemented, read as '1'. PIC16(L)F1704 only. 1:

2:

3:

PIC16(L)F1708 only. Unimplemented on PIC16LF1704/8. 4:

5.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 5-3 and Table 5-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, \overline{PD} is set on \overline{POR}
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 5-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 5-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

5.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 5-2.

5.14 Register Definitions: Power Control

REGISTER 5-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR
bit 7	•						bit 0

Legend:							
HC = Bit is cle	ared by hardwa	are	HS = Bit is set by hardware				
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Rese				
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition				
bit 7		ack Overflow Flag bit					
		Overflow occurred Overflow has not occurrec	l or cleared by firmware				
bit 6	STKUNF: Sta	ack Underflow Flag bit					
		Underflow occurred Underflow has not occurre	ed or cleared by firmware				
bit 5	Unimplemer	nted: Read as '0'					
bit 4	RWDT: Watc	hdog Timer Reset Flag bit					
			ccurred or set to '1' by firmware rred (cleared by hardware)				
bit 3	RMCLR: MC	LR Reset Flag bit					
		Reset has not occurred or Reset has occurred (clear					
bit 2	RI: RESET IN	struction Flag bit					
			executed or set to '1' by firmware cuted (cleared by hardware)				
bit 1	POR: Power-	-on Reset Status bit					
		r-on Reset occurred on Reset occurred (must	be set in software after a Power-on Reset occurs)				
bit 0	BOR: Brown	-out Reset Status bit					
		n-out Reset occurred out Reset occurred (must	be set in software after a Power-on Reset or Brown-out Rese				

6.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The postscaled output of the 16 MHz HFINTOSC, 500 kHz MFINTOSC, and 31 kHz LFINTOSC connect to a multiplexer (see Figure 6-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 32 MHz (requires 4x PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<3:0> bits
	of the OSCCON register are set to '0111'
	and the frequency selection is set to
	500 kHz. The user can modify the IRCF
	bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

6.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
 - Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the SPLLEN option will not be available.

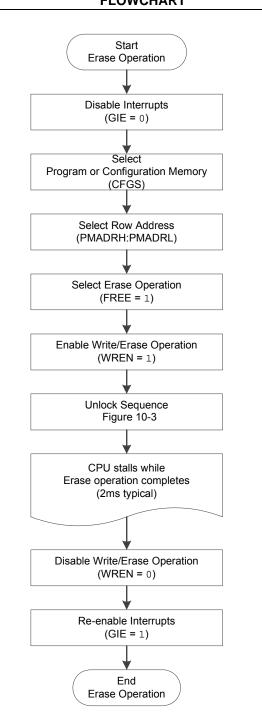
The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

R/W-0/	0 R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF
bit 7							bit (
Legend: R = Reada	able bit	W = Writable		II – Unimplor	monted bit read	1 00 '0'	
	inchanged	x = Bit is unkr		•	nented bit, reac at POR and BO		thar Pasate
'1' = Bit is	0	0' = Bit is clear			at FOR and BO	rt/value at all c	
1 - Di(13	301						
bit 7	OSFIF: Osci	llator Fail Interru	pt Flag bit				
	1 = Interrupt						
	0 = Interrupt	is not pending					
bit 6		arator C2 Interru	ipt Flag bit				
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 5	C1IF: Compa	arator C1 Interru	pt Flag bit				
	1 = Interrupt						
	0 = Interrupt	is not pending					
bit 4	Unimplemer	nted: Read as ')'				
bit 3	BCL1IF: MS	SP Bus Collisio	n Interrupt Fl	ag bit			
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 2	TMR6IF: Tim	er6 to PR6 Inte	rrupt Flag bit	:			
	1 = Interrupt						
	0 = Interrupt	is not pending					
bit 1		er4 to PR4 Inte	rrupt Flag bit	İ			
	1 = Interrupt	1 0					
bit 0	-	is not pending	a hit				
	1 = Interrupt	P2 Interrupt Fla	y bit				
		is not pending					
Note:	Interrupt flag bits a						
	condition occurs, its corresponding						
	Enable bit, GIE,						
	User software	should ensu	ire the				
	appropriate intern		re clear				
	prior to enabling a	an interrupt.					

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:


- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions immediately following the WR bit set instruction. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

FIGURE 10-4: FLASH PROGRAM

MEMORY ERASE FLOWCHART

REGISTER 11-12: ANSELB: PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0		
—	—	ANSB5	ANSB4	_		—	—		
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set '0' = Bit is cleared			ared						
bit 7-6	Unimplemer	nted: Read as '	0'						

- bit 5-4 **ANSB<5:4>**: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. bit 3-0 **Unimplemented:** Read as '0'
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 11-13: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—
bit 7							bit 0

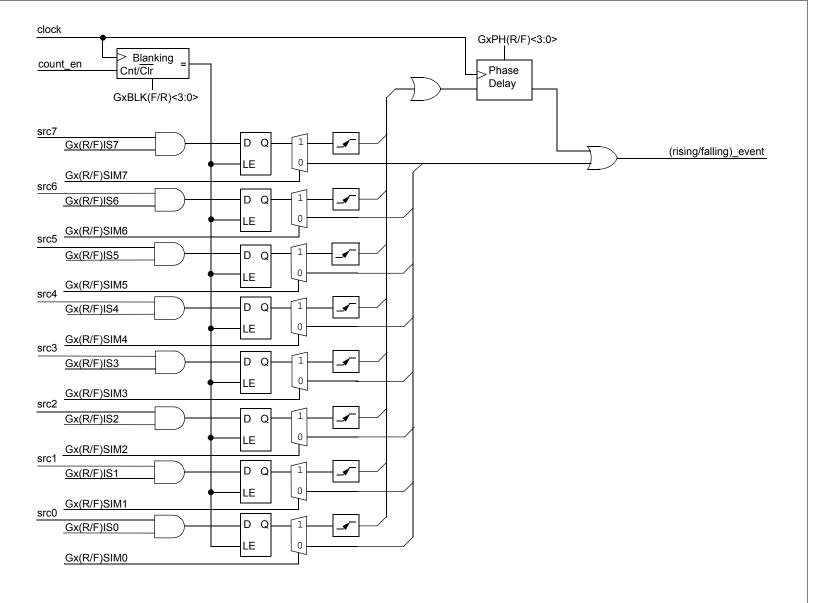
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 WPUB<7:4>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

bit 3-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.


2: The weak pull-up device is automatically disabled if the pin is configured as an output.

17.2 Register Definitions: PWM Control

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	U-0
PWMxEN	—	PWMxOUT	PWMxPOL	—	—	—	—
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWMxEN: PV	VM Module En	able bit				
		dule is enable					
	0 = PWM mo	dule is disable	d				
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	PWMxOUT: F	PWM module o	utput level whe	en bit is read.			
bit 4	PWMxPOL: F	PWMx Output F	Polarity Select	bit			
		tput is active-lo					
	0 = PWM out	tput is active-hi	gh.				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 17-1: PWMxCON: PWM CONTROL REGISTER

FIGURE 18-7: COG (RISING/FALLING) INPUT BLOCK

PIC16(L)F1704/8

18.13 Register Definitions: COG Control

REGISTER 18-1: COGxCON0: COG CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
GxEN	GxLD	_	GxC	S<1:0>		GxMD<2:0>			
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'			
u = Bit is unch	nanged	x = Bit is unki	nown	-n/n = Value a	at POR and BC	OR/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on cond	tion			
bit 7	GxEN: COG	x Enable bit							
	1 = Module i								
	0 = Module i								
bit 6		k Load Buffers							
		to buffer transf			d with register	values on next i	input events		
bit 5	Unimplemer	ted: Read as '	0'						
bit 4-3	GxCS<1:0>:	COGx Clock S	election bits						
	11 = Reserved. Do not use.								
	 10 = COG_clock is HFINTOSC (stays active during Sleep) 01 = COG clock is Fosc 								
		CIOCK IS FOSC							
bit 2-0	_	COGx Mode S	Selection bits						
5112 0		ved. Do not us							
	101 = COG outputs operate in Push-Pull mode								
	100 = COG	outputs operate	e in Half-Bridg	e mode					
		outputs operate							
		outputs operate outputs operate							
		outputs operate							

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxPOL	—	—	—	LCxG4POL	LCxG3POL	LCxG2POL	LCxG1POL
bit 7							bit 0
Logondi							
Legend:	a h:t		L:1		a anta d hit waa a	L == '0'	
R = Readable		W = Writable		•	nented bit, read		
u = Bit is unc	•	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 7		OUT Polarity C					
		out of the logic of					
		out of the logic of		erted			
bit 6-4	Unimplemen	ted: Read as '	0′				
bit 3		Gate 4 Output	•				
				n applied to the	logic cell		
	-	out of gate 4 is r					
bit 2		Gate 3 Output	•				
		•		n applied to the	logic cell		
		out of gate 3 is i					
bit 1		Gate 2 Output	,				
		•		n applied to the	logic cell		
		out of gate 2 is i					
bit 0		Gate 1 Output	•				
		0		n applied to the	logic cell		
	0 = 1 he outp	out of gate 1 is i	not inverted				

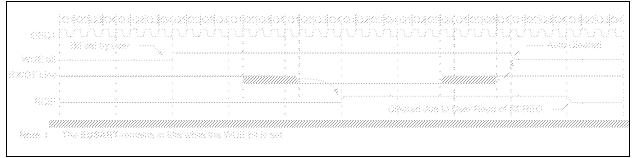
REGISTER 19-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

20.3 Register Definitions: ADC Control

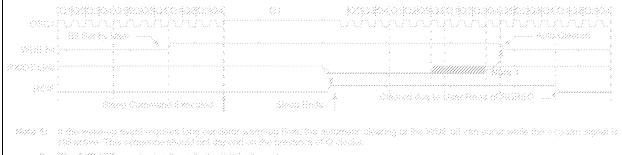
REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_			CHS<4:0>			GO/DONE	ADON
oit 7							bit (
Legend:							
R = Readab		W = Writable	bit	U = Unimplen			
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	OR/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-2	CHS<4:0>:	Analog Channel	Select bits				
		R_Buffer1 Outp	(a)				
	11110 = DA	C_output ⁽¹⁾					
		mperature Indica					
		served. No char					
	11011 = Re	served. No char	nnel connecte	d.			
	•						
	•						
	01100 = Re	served. No cha	nel connecte	d			
	01011 = AN			.			
	01010 = AN	110					
	01001 = AN	19					
	01000 = AN	18					
	00111 = AN	17					
	00110 = AN						
	00101 = AN	-					
	00100 = AN						
	00011 = AN 00010 = AN	-					
	00001 = AN						
	00000 = AN						
bit 1	GO/DONE:	ADC Conversion	n Status bit				
	1 = ADC cor	nversion cycle ir	n progress. Se	tting this bit sta	rts an ADC co	nversion cycle.	
					e ADC conver	sion has comple	eted.
	0 = ADC cor	nversion comple	ted/not in pro	gress			
bit 0	ADON: ADO	Enable bit					
	1 = ADC is e						
	0 = ADC is o	disabled and cor	nsumes no op	erating current			
2: S	See Section 22.0 See Section 14.0 See Section 15.0	0 "Fixed Voltag	e Reference	(FVR)" for more	information.	more information	on.

FIGURE 28-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
											 [
60% (CRP = 6 C%E = 0)											
	A : : :			· ·	, ,		c		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3
Vorse to Sisterative Vorse			8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	* * * *	4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	. /	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		* * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · ·
- 800 - 803		1/5 ; ; ; ;	,,,,,,,,	X , , ,,	, ~, , , , , , , , , , , , , , , , , ,	× 198, 3 	 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;	X		;; ; ; //////////////////////////	
inorit Særspie		2002 7 	2 2 2 2 4 4 2 2 2	5 5 7 7 7	: : :		2 2 2 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	: ; ; ;		20 % 	
SSP4F Interropt Flag	• • • •	; ; ; ;	6 6 9 9 9	< < : : : :	e - - - 	: : : :	5 5 5 5 5 5 7		2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	: : : : : :	
98298 & 892802	, . , . ,		2 2 2 2	> ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	s s		2 2 2 2	> ; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 5 4 5 4		
Varias Codisson Generation Science					****						


FIGURE 28-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SS SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) Write to SSPBUF XxXX										
SDO ——	<u></u>	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
SDI ——	1 1 1	bit 7			\sim		\sim	\sim	bit 0	
Input Sample	1 1 1 1	<u> </u>	1	1	1	<u>↑</u>	†	1	1	
SSPIF Interrupt Flag	1 1 1 1		1 1 1 1 1 1	1 1 1 1 1 1	I I I I I	 	1 1 1 1 1	 	 	
SSPSR to SSPBUF	1 1 1	1 1 1	 	I	1 1 1	1 1 1 1	1 1 1	1 1 1 1		۱ چ.
Witte Collesion Antaction politie										۱ ۱


REGISTER 28-2: SSP1CON1: SSP CONTROL REGISTER 1 (CONTINUED)

- bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits
 - 1111 = I²C Slave mode, 10-bit address with Start and Stop bit interrupts enabled
 - $1110 = I^2C$ Slave mode, 7-bit address with Start and Stop bit interrupts enabled
 - 1101 = Reserved
 - 1100 = Reserved
 - $1011 = I^2C$ firmware controlled Master mode (slave idle)
 - 1010 = SPI Master mode, clock = Fosc/(4 * (SSPADD+1))⁽⁵⁾
 - 1001 = Reserved
 - 1000 = I^2C Master mode, clock = Fosc / (4 * (SSPADD+1))⁽⁴⁾
 - 0111 = I^2C Slave mode, 10-bit address
 - 0110 = I^2C Slave mode, 7-bit address
 - 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - 0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled
 - 0011 = SPI Master mode, clock = T2_match/2
 - 0010 = SPI Master mode, clock = Fosc/64
 - 0001 = SPI Master mode, clock = Fosc/16
 - 0000 = SPI Master mode, clock = Fosc/4
- **Note 1:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
 - **2:** When enabled, these pins must be properly configured as input or output. Use SSPSSPPS, SSPCLKPPS, SSPDATPPS, and RxyPPS to select the pins.
 - **3:** When enabled, the SDA and SCL pins must be configured as inputs. Use SSPCLKPPS, SSPDATPPS, and RxyPPS to select the pins.
 - **4:** SSPADD values of 0, 1 or 2 are not supported for I²C mode.
 - **5:** SSPADD value of '0' is not supported. Use SSPM = 0000 instead.

FIGURE 29-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

FIGURE 29-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

 Ω^{*} . The SUSARY remains is idea while the VCDE bit is set

. .

MOVWI	Move W to INDFn					
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]					
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31					
Operation:	 W → INDFn Effective address is determined by FSR + 1 (preincrement) FSR - 1 (predecrement) FSR + k (relative offset) After the Move, the FSR value will be either: FSR + 1 (all increments) FSR - 1 (all decrements) Unchanged 					
Status Affected:	None					

Mode	Syntax	mm	
Preincrement	++FSRn	00	
Predecrement	FSRn	01	
Postincrement	FSRn++	10	
Postdecrement	FSRn	11	

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

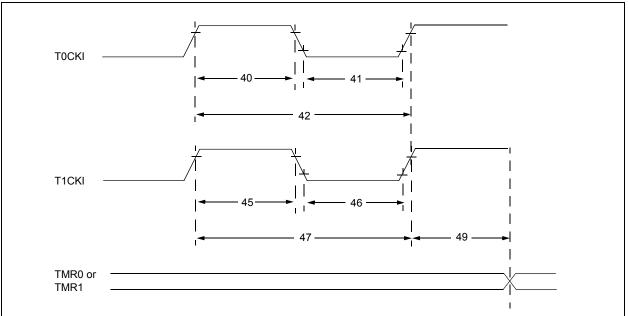
OPTION	Load OPTION_REG Register with W				
Syntax:	[label] OPTION				
Operands:	None				
Operation:	(W) \rightarrow OPTION_REG				
Status Affected:	None				
Description:	Move data from W register to OPTION_REG register.				
Words:	1				
Cycles:	1				
Example:	OPTION				
	Before Instruction OPTION_REG = 0xFF W = 0x4F				
	After Instruction OPTION_REG = 0x4F W = 0x4F				

RESET	Software Reset				
Syntax:	[label] RESET				
Operands:	None				
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.				
Status Affected:	None				
Description:	This instruction provides a way to execute a hardware Reset by software.				

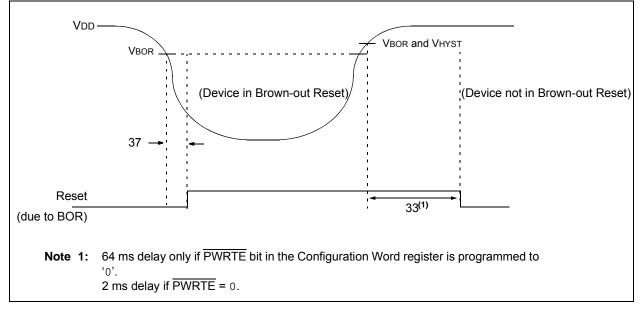
TABLE 32-4: I/O PORTS

Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
	VIL	Input Low Voltage	11				I.
		I/O PORT:					
D034		with TTL buffer	_	_	0.8	V	$4.5V \le V \text{DD} \le 5.5V$
D034A			—	_	0.15 Vdd	V	$1.8V \le V\text{DD} \le 4.5V$
D035		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C levels	_	_	0.3 VDD	V	
		with SMBus levels	—	_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$
D036		MCLR, OSC1 (RC mode)	_	_	0.2 Vdd	V	(Note 1)
D036A		OSC1 (HS mode)	—	_	0.3 VDD	V	
	VIH	Input High Voltage					
		I/O ports:	-				
D040		with TTL buffer	2.0			V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	—	—	V	$1.8V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8 VDD	_		V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C levels	0.7 Vdd	_	_	V	
		with SMBus levels	2.1	_		V	$2.7V \leq V\text{DD} \leq 5.5V$
D042		MCLR	0.8 VDD	—	—	V	
D043A		OSC1 (HS mode)	0.7 Vdd	_	—	V	
D043B		OSC1 (RC oscillator)	0.9 Vdd	_	—	V	VDD > 2.0V (Note 1)
	lı∟	Input Leakage Current ⁽²⁾			-		
D060		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C
			—	± 5	± 1000	nA	$\label{eq:VSS} \begin{split} Vss &\leq V \text{PIN} \leq V \text{DD}, \\ \text{Pin at high-impedance, } 125^\circ\text{C} \end{split}$
D061		MCLR ⁽³⁾	—	± 5	± 200	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C
	IPUR	Weak Pull-up Current					
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁴⁾					
D080		I/O ports	—		0.6	V	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V
	Voн	Output High Voltage ⁽⁴⁾	1		•		
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = -3.5 mA, VDD = 5V IOH = -3 mA, VDD = 3.3V IOH = -1 mA, VDD = 1.8V
		Capacitive Loading Specs on	Output Pins				1
D101*	COSC2	OSC2 pin	_		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.


3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 32-12:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

Standard Operating Conditions (unless otherwise stated)											
Param. No.	Sym.	Characteristic			Min.	Тур.†	Max.	Units	Conditions		
40*	T⊤0H			No Prescaler	0.5 Tcy + 20	—	_	ns			
				With Prescaler	10	—	_	ns			
41*	TT0L			No Prescaler	0.5 Tcy + 20	—	_	ns			
				With Prescaler	10	—	_	ns			
42*	Тт0Р	T0CKI Period			Greater of: 20 or (Tcy + 40)*N	—	—	ns	N = prescale value (2, 4,, 256)		
45*	TT1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—		ns			
			Synchronous, with Prescaler		15	—		ns			
			Asynchronous		30	—		ns			
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	—		ns			
			Synchronous, with Prescaler		15	—		ns			
			Asynchronous		30	—		ns			
47*	T⊤1P	T1CKI Input Period	Synchronous		Greater of: 30 or (Tcy + 40)*N	—	_	ns			
			Asynchronous		60	—		ns			
48	F⊤1		ator Input Frequabled by setting	32.4	32.768	33.1	kHz				
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ed	2 Tosc	—	7 Tosc	—	Timers in Sync mode			

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.