

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1704-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/VREF-/C1IN+/	RA0	TTL/ST	CMOS	General purpose I/O.
DAC1OUT/ICSPDAT	AN0	AN	_	ADC Channel 0 input.
	VREF-	AN		ADC Negative Voltage Reference input.
	C1IN+	AN		Comparator C1 positive input.
	DAC1OUT	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/C2IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
ICSPCLK	AN1	AN		ADC Channel 1 input.
	VREF+	AN	_	ADC Voltage Reference input.
	C1IN0-	AN	_	Comparator C2 negative input.
	C2IN0-	AN	_	Comparator C3 negative input.
	ICSPCLK	ST	_	Serial Programming Clock.
RA2/AN2/DAC1OUT2/ZCD/	RA2	TTL/ST	CMOS	General purpose I/O.
T0CKI ⁽¹⁾ /COGIN ⁽¹⁾ /INT ⁽¹⁾	AN2	AN	_	ADC Channel 2 input.
	DAC10UT2	—	AN	Digital-to-Analog Converter output.
	ZCD	_	AN	Zero Cross Detection Current Source/Sink.
	T0CKI	TTL/ST	—	Timer0 clock input.
	COGIN	TTL/ST	_	Complementary Output Generator input.
	INT	TTL/ST	_	External interrupt.
RA3/MCLR/VPP	RA3	TTL/ST	CMOS	General purpose input.
	MCLR	ST	_	Master Clear with internal pull-up.
	Vpp	HV	_	Programming voltage.
RA4/AN3/T1G ⁽¹⁾ /SOSCO/	RA4	TTL/ST	CMOS	General purpose I/O.
OSC2/CLKOUT	AN3	AN	_	ADC Channel 3 input.
	T1G	TTL/ST	_	Timer1 gate input.
	SOSCO	XTAL	XTAL	Secondary Oscillator Connection.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
RA5/T1CKI ⁽¹⁾ /SOSCI/	RA5	TTL/ST	CMOS	General purpose I/O.
CLCIN3(")/OSC1/CLKIN	T1CKI	TTL/ST	_	Timer1 clock input.
	SOSCI	XTAL	XTAL	Secondary Oscillator Connection.
	CLCIN3	TTL/ST	_	Configurable Logic Cell source input.
	OSC1	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	TTL/ST	_	External clock input (EC mode).
RC0/AN4/C2IN+/OPA1IN+/	RC0	TTL/ST	—	General purpose I/O.
SCK(')/SCL(3)	AN4	AN	_	ADC Channel 4 input.
	C2IN+	AN	—	Comparator positive input.
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.
	SCK	TTL/ST		SPI clock.
	SCL	l ² C	—	I ² C clock.

TABLE 1-2: PIC16(L)F1704 PINOUT DESCRIPTION

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD
 = Open Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL
 = Crystal levels
 I
 I
 I

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 12-1.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-3.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

		E1700 E				•
TABLE 1-3:	PIC10(L)	F1708 F	DESCRIPI	ION (CONTINUEL)

Name	Function	Input Type	Output Type	Description			
RB5/AN11/OPA1IN+/RX ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.			
	AN11	AN		ADC Channel 11 input.			
	OPA1IN+	AN		Operational Amplifier 1 non-inverting input.			
	RX	ST	_	USART asynchronous input.			
RB6/SDI ⁽¹⁾ /SCL ⁽³⁾	RB6	TTL/ST	CMOS	General purpose I/O.			
	SDI	CMOS		SPI data input.			
	SCL	l ² C	OD	I ² C clock.			
RB7/CK ⁽¹⁾	RB7	TTL/ST	CMOS	General purpose I/O.			
	СК	ST	CMOS	USART synchronous clock.			
RC0/AN4/C2IN+	RC0	TTL/ST	CMOS	General purpose I/O.			
	AN4	AN	_	ADC Channel 4 input.			
	C2IN+	AN	_	Comparator positive input.			
RC1/AN5/C1IN1-/C2IN1-/	RC1	TTL/ST	CMOS	General purpose I/O.			
CLCIN2 ⁽¹⁾	AN5	AN	_	ADC Channel 5 input.			
	C1IN1-	AN	_	Comparator C1 negative input.			
	C2IN1-	AN		Comparator C2 negative input.			
	CLCIN2	ST		Configurable Logic Cell source input.			
RC2/AN6/C1IN2-/C2IN2-/	RC2	TTL/ST	CMOS	General purpose I/O.			
OPA1OUT	AN6	AN		ADC Channel 6 input.			
	C1IN2-	AN		Comparator C1 negative input.			
	C2IN2-	AN		Comparator C2 negative input.			
	OPA1OUT	_	AN	Operational Amplifier 1 output.			
RC3/AN7/C1IN3-/C2IN3-/	RC3	TTL/ST	CMOS	General purpose I/O.			
OPA2OUT/CCP2 ⁽¹⁾ /CLCIN0 ⁽¹⁾	AN7	AN		ADC Channel 7 input.			
	C1IN3-	AN		Comparator C1 negative input.			
	C2IN3-	AN	_	Comparator C2 negative input.			
	OPA2OUT	_	AN	Operational Amplifier 2 output.			
	CCP2	ST	CMOS	Capture/Compare/PWM2.			
	CLCIN0	ST		Configurable Logic Cell source input.			
RC4/CLCIN1 ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.			
	CLCIN1	ST		Configurable Logic Cell source input.			
RC5/CCP1 ⁽¹⁾	RC5	TTL/ST	CMOS	General purpose I/O.			
	CCP1	ST	CMOS	Capture/Compare/PWM1.			
RC6/AN8/OPA2IN-/SS(1)	RC6	TTL/ST	CMOS	General purpose I/O.			
	AN8	AN		ADC Channel 8 input.			
	OPA2IN-	AN		Operational Amplifier 2 inverting input.			
	SS	ST	_	Slave Select input.			
RC7/AN9/OPA2IN+	RC7	TTL/ST	CMOS	General purpose I/O.			
	AN9	AN	_	ADC Channel 9 input.			
	OPA2IN+	AN		Operational Amplifier 2 non-inverting input			
να	Vnn	Power		Positive supply.			
Legend: AN = Applog input or o			l compati	ble input or output $OD = Open Drain$			
TTL = TTL compatible i	nput ST	= Schmi	tt Trigger	input with CMOS levels I^2C = Schmitt Trigger input with I^2C			

XTAL = Crystal levels

= Schmitt Trigger input with CMOS levels I²C = Schmitt Trigger input with I²C

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 12-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-3.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

HV = High Voltage

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 0										
00Ch	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
00Dh	PORTB ⁽³⁾	RB7	RB6	RB5	RB4	_	_	_	_	xxxx	uuuu
00Eh	PORTC	RC7 ⁽³⁾	RC6 ⁽³⁾	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
00Fh	—	Unimplement	ted							—	_
010h	—	Unimplement	ted							—	_
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0-00	0000 0-00
012h	PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	000- 00	000- 00
013h	PIR3	—	—	COGIF	ZCDIF	—	CLC3IF	CLC2IF	CLC1IF	00 -000	00 -000
014h	—	Unimplement	ted							—	_
015h	TMR0	Timer0 Modu	le Register							XXXX XXXX	uuuu uuuu
016h	TMR1L	Holding Regi	ster for the Lea	ast Significant	Byte of the 16	i-bit TMR1 Reg	gister			XXXX XXXX	uuuu uuuu
017h	TMR1H	Holding Regi	ster for the Mo	st Significant I	Byte of the 16-	bit TMR1 Reg	ister			XXXX XXXX	uuuu uuuu
018h	T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 0x00	uuuu uxuu
01Ah	TMR2	Holding Regi	ster for the 8-b	it TMR2 Regi	ster					XXXX XXXX	uuuu uuuu
01Bh	PR2	Timer2 Period	d Register							XXXX XXXX	uuuu uuuu
01Ch	T2CON	_		T2OUTI	PS<3:0>		TMR2ON	T2CK	PS<1:0>	-000 0000	-000 0000
01Dh to 01Fh	_	Unimplement	ted							-	_
Banl	k1										
08Ch	TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB ⁽³⁾	TRISB7	TRISB6	TRISB5	TRISB4	—		—	—	1111	1111
08Eh	TRISC	TRISC7(3)	TRISC6 ⁽³⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	Unimplement	ted							—	_
090h	—	Unimplement	ted							—	—
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	TMR6IE	TMR4IE	CCP2IE	000- 0000	000- 0000
093h	PIE3	—	—	COGIE	ZCDIE	—	CLC3IE	CLC2IE	CLC1IE	00 -000	00 -000
094h	—	Unimplement	ted							—	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_			WDTPS<4:0>			SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_			TUN	<5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRCF	<3:0>		_	SCS	S<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	SOSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	00q000	dddd0d
09Bh	ADRESL	ADC Result F	Register Low							XXXX XXXX	uuuu uuuu
09Ch	ADRESH	ADC Result F	Register High							XXXX XXXX	uuuu uuuu
09Dh	ADCON0	—			CHS<4:0>			GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPR	EF<1:0>	0000 -000	0000 -000
09Fh	ADCON2		TRIGSE	EL<3:0>		_	_	_	_	0000	0000

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

 Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1704 only.

3: PIC16(L)F1708 only.

4: Unimplemented on PIC16LF1704/8.

5.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) is an essential part of the Reset subsystem. Refer to Figure 5-1 to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (\overline{BOR}) is changed to indicate that a BOR Reset has occurred. The same bit is set for both the BOR and the LPBOR. Refer to Register 5-2.

5.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

5.4.1.1 LPBOR Module Output

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR'd together with the Reset signal of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block.

5.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 5-2).

TABLE 5-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

5.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

```
Note: A Reset does not drive the \overline{MCLR} pin low.
```

5.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.1 "PORTA Registers"** for more information.

5.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0** "**Watchdog Timer (WDT)**" for more information.

5.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 5-4 for default conditions after a RESET instruction has occurred.

5.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **3.6.2** "**Overflow/Underflow Reset**" for more information.

5.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

5.10 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the **PWRTE** bit of Configuration Words.

5.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 5-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

6.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

6.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 6-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL or EXTRC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. EXTRC External Resistor-Capacitor
- 8. INTOSC Internal oscillator (31 kHz to 32 MHz)

Clock Source modes are selected by the FOSC<2:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The EXTRC clock mode requires an external resistor and capacitor to set the oscillator frequency.

The INTOSC internal oscillator block produces low, medium, and high-frequency clock sources, designated LFINTOSC, MFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 6-1). A wide selection of device clock frequencies may be derived from these three clock sources.

6.2.1.4 4x PLL

The oscillator module contains a 4x PLL that can be used with both external and internal clock sources to provide a system clock source. The input frequency for the 4x PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 32-9.

The 4x PLL may be enabled for use by one of two methods:

- 1. Program the PLLEN bit in Configuration Words to a '1'.
- Write the SPLLEN bit in the OSCCON register to a '1'. If the PLLEN bit in Configuration Words is programmed to a '1', then the value of SPLLEN is ignored.

6.2.1.5 Secondary Oscillator

The secondary oscillator is a separate crystal oscillator that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the SOSCO and SOSCI device pins.

The secondary oscillator can be used as an alternate system clock source and can be selected during run-time using clock switching. Refer to **Section 6.3 "Clock Switching"** for more information.

FIGURE 6-5:

QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

8.2 Low-Power Sleep Mode

The PIC16F1704/8 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. The PIC16F1704/8 allows the user to optimize the operating current in Sleep, depending on the application requirements.

A Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. With this bit set, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use only with the following peripherals:

- Brown-Out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source<100 kHz)

Note: The PIC16LF1704/8 does not have a configurable Low-Power Sleep mode. PIC16LF1704/8 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum VDD and I/O voltage than the PIC16F1704/8. See Section 32.0 "Electrical Specifications" for more information.

PIC16(L)F1704/8

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—	—	—	_	—	—	VREGPM	Reserved
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
bit 1	 VREGPM: Voltage Regulator Power Mode Selection bit 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up 0 = Normal-Power mode enabled in Sleep⁽²⁾ Draws higher current in Sleep, faster wake-up

bit 0 Reserved: Read as '1'. Maintain this bit set.

Note 1: PIC16F1704/8 only.

2: See Section 32.0 "Electrical Specifications".

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85
IOCAP	-	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	145
IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	145
IOCAF	-	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	145
IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	_	—	—	146
IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	-	—	—	146
IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	_	—	—	146
IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	147
IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	147
IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	147
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	86
PIE2	OSFIE	C2IE	C1IE	-	BCL1IE	TMR6IE	TMR4IE	CCP2IE	87
PIE3	_	_	COGIE	ZCDIE	_	CLC3IE	CLC2IE	CLC1IE	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	90
PIR3	-	_	COGIF	ZCDIF	—	CLC3IF	CLC2IF	CLC1IF	91
STATUS	_	—		TO	PD	Z	DC	С	23
VREGCON ⁽²⁾	_	—	_	_	—	_	VREGPM	Reserved	96
WDTCON	_	_			WDTPS<4:0>			SWDTEN	100

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: PIC16(L)F1708 only.

2: PIC16F1704/8 only.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	ram Memory	/ Control Regist	ter 2		
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'	
S = Bit can only I	be set	x = Bit is unkno	own	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85	
PMCON1	_(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	116	
PMCON2	Program Memory Control Register 2									
PMADRL		PMADRL<7:0>								
PMADRH	_(1)			F	MADRH<6:0	>			115	
PMDATL	PMDATL<7:0>								115	
PMDATH	_	_			PMDAT	H<5:0>			115	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

Note 1: Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page	
0015104	13:8	_	_	_	—	CLKOUTEN	BORE	EN<1:0> —		40	
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>	—	FOSC	<1:0>	49	
CONFIG2	13:8	-	-	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	54	
	7:0	ZCDDIS	_	_	—	_	PPS1WAY	WRT<1:0>		51	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

11.5 PORTC Registers

11.5.1 DATA REGISTER

PORTC is a 6-bit wide bidirectional port in the PIC16(L)F1704 device and 8-bit wide bidirectional port in the PIC16(L)F1708 device. The corresponding data direction register is TRISC (Register 11-18). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 11-17) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

11.5.2 DIRECTION CONTROL

The TRISC register (Register 11-18) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.5.3 INPUT THRESHOLD CONTROL

The INLVLC register (Register 11-24) controls the input voltage threshold for each of the available PORTC input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTC register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 32-4: I/O Ports for more information on threshold levels.

Note:	Changing the input threshold selection
	should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

11.5.4 OPEN-DRAIN CONTROL

The ODCONC register (Register 11-22) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONC bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONC bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.5.5 SLEW RATE CONTROL

The SLRCONC register (Register 11-23) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONC bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONC bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.5.6 ANALOG CONTROL

The ANSELC register (Register 11-20) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELC bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

11.5.7 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELC register. Digital output functions may continue to control the pin when it is in Analog mode.

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators, and DAC is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 20.0 "Analog-to-Digital Converter (ADC) Module"** for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 22.0 "8-Bit Digital-to-Analog Converter (DAC1) Module" and Section 16.0 "Comparator Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See Figure 33-74: Wake from Sleep, VREGPM = 0.

© 2013-2015 Microchip Technology Inc.

16.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 16-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1:	When reading a PORT register, all pins
	configured as analog inputs will read as a
	'0'. Pins configured as digital inputs will
	convert as an analog input, according to
	the input specification.

2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

18.5.4 RISING EVENT DEAD-BAND

Rising event dead band delays the turn-on of the primary outputs from when complementary outputs are turned off. The rising event dead-band time starts when the rising_ event output goes true.

See Section 18.5.1, Asynchronous delay chain dead-band delay and Section 18.5.2, Synchronous counter dead-band delay for more information on setting the rising edge dead-band time.

18.5.5 FALLING EVENT DEAD-BAND

Falling event dead band delays the turn-on of complementary outputs from when the primary outputs are turned off. The falling event dead-band time starts when the falling_ event output goes true.

See Section 18.5.1, Asynchronous delay chain dead-band delay and Section 18.5.2, Synchronous counter dead-band delay for more information on setting the rising edge dead-band time.

18.5.6 DEAD-BAND OVERLAP

There are two cases of dead-band overlap:

- Rising-to-falling
- Falling-to-rising

18.5.6.1 Rising-to-Falling Overlap

In this case, the falling event occurs while the rising event dead-band counter is still counting. When this happens, the primary drives are suppressed and the dead-band extends by the falling event dead-band time. At the termination of the extended dead-band time, the complementary drive goes true.

18.5.6.2 Falling-to-Rising Overlap

In this case, the rising event occurs while the falling event dead-band counter is still counting. When this happens, the complementary drive is suppressed and the dead-band extends by the rising event dead-band time. At the termination of the extended dead-band time, the primary drive goes true.

18.6 Blanking Control

Input blanking is a function, whereby, the event inputs can be masked or blanked for a short period of time. This is to prevent electrical transients caused by the turn-on/off of power components from generating a false input event.

The COG contains two blanking counters: one triggered by the rising event and the other triggered by the falling event. The counters are cross coupled with the events they are blanking. The falling event blanking counter is used to blank rising input events and the rising event blanking counter is used to blank

falling input events. Once started, blanking extends for the time specified by the corresponding blanking counter.

Blanking is timed by counting COG_clock periods from zero up to the value in the blanking count register. Use Equation 18-1 to calculate blanking times.

18.6.1 FALLING EVENT BLANKING OF RISING EVENT INPUTS

The falling event blanking counter inhibits rising event inputs from triggering a rising event. The falling event blanking time starts when the rising event output drive goes false.

The falling event blanking time is set by the value contained in the COGxBLKF register (Register 18-13). Blanking times are calculated using the formula shown in Equation 18-1.

When the COGxBLKF value is zero, falling event blanking is disabled and the blanking counter output is true, thereby, allowing the event signal to pass straight through to the event trigger circuit.

18.6.2 RISING EVENT BLANKING OF FALLING EVENT INPUTS

The rising event blanking counter inhibits falling event inputs from triggering a falling event. The rising event blanking time starts when the falling event output drive goes false.

The rising event blanking time is set by the value contained in the COGxBLKR register (Register 18-12).

When the COGxBLKR value is zero, rising event blanking is disabled and the blanking counter output is true, thereby, allowing the event signal to pass straight through to the event trigger circuit.

18.6.3 BLANKING TIME UNCERTAINTY

When the rising and falling sources that trigger the blanking counters are asynchronous to the COG_clock, it creates uncertainty in the blanking time. The maximum uncertainty is equal to one COG_clock period. Refer to Equation 18-1 and Example 18-1 for more detail.

18.7 Phase Delay

It is possible to delay the assertion of either or both the rising event and falling events. This is accomplished by placing a non-zero value in COGxPHR or COGxPHF phase-delay count register, respectively (Register 18-14 and Register 18-15). Refer to Figure 18-10 for COG operation with CCP1 and phase delay. The delay from the input rising event signal switching to the actual assertion of the events is calculated the same as the dead-band and blanking delays. Refer to Equation 18-1.

PIC16(L)F1704/8

19.6 Register Definitions: CLC Control

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
LCxEN	—	LCxOUT	LCxINTP	LCxINTN	L	CxMODE<2:0>	>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at a						R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxEN: Conf	igurable Logic	Cell Enable b	it			
	1 = Configura	able logic cell i	s enabled and	I mixing input s	ignals		
		able logic cell is	s disabled and	d has logic zero	output		
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	LCxOUT: Cor	nfigurable Logi	c Cell Data Ou	utput bit			
	Read-only: lo	gic cell output	data, after LC	xPOL; sampled	I from lcx_out v	vire.	
bit 4	LCxINTP: Co	nfigurable Log	ic Cell Positive	e Edge Going I	nterrupt Enable) bit	
	1 = CLCxIF v	will be set wher	n a rising edge	e occurs on lcx	_out		
hit 2			ia Call Nagativ	vo Edgo Coing	Interrupt Engl	lo hit	
DIL 3		vill be set where	no cell Negativ	e cours on lev			
	0 = CLCxIF v	will not be set	r a railing eug		_001		
bit 2-0	LCxMODE<2	:0>: Configura	ble Logic Cell	Functional Mo	de bits		
	111 = Cell is	1-input transpa	arent latch wit	h S and R			
	110 = Cell is	J-K flip-flop wi	th R				
	101 = Cell is	2-input D flip-f	lop with R				
	100 = Cell is	1-input D flip-f	lop with S and	IR			
011 = Cell is S-R latch010 = Cell is 4-input AND							
	001 = Cell is	OR-XOR					
	000 = Cell is	AND-OR					

REGISTER 19-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

20.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- · ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

20.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

20.1.2 CHANNEL SELECTION

There are up to 17 channel selections available:

- AN<13:8, 4:0> pins (PIC16(L)F1704 only)
- AN<21,13:0> pins (PIC16(L)F1708 only)
- Temperature Indicator
- DAC_output
- FVR_buffer1

The CHS bits of the ADCON0 register (Register 20-1) determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 20.2 "ADC Operation"** for more information.

20.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bit of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See Section 20.0 "Analog-to-Digital Converter (ADC) Module" for more details on the Fixed Voltage Reference.

20.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 20-2.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 32-16: ADC Conversion Requirements for more information. Table 20-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 27-1:	EXAMPLE PWM FREQUENCIES AND	RESOLUTIONS (Fosc = 20 MHz)
-------------	-----------------------------	-----------------------------

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 27-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

27.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

27.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

27.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

TABLE 27-3. SUMMART OF REGISTERS ASSOCIATED WITH STANDARD PWM										
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	—	—	DC1E	<1:0>		CCP1	N<3:0>		267	
CCPR1L	Capture/Corr	Capture/Compare/PWM Register 1 (LSB)							265*	
CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSE	EL<1:0>	260	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	86	
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	TMR6IE	TMR4IE	CCP2IE	87	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89	
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	TMR6IF	TMR4IF	CCP2IF	90	
PR2	Timer2 Peric	od Register							256*	
RxyPPS	_	_	_	- RxyPPS<4:0>					140	
T2CON	—		T2OUTI	PS<3:0>		TMR2ON	T2CKP	2S<1:0>	258	
TMR2	Timer2 Modu	ule Register							256	

TABLE 27-3: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM. * Page provides register information.

Note 1: Unimplemented, read as '1'.

PIC16(L)F1704/8

TABLE 29-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	122
ANSELB ⁽¹⁾	—	—	ANSB5	ANSB4	—	_	_	_	128
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5 ⁽²⁾	ANSC4(2)	ANSC3	ANSC2	ANSC1	ANSC0	133
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	336
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	86
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	335
RxyPPS	_	_	—		I	RxyPPS<4:0	140		
SP1BRGL				BRG<	:7:0>				337*
SP1BRGH				BRG<	15:8>				337*
TRISA	_	_	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	121
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	—	—	127
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	132
TX1REG	EUSART Tra	nsmit Data R	Register						326*
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	334

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

Note 1: PIC16(L)F1708 only.

2: PIC16(L)F1704 only.

3: Unimplemented, read as '1'.

PIC16(L)F1704/8

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-20: IDD, LFINTOSC Mode, Fosc = 31 kHz. PIC16F1704/8 Only.

FIGURE 33-21: IDD, MFINTOSC Mode, Fosc = 500 kHz. PIC16LF1704/8 Only.

FIGURE 33-22: IDD, MFINTOSC Mode, Fosc = 500 kHz. PIC16F1704/8 Only.

FIGURE 33-23: IDD Typical, HFINTOSC Mode. PIC16LF1704/8 Only.

FIGURE 33-24: IDD Maximum, HFINTOSC Mode. PIC16LF1704/8 Only.

34.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

34.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

34.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

34.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility