

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1704-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1704 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC1/AN5/C1IN1-/C2IN1-/	RC1	TTL/ST	CMOS	General purpose I/O.
OPA1IN-/SDI ⁽¹⁾ /SDA ⁽³⁾ /	AN5	AN	_	ADC Channel 5 input.
CLCINZ	C1IN1-	AN	_	Comparator C1 negative input.
	C2IN1-	AN	_	Comparator C2 negative input.
	OPA1IN-	AN	_	Operational Amplifier 1 inverting input.
	SDI	CMOS	_	SPI data input.
	SDA	l ² C	_	I ² C data input.
	CLCIN2	TTL/ST	_	Configurable Logic Cell source input.
RC2/AN6/C1IN2-/C2IN2-/	RC2	TTL/ST	CMOS	General purpose I/O.
OPA1OUT	AN6	AN	_	ADC Channel 6 input.
	C1IN2-	AN	_	Comparator C1 negative input.
	C2IN2-	AN	_	Comparator C2 negative input.
	OPA10UT	—	AN	Operational Amplifier 1 output.
RC3/AN7/C1IN3-/C2IN3-/	RC3	TTL/ST	CMOS	General purpose I/O.
OPA2OUT/CCP2 ⁽¹⁾ /SS ⁽¹⁾ /	AN7	AN	_	ADC Channel 7 input.
CLCINU	C1IN3-	AN	_	Comparator C1 negative input.
	C2IN3-	AN	_	Comparator C2 negative input.
	OPA2OUT	—	AN	Operational Amplifier 2 output.
	CCP2	TTL/ST	CMOS	Capture/Compare/PWM2.
	SS	TTL/ST	_	Slave Select input.
	CLCIN0	TTLST	_	Configurable Logic Cell source input.
RC4/OPA2IN-/CK ⁽¹⁾ /CLCIN1 ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.
	OPA2IN-	AN	_	Operational Amplifier 2 inverting input.
	СК	TTL/ST	CMOS	USART synchronous clock.
	CLCIN1	TTL/ST	_	Configurable Logic Cell source input.
RC5/OPA2IN+/CCP1 ⁽¹⁾ /RX ⁽¹⁾	RC5	TTL/ST	CMOS	General purpose I/O.
	OPA2IN+	AN	_	Operational Amplifier 2 non-inverting input.
	CCP1	TTL/ST	CMOS	Capture/Compare/PWM1.
	RX	TTL/ST	—	USART asynchronous input.
Vdd	Vdd	Power	—	Positive supply.
Vss	Vss	Power	_	Ground reference.

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 12-1.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-3.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 3-5: PIC16(L)F1704/8 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h		480h		500h	0 5 1 1	580h	0 5 1 1	600h		680h		700h		780h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	—	48Ch	—	50Ch	_	58Ch	_	60Ch	—	68Ch	_	70Ch	_	78Ch	—
40Dh	—	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	—	48Eh	—	50Eh	—	58Eh	—	60Eh	—	68Eh	—	70Eh	—	78Eh	—
40Fh	_	48Fh	_	50Fh		58Fh		60Fh	—	68Fh	_	70Fh	_	78Fh	_
410h	—	490h	_	510h		590h		610h	_	690h	—	710h	_	790h	—
411h	—	491h	—	511h	OPA1CON	591h	—	611h	—	691h	COG1PHR	711h	—	791h	—
412h		492h	—	512h	—	592h	—	612h	—	692h	COGIPHE	712h	—	792h	—
413h	—	493h	—	513h	—	593h	—	613h	—	693h	COGIBLKR	713h	—	793h	—
414h		494h	—	514h		594h	—	614h	—	694h	COGIBLE	714h	—	794h	—
415h	TMR4	495h	_	515h	OPA2CON	595h		615h	—	695h	COG1DBR	715h	_	795h	_
416h	PR4	496h	—	516h	—	596h	—	616h		696h	COGIDBE	716h	—	796h	—
417h	T4CON	497h	_	517h		597h		617h	PWM3DCL	697h	COGICONO	717h	_	797h	_
418h		498h	—	518h	_	598h	_	618h	PWM3DCH	698h	COGICONI	/18h	—	798h	_
419h	_	499h	_	519h		599h		619h	PWM3CON	699h	COGIRIS	719h	_	799h	_
41Ah	_	49Ah	_	51Ah		59Ah		61Ah	PWM4DCL	69Ah		71Ah	_	79Ah	_
41Bh		49Bh	—	51Bh	—	59Bh	—	61Bh	PWM4DCH	69Bh		/1Bh	—	79Bh	_
41Ch	TMR6	49Ch	_	51Ch		59Ch		61Ch	PWM4CON	69Ch	COGTESIM	71Ch	_	79Ch	_
41Dh	PR6	49Dh	—	51Dh	—	59Dh	—	61Dh	—	69Dh		/1Dh	—	79Dh	—
41Eh	16CON	49Eh	—	51Eh	—	59Eh	—	61Eh	—	69Eh	COGIASDI	/1Eh	—	79Eh	_
41Fh 420b	—	49Fh	—	51Fh 520b	—	59Fh	—	61Fh	—	69Fh	COGISTR	/1Fh 720h	—	79⊢h 7∆0h	—
42011		47011		52011		JAUII		02011		UAUII		72011		7 AUT	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4FFh		56Fh		5EFh		66Fh		6FFh		76Fh		7FFh	
470h		4F0h		570h		5E0h		670h		6F0h		770h		7E0h	
	A		A	0.0	A	0. 0	A	0.011	A	0. 0	A		A		A
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Eh
	/011 /111								7011 7111		7011 7111	7751	7011 7111	7661	/011 /111
47Fn		4FFN		57FN		5FFN		67FN		6FFN		//Fn		7FFN	
	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

MEMORY MODIFY FLOWCHART Start Modify Operation **Read Operation** Figure 10-1 An image of the entire row read must be stored in RAM Modify Image The words to be modified are changed in the RAM image Erase Operation Figure 10-4 Write Operation use RAM image Figure 10-6 End Modify Operation

FLASH PROGRAM

FIGURE 10-7:

REGISTER 13-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0		
IOCBP7	IOCBP6	IOCBP5	IOCBP4		—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					

u = Bit is unchan	ged x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	
bit 7-4	IOCBP<7:4>: Interrupt-on-Change PORTB Pos	sitive Edge Enable bits

	Toobi (1.42. Interrupt on onlarge rortron oblive Edge Enable bits
	1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon
	detecting an edge.
	0 = Interrupt-on-Change disabled for the associated pin.
bit 3-0	Unimplemented: Read as '0'

Note 1: PIC16(L)F1708 only.

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBN<7:4>:** Interrupt-on-Change PORTB Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

bit 3-0 Unimplemented: Read as '0'

Note 1: PIC16(L)F1708 only.

REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits
	 An enabled change was detected on the associated pin.
	Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was
	detected on RBx.
	0 = No change was detected, or the user cleared the detected change.

bit 3-0 Unimplemented: Read as '0'

Note 1: PIC16(L)F1708 only.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDFVR<1:0>		ADFVF	۲<1:0>	151

Legend: Shaded cells are unused by the temperature indicator module.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	GxRSIM6	GxRSIM5	GxRSIM4	GxRSIM3	GxRSIM2	GxRSIM1	GxRSIM0
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable I	Dit	U = Unimple	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value	at POR and BOF	Value at all other value at a	ner Resets
1 = Bit is set		0 = Bit is clea	ared	q = value de	penas on condition	on	
hit 7	Unimplemen	tod: Road as 'o	3				
bit 6	GxRSIM6: CO	OGx Rising Eve	nt Input Sour	ce 6 Mode bit			
	GxRIS6 = 1:						
	1 = PWM3 o	utput low-to-higl	n transition wi	Il cause a risin	g event after risir	ng event phase	delay
	0 = PWM3 or	utput high level	will cause an	immediate risi	ng event		
	PWM3 output	has no effect o	n rising event				
bit 5	GxRSIM5: CO	OGx Rising Eve	nt Input Sourc	ce 5 Mode bit			
	GxRIS5 = 1:	4 4 I 4 Is tool	4				de les s
	1 = CCP2 ou 0 = CCP2 ou	itput low-to-nign itput high level v	transition wil	l cause a rising mmediate risir	g event after rising ig event	g event phase c	lelay
	<u>GxRIS5 = 0:</u>				.9 01011		
	CCP2 output	has no effect or	rising event				
bit 4	GxRSIM4: CO	OGx Rising Eve	nt Input Sourd	ce 4 Mode bit			
	$\frac{GXRIS4 = 1}{1 = CCP1 lov}$	<i>w</i> -to-high transit	ion will cause	a rising event	after rising event	t phase delav	
	0 = CCP1 hig	gh level will cau	se an immedi	ate rising ever	it	,,	
	$\frac{\text{GxRIS4} = 0}{\text{CCP1} \text{ has no}}$	offect on rising	overt				
hit 3	GYRSIM3: CO	Car Rising Eve	eveni nt Input Sourc	re 3 Mode hit			
bit o	<u>GxRIS3 = 1:</u>						
	1 = CLC1 ou	tput low-to-high	transition will	cause a rising	event after rising	g event phase d	lelay
	0 = CLC1 ou GxRIS3 = 0	tput high level v	vill cause an i	mmediate risin	g event		
	CLC1 output	has no effect on	rising event				
bit 2	GxRSIM2: CO	OGx Rising Eve	nt Input Sourc	ce 2 Mode bit			
	<u>GxRIS2 = 1:</u>						
	1 = Compara 0 = Compara	itor 2 low-to-hig itor 2 high level	n transition wi will cause an	ill cause a risin immediate risi	g event after risir ng event	ig event phase	delay
	<u>GxRIS2 = 0:</u>				ing over		
	Comparator 2	has no effect o	n rising event	I			
bit 1	GxRSIM1: CO	OGx Rising Eve	nt Input Sourd	ce 1 Mode bit			
	1 = Compara	tor 1 low-to-hia	h transition wi	ill cause a risin	g event after risir	na event phase	delav
	0 = Compara	tor 1 high level	will cause an	immediate risi	ng event	5	,
	$\frac{\text{GxRIS1} = 0}{\text{Comparator 1}}$	has no offect o	n ricing over				
hit 0		Gy Rising Eve	nt Input Source	re () Mode hit			
bit 0	GxRIS0 = 1:		nt input Sourt				
	1 = Pin selec	ted with COGxF	PPS control lo	w-to-high trans	sition will cause a	ı rising event aft	er rising event
	phase de	elay ted with COCy	PPS control h	iah level will a	ause an immediat	te rising event	
	$\frac{G = 0}{G \times RIS0 = 0}$					te namy event	
	Pin selected v	with COGxPPS	control has no	o effect on risir	ng event		

REGISTER 18-4: COGxRSIM: COG RISING EVENT SOURCE INPUT MODE REGISTER

20.2.6 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 20.4 "ADC Acquisition Requirements".

EXAMPLE 20-1: ADC CONVERSION

;This code block configures the ADC ; for polling, Vdd and Vss references, FRC ;oscillator and ANO input. ;Conversion start & polling for completion ; are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, FRC MOVLW ;oscillator MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL WPUA BCF wpua,0 ;Disable weak ;pull-up on RA0 BANKSEL ADCON0 B'00000001' ;Select channel AN0 MOVLW MOVWF ADCON0 ; Turn ADC On CALL SampleTime ;Acquisiton delay BSF ADCON0, ADGO ;Start conversion ADCON0, ADGO ; Is conversion done? BTFSC GOTO \$-1 ;No, test again BANKSEL ADRESH ; ADRESH,W ;Read upper 2 bits MOVF RESULTHI ;store in GPR space MOVWE BANKSEL ADRESL ; MOVF ADRESL,W ;Read lower 8 bits MOVWF RESULTLO ;Store in GPR space

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note:	The Timer postscaler (see Section 26.1
	"Timer2 Operation") is not used in the
	determination of the PWM frequency.

27.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 27-2 is used to calculate the PWM pulse width.

Equation 27-3 is used to calculate the PWM duty cycle ratio.

EQUATION 27-2: PULSE WIDTH

 $Pulse Width = (CCPRxL:CCPxCON < 5:4>) \bullet$

TOSC • (TMR2 Prescale Value)

EQUATION 27-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 27-4).

27.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 27-4.

EQUATION 27-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + I)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

28.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

28.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

28.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

28.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

28.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

28.4.3 SDA AND SCL PINS

Selection of any l^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note 1:	Data is tied to output zero when an I^2C mode is enabled.
2:	Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPDATPPS registers. The SCL input is selected with the SSPCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

28.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 28-2: I²C BUS TERMS

TERM	Description
Transmitter	The device which shifts data out
Transmitter	onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

28.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 28-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 28-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 28-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

31.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label]ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

wrap-around.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ASRF	Arithmetic Right Shift
Syntax:	[label] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

ADDWFC	ADD W and CARRY bit to f	

Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

32.0 ELECTRICAL SPECIFICATIONS

32.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40	0°C to +125°C
-65 Storage temperature	5°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1704/8	-0.3V to +6.5V
PIC16LF1704/8	-0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins0.3V to	o (Vdd + 0.3V)
Maximum current ⁽¹⁾	
on Vss pin	
-40°C \leq TA \leq +85°C, Industrial	250 mA
+85°C \leq TA \leq +125°C, Extended	85 mA
on VDD pin	
-40°C \leq TA \leq +85°C, Industrial	250 mA
+85°C \leq TA \leq +125°C, Extended	85 mA
sunk by any I/O pin	50 mA
sourced by any I/O pin	50 mA
sourced by any op amp output pin	±100 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 32-3 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {VDD - VOH) x IOH} + Σ (VOL x IOI).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

32.2 Standard Operating Conditions

The standard operating co	onditions for any device are defined as:	
Operating Voltage:	$V\text{DDMIN} \leq V\text{DD} \leq V\text{DDMAX}$	
Operating Temperature:	$TA_MIN \le TA \le TA_MAX$	
VDD — Operating Supply	/ Voltage ⁽¹⁾	
PIC16LF1704/8		
VDDMIN (F	^c osc ≤ 16 MHz)	+1.8V
VDDMIN (F	osc > 16 MHz)	+2.5V
VDDMAX		+3.6V
PIC16F1704/8		
Vddmin (F	$\cos c \le 16 \text{ MHz}$)	+2.3V
VDDMIN (>	16 MHz)	+2.5V
VDDMAX		+5.5V
TA — Operating Ambient	t Temperature Range	
Industrial Temperat	ure	
TA_MIN		40°C
Та_мах		
Extended Temperat	ture	
Та_мім		-40°C
Та_мах		+125°C
Note 1: See Paramete	r D001, DS Characteristics: Supply Voltage.	

PIC16LF1	1704/8	Standard Operating Conditions (unless otherwise stated)							
PIC16F17	704/8	Standard Operating Conditions (unless otherwise stated)							
Param.	Device	Mim	Тур.†	Max	Unito		Conditions		
No.	Characteristics	win.		wax.	Units	Vdd	Note		
D020		—	2.3	3.0	mA	3.0	Fosc = 32 MHz,		
		—	2.8	3.5	mA	3.6	HFINTOSC mode (Note 5)		
D020			2.4	3.1	mA	3.0	Fosc = 32 MHz,		
		—	2.6	3.4	mA	5.0	HFINTOSC mode (Note 5)		
D022		—	2	3.0	mA	3.0	Fosc = 32 MHz,		
		—	2.6	3.5	mA	3.6	HS Oscillator mode (Note 5)		
D022		—	2.1	3.0	mA	3.0	Fosc = 32 MHz,		
			3	3.5	mA	5.0	HS Oscillator mode (Note 5)		

TABLE 32-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 8 MHz clock with 4x PLL enabled.

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾		—	70	ns	$3.3V \le V\text{DD} \le 5.0V$
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	_	72	ns	$3.3V \leq V\text{DD} \leq 5.0V$
OS13	TCKL2IOV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns	
OS14	ТюV2скН	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns	_	_	ns	
OS15	TosH2IoV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \leq V\text{DD} \leq 5.0V$
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	_	ns	$3.3V \leq V\text{DD} \leq 5.0V$
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	_	ns	
OS18*	TIOR	Port output rise time ⁽²⁾	—	40	72	ns	VDD = 1.8V
			—	15	32		$3.3V \le V\text{DD} \le 5.0V$
OS19*	TIOF	Port output fall time ⁽²⁾	—	28	55	ns	VDD = 1.8V
			—	15	30		$3.3V \le V\text{DD} \le 5.0V$
OS20*	TINP	INT pin input high or low time	25	—	—	ns	
OS21*	TIOC	Interrupt-on-change new input level time	25	_	_	ns	

TABLE 32-10: CLKOUT AND I/O TIMING PARAMETERS

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Slew rate limited.

Note: Unless otherwise noted, VIN = 5V, FOSC = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-109: Comparator Output Filter Delay Time over Temperature, Normal-Power Mode, Typical Measured Values, PIC16F1704/8 Only.

FIGURE 33-110: Typical DAC DNL Error, VDD = 3.0V, VREF = External 3V.

FIGURE 33-112: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1704/8 Only.

FIGURE 33-113: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1704/8 Only.

FIGURE 33-114: DAC INL Error, VDD = 3.0V, PIC16LF1704/8 Only.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (07/2013)

Initial release.

Revision B (09/2013)

Moved Note 1 from Table 3-10 to Table 3-9; Register 4-2, Removed overbar from bit 7; Table 8-1, removed IOCBF, IOCBN, IOCBP; Register 12-3, revised bit 4-0; Revised Table 32-1, Param. D003; Revised Table 32-2, added Note 5 to D015, revised Note 5; Revised Table 32-7, OS03 Min.; Revised Table 32-17, OPA06, Min.; Revised Register 21-1, bit 6 description.

Revision C (03/2015)

Updated data sheet to Final status; Updated Sections 3.4.2, 8.2.2, 18.1.1, 20.1.2, 20.1.3, 21.1, 21.1.1, 22.3, 28.2.1, 29.4.2, 32.0 ("Electrical Specifications") and 33.0 ("DC and AC Characteristics Graphs and Charts"); Updated introductory paragraph of Section 21.0; Added Sections 3.2 ("High-Endurance Flash") and 14.3 ("FVR Buffer Stabilization Period"); Updated Tables 1, 2, 1-2, 6-1, 17-3, 19-1 and 20-3; Updated legend in Table 12-1; Updated note references and bit 2 of ADCON1 register in Table 3-10; Updated Figures 6-7, 14-1, 16-2, 18-2 through 18-6, 20-1, 21-1, 22-1, 25-1; Updated Registers 18-6, 18-7, 18-9, 20-1, 20-2, 21-1, 25-1; Other minor corrections.

Revision D (10/2015)

Added High-Endurance Flash Data Memory (HEF) bullet and updated XLP Features for consistency on front page. Added Section 6.3.5: Clock Switching Before Sleep.

Updated PIC16(L)F170x Family Types Table. Updated Example 20-1; Section 20.2.6; and Tables 1-2 and 32-11.