

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1704-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-5: PIC16(L)F1704/8 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h		480h		500h		580h		600h		680h		700h		780h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	_	48Ch	_	50Ch	_	58Ch		60Ch		68Ch	_	70Ch		78Ch	
40Dh		48Dh		50Dh	_	58Dh	_	60Dh	_	68Dh	_	70Dh		78Dh	_
40Eh	—	48Eh	—	50Eh	—	58Eh	_	60Eh		68Eh		70Eh	_	78Eh	
40Fh	_	48Fh	_	50Fh	_	58Fh	_	60Fh	_	68Fh		70Fh	_	78Fh	
410h	_	490h	_	510h		590h	_	610h	—	690h	—	710h		790h	
411h	—	491h	—	511h	OPA1CON	591h		611h		691h	COG1PHR	711h	_	791h	
412h	—	492h	—	512h	—	592h		612h	_	692h	COG1PHF	712h		792h	
413h	_	493h	—	513h	_	593h		613h		693h	COG1BLKR	713h		793h	
414h		494h	_	514h	-	594h	—	614h		694h	COG1BLKF COG1DBR	714h		794h	
415h	TMR4	495h	_	515h	OPA2CON	595h		615h		695h	COGIDBR	715h		795h	
416h	PR4	496h	_	516h	_	596h	—	616h	PWM3DCL	696h	COG1CON0	716h		796h	—
417h	T4CON	497h 498h	_	517h	—	597h 598h	—	617h		697h 698h	COG1CON0	717h		797h 798h	—
418h	_	498n 499h		518h		598n 599h		618h	PWM3DCH PWM3CON	698n 699h	COG1RIS	718h 719h		798n 799h	
419h				519h				619h			COG1RSIM	-			
41Ah		49Ah 49Bh		51Ah 51Bh		59Ah 59Bh		61Ah	PWM4DCL PWM4DCH	69Ah 69Bh	COGIFIS	71Ah		79Ah 79Bh	
41Bh	 TMR6	49Bn 49Ch		51Ch		59BN		61Bh 61Ch	PWM4DCH PWM4CON	69Ch	COG1FSIM	71Bh 71Ch		79Bn 79Ch	
41Ch 41Dh	PR6	49Ch 49Dh		51Dh		59Ch		61Dh		69Ch	COG1ASD0	71Dh		79Ch	
41Dh 41Eh	T6CON	49Dh 49Eh		51Eh		59Eh		61Eh		69Eh	COG1ASD1	71Eh		79Dh	
41En 41Fh	-	49En 49Fh		51En		59En		61Fh		69Eh	COG1STR	71En		79En	
420h		4A0h		520h		5A0h		620h		6A0h	0001011	720h		7A0h	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
17 011	Accesses		Accesses	07011	Accesses	01 011	Accesses	01011	Accesses	01 011	Accesses	11011	Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
	7011 - 7111		7011-7111		7011 - 7111		7011 - 7111	0751	7011-7111		7011-7111		7011-7111		7011 - 7111
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	
	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	Core Registers	880h	Core Registers	900h	Core Registers	980h	Core Registers	A00h	Core Registers	A80h	Core Registers	B00h	Core Registers	B80h	Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
00011	Unimplemented Read as '0'	00011	Unimplemented Read as '0'	00011	Unimplemented Read as '0'	00011	Unimplemented Read as '0'	710011	Unimplemented Read as '0'	7 loon	Unimplemented Read as '0'	Doon	Unimplemented Read as '0'	Doon	Unimplemented Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
		8EFN 8F0h		96Fn 970h		9EFII 9F0h		-		AEFII AF0h		Born B70h		BF0h	
870h	A	or nu	A	9/00	A	arou	A	A70h	A	AFUN	A	BION	A	BEON	A
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
	/011-/F11		/011 – /F11		/011 – / FN		/011-/FN		/011-/FN		/011-/FN				7011 – 7FN
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

IABI	BLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)										
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 30										
F0Ch											
— F0Eh	_	Unimplement	ted							_	_
F0Fh	CLCDATA	_	_	_	_	_	MLC3OUT	MLC2OUT	MLC1OUT	000	000
F10h	CLC1CON	LC1EN	_	LC10UT	LC1INTP	LC1INTN	l	_C1MODE<2:0)>	0-x0 0000	0-00 0000
F11h	CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	x xxxx	0 uuuu
F12h	CLC1SEL0	_	_	_			LC1D1S<4:0	>		x xxxx	u uuuu
F13h	CLC1SEL1	_	_	-			LC1D2S<4:0	>		x xxxx	u uuuu
F14h	CLC1SEL2	_	_	-			LC1D3S<4:0	>		x xxxx	u uuuu
F15h	CLC1SEL3	_	_	_			LC1D4S<4:0	>		x xxxx	u uuuu
F16h	CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	XXXX XXXX	uuuu uuuu
F17h	CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	XXXX XXXX	uuuu uuuu
F18h	CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
F19h	CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
F1Ah	CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTP LC2INTN LC2MODE<2:0>					0-00 0000
F1Bh	CLC2POL	LC2POL	—		—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
F1Ch	CLC2SEL0	—	-				LC2D1S<4:0	>		x xxxx	u uuuu
F1Dh	CLC2SEL1	—	-				LC2D2S<4:0	>		x xxxx	u uuuu
F1Eh	CLC2SEL2	—	—				LC2D3S<4:0	>		x xxxx	u uuuu
F1Fh	CLC2SEL3	—	-				LC2D4S<4:0	>		x xxxx	u uuuu
F20h	CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	XXXX XXXX	uuuu uuuu
F21h	CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	XXXX XXXX	uuuu uuuu
F22h	CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	uuuu uuuu
F23h	CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	XXXX XXXX	uuuu uuuu
F24h	CLC3CON	LC3EN	—	LC3OUT	LC3INTP	LC3INTN	l	_C3MODE<2:)>	0-00 0000	0-00 0000
F25h	CLC3POL	LC3POL	—	—	—	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
F26h	CLC3SEL0	—	—				LC3D1S<4:0	>		x xxxx	u uuuu
F27h	CLC3SEL1	—	—	-			LC3D2S<4:0	>		x xxxx	u uuuu
F28h	CLC3SEL2	_	_	_			LC3D3S<4:0	>		x xxxx	u uuuu
F29h	CLC3SEL3	_	_	_			LC3D4S<4:0	>		x xxxx	u uuuu
F2Ah	CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	XXXX XXXX	uuuu uuuu
F2Bh	CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	XXXX XXXX	uuuu uuuu
F2Ch	CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	XXXX XXXX	uuuu uuuu
F2Dh	CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	XXXX XXXX	uuuu uuuu
F2Eh — F6Fh	_	Unimplement	ted							_	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend: Note

Unimplemented, read as '1'. 1:

2: PIC16(L)F1704 only.

PIC16(L)F1708 only. 3:

Unimplemented on PIC16LF1704/8. 4:

5.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 5-3 and Table 5-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, \overline{PD} is set on \overline{POR}
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 5-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 5-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

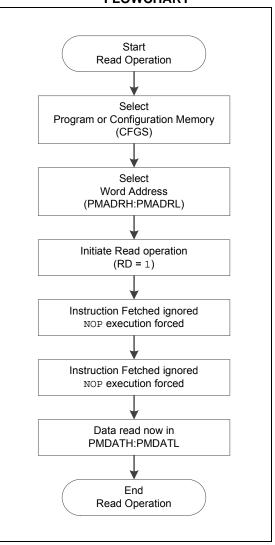
TABLE 10-1:FLASH MEMORY
ORGANIZATION BY DEVICE

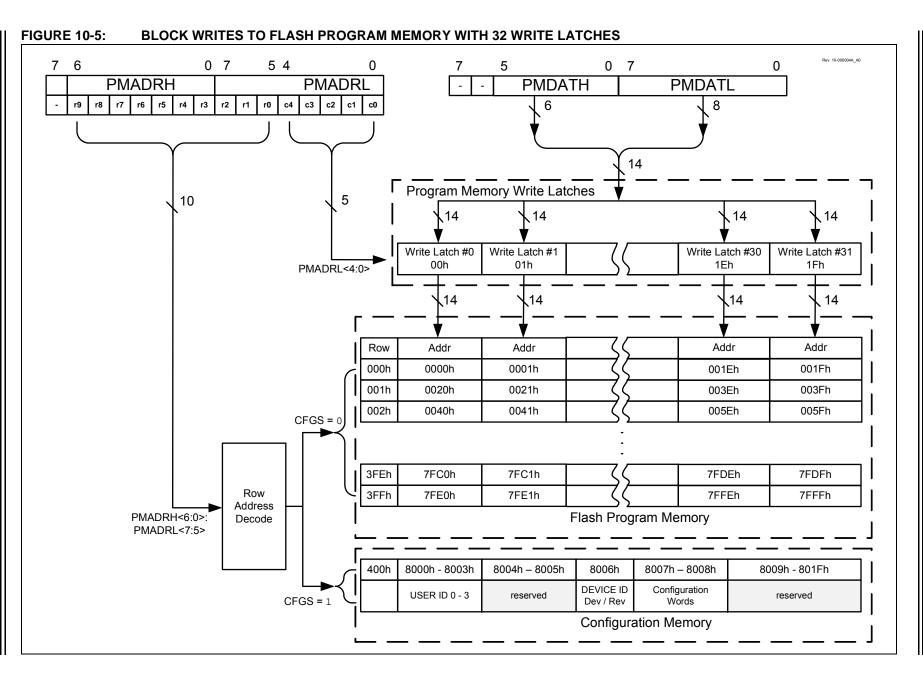
Device	Row Erase (words)	Write Latches (words)
PIC16(L)F1704	32	32
PIC16(L)F1708	52	52

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.


Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.


PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 10-1:

FLASH PROGRAM MEMORY READ FLOWCHART

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

MEMORY MODIFY FLOWCHART Start Modify Operation **Read Operation** Figure 10-1 An image of the entire row read must be stored in RAM Modify Image The words to be modified are changed in the RAM image Erase Operation Figure 10-4 Write Operation use RAM image Figure 10-6 End Modify Operation

FLASH PROGRAM

FIGURE 10-7:

REGISTER 17-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PWMxI	DCH<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable bit		U = Unimpleme	ented bit, read as	' 0'	
u = Bit is unchar	nged	x = Bit is unknow	'n	-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is set		'0' = Bit is cleared	d				

bit 7-0

PWMxDCH<7:0>: PWM Duty Cycle Most Significant bits

These bits are the MSbs of the PWM duty cycle. The two LSbs are found in PWMxDCL Register.

REGISTER 17-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxD)CL<7:6>	_	—	—	_	—	—
bit 7			•	•			bit 0
Legend:							
R = Readable b	pit	W = Writable bi	t	U = Unimpleme	ented bit, read as	ʻ0'	
u = Bit is uncha	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				

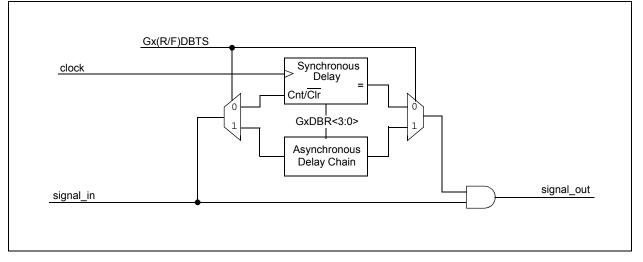

bit 5-0 Unimplemented: Read as '0'

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS	P4TSE	L<1:0>	P3TSE	EL<1:0>	C2TSE	L<1:0>	C1TSE	260	
PR2			-	Timer2 module I	Period Register				256
PWM3CON	PWM3EN	_	PWM3OUT	PWM3POL	_	_	_	_	167
PWM3DCH		PWM3DCH<7:0>							
PWM3DCL	PWM3D	CL<7:6>	_	_	_	_	_	_	168
PWM4CON	PWM4EN	_	PWM4OUT	PWM4POL	_	_	_	_	167
PWM4DCH				PWM4D0	CH<7:0>				168
PWM4DCL	PWM4D	CL<7:6>	_	_	_	_	_	_	168
RxyPPS	— — — RxyPPS<4:0>							140	
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	258
TMR2		Timer2 module Register							

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

FIGURE 18-8: COG (RISING/FALLING) DEAD-BAND BLOCK

When the phase-delay count value is zero, phase delay is disabled and the phase-delay counter output is true, thereby, allowing the event signal to pass straight through to the complementary output driver flop.

18.7.1 CUMULATIVE UNCERTAINTY

It is not possible to create more than one COG clock of uncertainty by successive stages. Consider that the phase-delay stage comes after the blanking stage, the dead-band stage comes after either the blanking or phase-delay stages, and the blanking stage comes after the dead-band stage. When the preceding stage is enabled, the output of that stage is necessarily synchronous with the COG clock, which removes any possibility of uncertainty in the succeeding stage.

EQUATION 18-1: PHASE, DEAD-BAND, AND BLANKING TIME CALCULATION

$T_{\min} = \frac{Cc}{Fc}$	ount COG_clock					
$T_{\max} = \frac{\text{Count} + 1}{F_{COG_clock}}$						
$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$						
Also: $T_{\text{uncertainty}} = \frac{1}{F_{Q}}$	1 COG_clock					
Where:						
т	Count					
Rising Phase Delay	COGyPHR					

Count				
COGxPHR				
COGxPHF				
COGxDBR				
COGxDBF				
COGxBLKR				
COGxBLKF				

TIMER UNCERTAINTY **EXAMPLE 18-1:**

Given: Count = Ah = 10d $F_{COG, Clock} = 8 MHz$ Therefore: fore: $T_{\text{uncertainty}} = \frac{1}{F_{COG_clock}}$ $= \frac{1}{8MHz} = 125ns$ Proof: $T_{\min} = \frac{Count}{F_{COG_clock}}$ $= 125ns \bullet 10d = 1.25 \mu s$ $T_{\text{max}} = \frac{Count + 1}{F_{COG} \operatorname{clock}}$ $= 125ns \bullet (10d + 1)$ $= 1.375 \mu s$

Therefore:

$$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$$
$$= 1.375 \,\mu s - 1.25 \,\mu s$$
$$= 125 ns$$

23.9 Register Definitions: ZCD Control

REGISTER 23-1: ZCDxCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-0/0	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ZCDxEN	—	ZCDxOUT	ZCDxPOL	—	—	ZCDxINTP	ZCDxINTN
bit 7	·						bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = value dep	ends on config	uration bits	
oit 7		ro-Cross Detec					
					utput to source		
			•	n operates acc	ording to PPS a	and TRIS contr	OIS.
oit 6	•	Unimplemented: Read as '0'					
oit 5		ero-Cross Dete	ection Logic Le	evel bit			
	ZCDxPOL bit	<u> = 0</u> : is sinking curre	nt				
		is sourcing cure					
	ZCDxPOL bit						
		is sourcing cur					
	0 = ZCD pin is sinking current						
bit 4		ero-Cross Dete		utput Polarity b	Dit		
 1 = ZCD logic output is inverted 0 = ZCD logic output is not inverted 							
bit 3-2	0	Unimplemented: Read as '0'					
bit 1	-	ero-Cross Pos		errupt Enable b	bit		
		t is set on low-	•	•			
	0 = ZCDIF bit is unaffected by low-to-high ZCDx_output transition						
pit 0	ZCDxINTN: Z	Zero-Cross Neg	ative Edge In	terrupt Enable	bit		
		t is set on high					
	0 = ZCDIF bit is unaffected by high-to-low ZCDx_output transition						
Note 1: T	e ZCDxEN bit has no effect when the ZCDDIS Configuration bit is cleared.						

TABLE 23-1: SU	JMMARY OF REGISTERS	ASSOCIATED WITH	THE ZCD MODULE
----------------	---------------------	------------------------	----------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	—	—	COGIE	ZCDIE	_	—	—	—	88
PIR3	—	_	CWGIF	ZCDIF	_	_	—	_	91
ZCD1CON	ZCD1EN		ZCD10UT	ZCD1POL			ZCD1INTP	ZCD1INTN	241

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 23-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8		—	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	51
	7:0	ZCDDIS	_	_	_	_	_	WRT	<1:0>	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

25.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

25.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Secondary oscillator will continue to operate in Sleep regardless of the $\overline{T1SYNC}$ bit setting.

25.9 CCP Capture/Compare Time Base

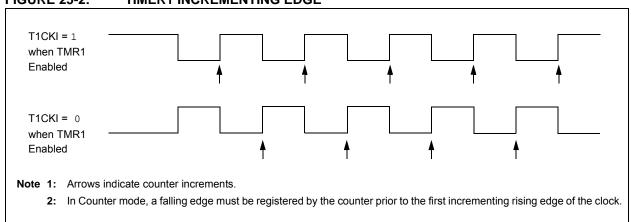
The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be an Auto-conversion Trigger.

For more information, see Section 27.0 "Capture/Compare/PWM Modules".

25.10 CCP Auto-Conversion Trigger


When any of the CCP's are configured to trigger an auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of Timer1 can cause an Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with an Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see **Section 27.2.4** "Auto-Conversion Trigger".

FIGURE 25-2: TIMER1 INCREMENTING EDGE

27.2.1 CCPX PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

27.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See **Section 25.0 "Timer1 Module with Gate Control"** for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

27.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

27.2.4 AUTO-CONVERSION TRIGGER

When Auto-conversion Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

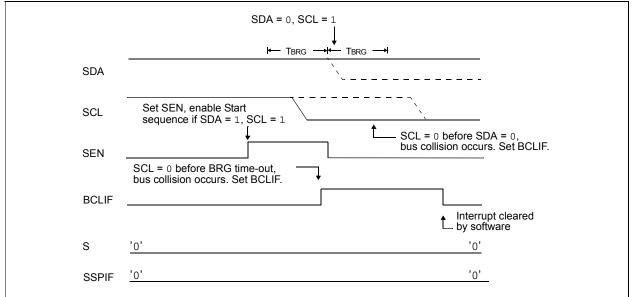
The Auto-conversion Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Auto-conversion Trigger output starts an ADC conversion (if the ADC module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1. Refer to **Section 20.2.5** "Auto-Conversion Trigger" for more information.

- Note 1: The Auto-conversion Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Auto-conversion Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

27.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

27.3 PWM Overview


Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

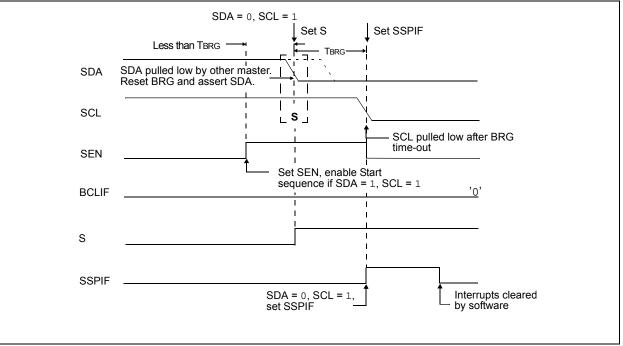
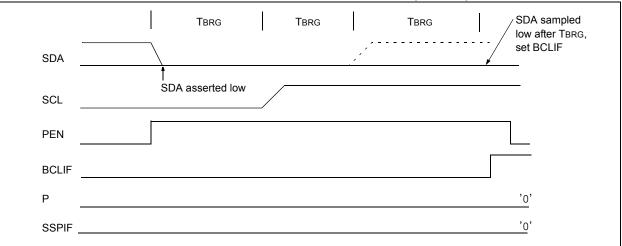
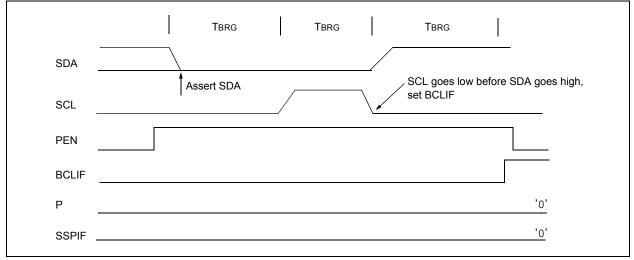

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 27-3 shows a typical waveform of the PWM signal.


28.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 28-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 28-39).

FIGURE 28-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 28-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

REGISTER 28-2: SSP1CON1: SSP CONTROL REGISTER 1

REGISTER 2	8-2: SSP10	CON1: SSP C	ONTROL R	EGISTER 1			
R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPN	1<3:0>	
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	-	'0' = Bit is cle	ared	HS = Bit is se	et by hardware	C = User clea	ared
bit 7	Master mode 1 = A write to			attempted while	the I ² C condition	ons were not va	alid for a trans
	0 = No collisi <u>Slave mode:</u>	ion BUF register is v	vritten while it is	s still transmitting	the previous wo	rd (must be clea	red in software
bit 6	$\frac{\text{In SPI mode:}}{1 = \text{A new by}}$ the data i the SSPE is not set (must be 0 = No overfil In I ² C mode: 1 = A byte is	n SSPSR is los BUF, even if only since each nev cleared in softv low received while	hile the SSPBI t. Overflow car / transmitting c v reception (ar vare). the SSPBUF	JF register is stil n only occur in S lata, to avoid set nd transmission) register is still l	I holding the pre- lave mode. In SI tting overflow. In is initiated by w holding the prev	lave mode, the u Master mode, t rriting to the SSI	user must reac he overflow bi PBUF register
bit 5	 care" in Transmit mode (must be cleared in software). 0 = No overflow SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output In SPI mode: 1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins In I²C mode: 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins 				port pins ⁽²⁾		
bit 4	CKP: Clock F In SPI mode: 1 = Idle state 0 = Idle state In I ² C Slave r SCL release of 1 = Enable cl	Polarity Select I for clock is a h for clock is a k <u>node:</u> control ock ck low (clock s	bit ligh level bw level	to ensure data			

29.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

29.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 29.5.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

29.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RCSTA and TXSTA Control registers must be configured for synchronous slave transmission (see Section 29.5.2.2 "Synchronous Slave Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

. .

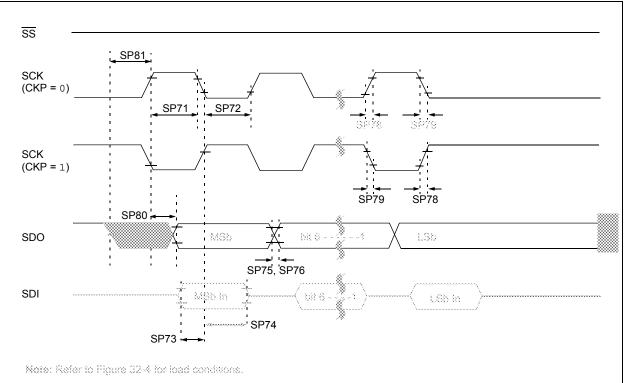
MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	 W → INDFn Effective address is determined by FSR + 1 (preincrement) FSR - 1 (predecrement) FSR + k (relative offset) After the Move, the FSR value will be either: FSR + 1 (all increments) FSR - 1 (all decrements) Unchanged
Status Affected:	None

Mode	Syntax	mm	
Preincrement	++FSRn	00	
Predecrement	FSRn	01	
Postincrement	FSRn++	10	
Postdecrement	FSRn	11	

Description:

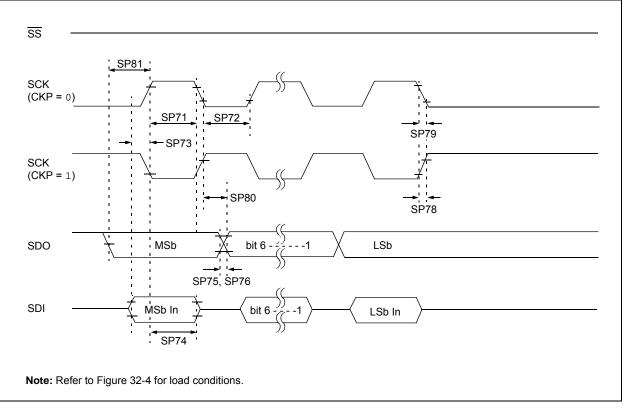
This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.


FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP


OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	(W) \rightarrow OPTION_REG
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F
	After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the \overrightarrow{RI} flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

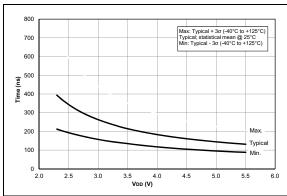
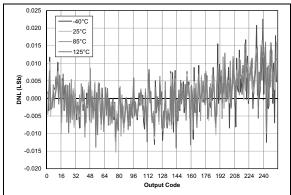
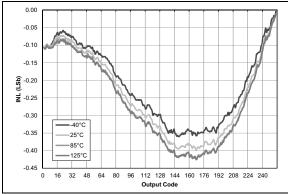


FIGURE 32-17: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)




Note: Unless otherwise noted, VIN = 5V, FOSC = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

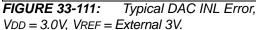


FIGURE 33-109: Comparator Output Filter Delay Time over Temperature, Normal-Power Mode, Typical Measured Values, PIC16F1704/8 Only.

FIGURE 33-110: Typical DAC DNL Error, VDD = 3.0V, VREF = External 3V.

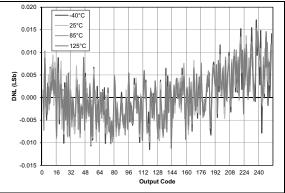


FIGURE 33-112: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1704/8 Only.

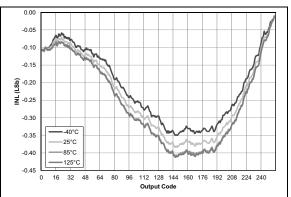
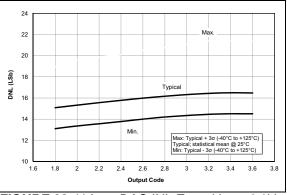



FIGURE 33-113: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1704/8 Only.

FIGURE 33-114: DAC INL Error, VDD = 3.0V, PIC16LF1704/8 Only.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support