Microchip Technology - PIC16LF1708-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1708-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/VREF-/C1IN+/	RA0	TTL/ST	CMOS	General purpose I/O.
DAC1OUT/ICSPDAT	AN0	AN	_	ADC Channel 0 input.
	VREF-	AN		ADC Negative Voltage Reference input.
	C1IN+	AN		Comparator C1 positive input.
	DAC1OUT	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/C1IN0-/C2IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
ICSPCLK	AN1	AN		ADC Channel 1 input.
	VREF+	AN	_	ADC Voltage Reference input.
	C1IN0-	AN	_	Comparator C2 negative input.
	C2IN0-	AN	_	Comparator C3 negative input.
	ICSPCLK	ST	_	Serial Programming Clock.
RA2/AN2/DAC1OUT2/ZCD/	RA2	TTL/ST	CMOS	General purpose I/O.
T0CKI ⁽¹⁾ /COGIN ⁽¹⁾ /INT ⁽¹⁾	AN2	AN	_	ADC Channel 2 input.
	DAC1OUT2	—	AN	Digital-to-Analog Converter output.
	ZCD	_	AN	Zero Cross Detection Current Source/Sink.
	T0CKI	TTL/ST	—	Timer0 clock input.
	COGIN	TTL/ST	_	Complementary Output Generator input.
	INT	TTL/ST	_	External interrupt.
RA3/MCLR/VPP	RA3	TTL/ST	CMOS	General purpose input.
	MCLR	ST	_	Master Clear with internal pull-up.
	Vpp	HV	_	Programming voltage.
RA4/AN3/T1G ⁽¹⁾ /SOSCO/	RA4	TTL/ST	CMOS	General purpose I/O.
OSC2/CLKOUT	AN3	AN	_	ADC Channel 3 input.
	T1G	TTL/ST	_	Timer1 gate input.
	SOSCO	XTAL	XTAL	Secondary Oscillator Connection.
	OSC2	—	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	—	CMOS	Fosc/4 output.
RA5/T1CKI ⁽¹⁾ /SOSCI/	RA5	TTL/ST	CMOS	General purpose I/O.
CLCIN3(')/OSC1/CLKIN	T1CKI	TTL/ST	_	Timer1 clock input.
	SOSCI	XTAL	XTAL	Secondary Oscillator Connection.
	CLCIN3	TTL/ST	_	Configurable Logic Cell source input.
	OSC1	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	TTL/ST	_	External clock input (EC mode).
RC0/AN4/C2IN+/OPA1IN+/	RC0	TTL/ST	—	General purpose I/O.
SCK(')/SCL(3)	AN4	AN	_	ADC Channel 4 input.
	C2IN+	AN	—	Comparator positive input.
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.
	SCK	TTL/ST		SPI clock.
	SCL	l ² C	—	I ² C clock.

TABLE 1-2: PIC16(L)F1704 PINOUT DESCRIPTION

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD
 = Open Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL
 = Crystal levels
 I
 I
 I

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 12-1.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-3.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

		E1700 E				•
TABLE 1-3:	PIC10(L)	F1708 F	DESCRIPI	ION (CONTINUEL)

Name	Function	Input Type	Output Type	Description		
RB5/AN11/OPA1IN+/RX ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.		
	AN11	AN		ADC Channel 11 input.		
	OPA1IN+	AN		Operational Amplifier 1 non-inverting input.		
	RX	ST	_	USART asynchronous input.		
RB6/SDI ⁽¹⁾ /SCL ⁽³⁾	RB6	TTL/ST	CMOS	General purpose I/O.		
	SDI	CMOS		SPI data input.		
	SCL	l ² C	OD	I ² C clock.		
RB7/CK ⁽¹⁾	RB7	TTL/ST	CMOS	General purpose I/O.		
	СК	ST	CMOS	USART synchronous clock.		
RC0/AN4/C2IN+	RC0	TTL/ST	CMOS	General purpose I/O.		
	AN4	AN	_	ADC Channel 4 input.		
	C2IN+	AN	_	Comparator positive input.		
RC1/AN5/C1IN1-/C2IN1-/	RC1	TTL/ST	CMOS	General purpose I/O.		
CLCIN2 ⁽¹⁾	AN5	AN	_	ADC Channel 5 input.		
	C1IN1-	AN	_	Comparator C1 negative input.		
	C2IN1-	AN		Comparator C2 negative input.		
	CLCIN2	ST		Configurable Logic Cell source input.		
RC2/AN6/C1IN2-/C2IN2-/	RC2	TTL/ST	CMOS	General purpose I/O.		
OPA1OUT	AN6	AN		ADC Channel 6 input.		
	C1IN2-	AN		Comparator C1 negative input.		
	C2IN2-	AN		Comparator C2 negative input.		
	OPA1OUT	_	AN	Operational Amplifier 1 output.		
RC3/AN7/C1IN3-/C2IN3-/	RC3	TTL/ST	CMOS	General purpose I/O.		
OPA2OUT/CCP2 ⁽¹⁾ /CLCIN0 ⁽¹⁾	AN7	AN		ADC Channel 7 input.		
	C1IN3-	AN		Comparator C1 negative input.		
	C2IN3-	AN	_	Comparator C2 negative input.		
	OPA2OUT	_	AN	Operational Amplifier 2 output.		
	CCP2	ST	CMOS	Capture/Compare/PWM2.		
	CLCIN0	ST		Configurable Logic Cell source input.		
RC4/CLCIN1 ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.		
	CLCIN1	ST		Configurable Logic Cell source input.		
RC5/CCP1 ⁽¹⁾	RC5	TTL/ST	CMOS	General purpose I/O.		
	CCP1	ST	CMOS	Capture/Compare/PWM1.		
RC6/AN8/OPA2IN-/SS(1)	RC6	TTL/ST	CMOS	General purpose I/O.		
	AN8	AN		ADC Channel 8 input.		
	OPA2IN-	AN		Operational Amplifier 2 inverting input.		
	SS	ST	_	Slave Select input.		
RC7/AN9/OPA2IN+	RC7	TTL/ST	CMOS	General purpose I/O.		
	AN9	AN	_	ADC Channel 9 input.		
	OPA2IN+	AN		Operational Amplifier 2 non-inverting input		
να	Vnn	Power		Positive supply.		
Legend: AN = Applog input or o			l compati	ble input or output $OD = Open Drain$		
Legend: An = Analog input or output $GNOS = CNOS compatible input or output OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C$						

XTAL = Crystal levels

= Schmitt Trigger input with CMOS levels I²C = Schmitt Trigger input with I²C

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 12-2.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-3.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

HV = High Voltage

3.7.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-10: LINEAR DATA MEMORY MAP

3.7.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire Program Flash Memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the Program Flash Memory cannot be accomplished via the FSR/INDF interface. All instructions that access Program Flash Memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-11: PROGRAM FLASH MEMORY MAP

5.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) is an essential part of the Reset subsystem. Refer to Figure 5-1 to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (\overline{BOR}) is changed to indicate that a BOR Reset has occurred. The same bit is set for both the BOR and the LPBOR. Refer to Register 5-2.

5.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

5.4.1.1 LPBOR Module Output

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR'd together with the Reset signal of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block.

5.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 5-2).

TABLE 5-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

5.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

```
Note: A Reset does not drive the \overline{\text{MCLR}} pin low.
```

5.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.1 "PORTA Registers"** for more information.

5.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0** "**Watchdog Timer (WDT)**" for more information.

5.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 5-4 for default conditions after a RESET instruction has occurred.

5.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **3.6.2** "**Overflow/Underflow Reset**" for more information.

5.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

5.10 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the **PWRTE** bit of Configuration Words.

5.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 5-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See Table 32-8: Oscillator Parameters for the LFINTOSC specification.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	х	Active
1.0		Awake	Active
TO	X SI	Sleep	Disabled
0.1	1	×	Active
UT	0	~	Disabled
00	Х	Х	Disabled

TABLE 9-1: WDT OPERATING MODES

9.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail
- · WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 6.0** "Oscillator **Module (with Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See STATUS Register (Register 3-1) for more information.

9.6 Register Definitions: Watchdog Control

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0		
_				WDTPS<4:0>(1)		SWDTEN		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
u = Bit is uncha	anged	x = Bit is unkn	iown	-m/n = Value a	at POR and BC	R/Value at all	at all other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	Unimplemen	ted: Read as ')'						
bit 5-1	WDTPS<4:0>	Watchdog Tir	mer Period S	elect bits ⁽¹⁾					
	Bit Value = P	Prescale Rate							
	11111 = Res	served. Results	s in minimum	interval (1:32)					
	•								
	•								
	10011 = Res	served. Results	s in minimum	interval (1:32)					
	10010 = 1 :8	388608 (2 ²³) (I	nterval 256s	nominal)					
	10001 = 1:4	194304 (2 ²²) (I	nterval 128s	nominal)					
	10000 = 1:2	097152 (2 ²¹) (I	nterval 64s n	ominal)					
	01111 = 1:1	048576 (2 ²⁰) (I	nterval 32s n	ominal)					
	01110 = 1:5	24288 (2 ¹⁹) (In	terval 16s no	minal)					
	01101 = 12	$(102144(2^{10}))$ (10 $(21072(2^{17}))$ (10	terval as non	ninal)					
	01011 = 1.6	5536 (Interval	2s nominal)	Reset value)					
	01010 = 1:3	2768 (Interval	1s nominal)						
	01001 = 1:1	6384 (Interval	512 ms nomii	nal)					
	01000 = 1:8	192 (Interval 2	56 ms nomina	al)					
	00111 = 1:4	096 (Interval 12	28 ms nomina	al)					
	00110 = 1:2	048 (Interval 64	4 ms nominal)					
	00101 = 1:1	024 (Interval 32	2 ms nominal)					
	00100 - 1.3	56 (Interval 8 n	ns nominal)						
	00011 = 1.2 00010 = 1.1	28 (Interval 4 n	ns nominal)						
	00001 = 1:6	4 (Interval 2 m	s nominal)						
	00000 = 1:3	2 (Interval 1 m	s nominal)						
bit 0	SWDTEN: So	oftware Enable/	Disable for W	/atchdog Timer	bit				
	<u>If WDTE<1:0></u>	> = <u>1x</u> :							
	This bit is igno	ored.							
	It WDTE<1:0>	<u>> = 01</u> :							
		urned off							
	This bit is igno	ored.							

10.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

16.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 register (see Register 16-1) contains Control and Status bits for the following:

- Enable
- Output
- Output polarity
- · Zero latency filter
- Speed/Power selection
- Hysteresis enable
- Output synchronization

The CMxCON1 register (see Register 16-2) contains Control bits for the following:

- Interrupt enable
- · Interrupt edge polarity
- Positive input channel selection
- Negative input channel selection

16.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

16.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- · Desired pin PPS control
- Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

Note 1: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

16.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 16-2 shows the output state versus input conditions, including polarity control.

TABLE 16-2:COMPARATOR OUTPUT
STATE VS. INPUT
CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

16.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1', which selects the Normal-Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
CxINTP	CxINTN		CxPCH<2:0>			CxNCH<2:0>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	CxINTP: Con 1 = The CxIF 0 = No intern	nparator Interru interrupt flag v upt flag will be	ipt on Positive will be set upo set on a positi	Going Edge E n a positive goi ve going edge	nable bits ing edge of the of the CxOUT	CxOUT bit bit		
bit 6	CxINTN: Con 1 = The CxIF 0 = No intern	nparator Interru [:] interrupt flag v upt flag will be	upt on Negative will be set upo set on a negat	e Going Edge I n a negative go tive going edge	Enable bits bing edge of the of the CxOUT	e CxOUT bit bit		
bit 5-3	 5-3 CxPCH<2:0>: Comparator Positive Input Channel Select bits 111 = CxVP connects to AGND 110 = CxVP connects to FVR Buffer 2 101 = CxVP connects to VDAC 100 = CxVP unconnected, input floating 011 = CxVP unconnected, input floating 010 = CxVP unconnected, input floating 001 = CxVP unconnected, input floating 							
bit 2-0	CxNCH<2:0> 111 = CxVN 110 = CxVN 101 = CxVN 100 = CxVN 011 = CxVN 010 = CxVN 001 = CxVN 000 = CxVN	Comparator I connects to AC connects to FV unconnected, i unconnected, i connects to Cx connects to Cx connects to Cx connects to Cx	Negative Input GND (R Buffer 2 nput floating nput floating IN3- pin IN2- pin IN2- pin IN1- pin IN0- pin	Channel Selec	ct bits			

REGISTER 16-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

FIGURE 18-7: COG (RISING/FALLING) INPUT BLOCK

PIC16(L)F1704/8

18.13 Register Definitions: COG Control

REGISTER 18-1: COGxCON0: COG CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxEN	GxLD	—	GxCS	6<1:0>		GxMD<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condi	tion	
bit 7	GxEN: COGx	Enable bit					
	1 = Module is	s enabled					
	0 = Module is	s disabled					
bit 6	GxLD: COGx	Load Buffers b	pit				
	1 = Phase, b	lanking, and de	en is complete	ers to be loade	d with register	values on next	input events
hit 5		ted: Read as '	n'				
bit 4-3	GxCS<1.0>	COGx Clock S	election hits				
51(+ 0	11 = Reserve	ed Do not use					
	10 = COG c	lock is HFINTC	SC (stays act	ive during Slee	ep)		
	01 = COG_c	lock is Fosc		c			
	$00 = COG_c$	lock is Fosc/4					
bit 2-0	GxMD<2:0>:	COGx Mode S	election bits				
	11x = Reser	ved. Do not use	Э. Горокри				
	101 = COG(outputs operate	in Pusn-Pull	mode e mode			
	011 = COG	outputs operate	in Reverse F	ull-Bridge mod	le		
	010 = COG (outputs operate	in Forward F	ull-Bridge mod	le		
	001 = COG (outputs operate	in synchrono	us steered PW	/M mode		
	000 = COG	outputs operate	in steered P	VM mode			

21.1 OPA Module Performance

Common AC and DC performance specifications for the OPA module:

- Common Mode Voltage Range
- · Leakage Current
- Input Offset Voltage
- Open Loop Gain
- · Gain Bandwidth Product

Common mode voltage range is the specified voltage range for the OPA+ and OPA- inputs, for which the OPA module will perform to within its specifications. The OPA module is designed to operate with input voltages between Vss and VDD. Behavior for Common mode voltages greater than VDD, or below Vss, are not guaranteed.

Leakage current is a measure of the small source or sink currents on the OPA+ and OPA- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OPA+ and OPA- inputs should be kept as small as possible and equal.

Input offset voltage is a measure of the voltage difference between the OPA+ and OPA- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit. The input offset voltage is also affected by the Common mode voltage. The OPA is factory calibrated to minimize the input offset voltage of the module.

Open loop gain is the ratio of the output voltage to the differential input voltage, (OPA+) - (OPA-). The gain is greatest at DC and falls off with frequency.

Gain Bandwidth Product or GBWP is the frequency at which the open loop gain falls off to 0 dB.

21.1.1 OPA Module Control

The OPA module is enabled by setting the OPAxEN bit of the OPAxCON register. When enabled, the OPA forces the output driver of OPAxOUT pin into tri-state to prevent contention between the driver and the OPA output.

Note: When the OPA module is enabled, the OPAxOUT pin is driven by the op amp output, not by the PORT digital driver. Refer to Table 32-17: Operational Amplifier (OPA) for the op amp output drive capability.

21.1.2 UNITY GAIN MODE

The OPAxUG bit of the OPAxCON register selects the Unity Gain mode. When unity gain is selected, the OPA output is connected to the inverting input and the OPAxIN pin is relinquished, releasing the pin for general purpose input and output.

21.2 Effects of Reset

A device Reset forces all registers to their Reset state. This disables the OPA module.

28.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPCON3 register are clear.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPSTAT register or the SSPOV bit of the SSPCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

28.5 I²C SLAVE MODE OPERATION

The MSSP Slave mode operates in one of four modes selected by the SSPM bits of SSPCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPIF additionally getting set upon detection of a Start, Restart, or Stop condition.

28.5.1 SLAVE MODE ADDRESSES

The SSPADD register (Register 28-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 28-5) affects the address matching process. See **Section 28.5.9** "**SSP Mask Register**" for more information.

28.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

28.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPADD. Even if there is not an address match; SSPIF and UA are set, and SCL is held low until SSPADD is updated to receive a high byte again. When SSPADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

28.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 28-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 28-39).

FIGURE 28-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 28-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

Mnemonic.					14-Bit	Opcode	•	Status	
Oper	Operands Description		Cycles -			-	LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
INHERENT OPERATIONS								•	
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED					•	
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 31-3: PIC16(L)F1704/8 INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

34.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

34.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

34.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

34.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

16-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4x0.9mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	E 0.65 BSC			
Optional Center Pad Width	W2			2.50	
Optional Center Pad Length	T2			2.50	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X16)	X1			0.35	
Contact Pad Length (X16)	Y1			0.80	
Distance Between Pads	G	0.30			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2127A