

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1708-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.7** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-9.

TABLE 3-2: CORE REGISTERS

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 31.0 "Instruction Set Summary").

Note: The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Re			other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-0	TUN<5:0>: F	requency Tunir	ng bits				
	100000 = N	linimum frequer	ncy				
	•						
	•						
	•						
	111111 =						
	0000000 = O	scillator module	e is running at	the factory-call	brated frequen	су	
	000001 =						
•							
	011110 =						
	011111 = N	laximum freque	ncv				

REGISTER 6-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 6-2:	SUMMARY OF REGISTERS	ASSOCIATED WITH	CLOCK SOURCES
------------	----------------------	------------------------	----------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>			—	SCS	<1:0>	77
OSCSTAT	SOSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	78
OSCTUNE	_	-		TUN<5:0>					79
PIR2	OSFIF	C2IF	C1IF	-	BCL1IF	TMR6IF	TMR4IF	CCP2IF	90
PIE2	OSFIE	C2IE	C1IE	-	BCL1IE	TMR6IE	TMR4IE	CCP2IE	87
T1CON	TMR1C	:S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC		TMR10N	253

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	-		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	—	40
	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		49

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

10.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper 10-bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>) with the lower five bits of PMADRL, (PMADRL<7:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

- Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- 11. Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
 - **Note:** The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

PIC16(L)F1704/8

FIGURE 18-3: SIMPLIFIED COG BLOCK DIAGRAM (SYNCHRONOUS STEERED PWM MODE, GXMD = 1)

19.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 19-2 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

TABLE 19-2: DATA GATING LOGIC

CLCxGLS0	LCxG1POL	Gate Logic
0x55	1	AND
0x55	0	NAND
0xAA	1	NOR
0xAA	0	OR
0x00	0	Logic 0
0x00	1	Logic 1

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 19-7)
- Gate 2: CLCxGLS1 (Register 19-8)
- Gate 3: CLCxGLS2 (Register 19-9)
- Gate 4: CLCxGLS3 (Register 19-10)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 19-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

19.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset

Logic functions are shown in Figure 19-3. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

19.1.4 OUTPUT POLARITY

The last stage in the configurable logic cell is the output polarity. Setting the LCxPOL bit of the CLCxCON register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	LCxG2D4T: (Gate 2 Data 4 1	rue (non-inve	rted) bit				
	1 = lcxd4T is	gated into loxo	j2					
h:+ C	0 = 100041 is	not gated into	icxgz	uto al \ bit				
DILO	$1 = \log d4N$ is	Gale 2 Dala 4		ned) bit				
	1 = 10x04N is 0 = 10x04N is	not gated into icx	Jz Icxa2					
bit 5	LCxG2D3T: (Gate 2 Data 3 1	rue (non-inve	rted) bit				
	1 = Icxd3T is	gated into Icxg2						
	0 = Icxd3T is	not gated into	lcxg2					
bit 4	LCxG2D3N:	Gate 2 Data 3 I	Negated (inve	rted) bit				
	1 = Icxd3N is	gated into lcxg2						
	0 = lcxd3N is	not gated into	lcxg2					
bit 3	LCxG2D2T: (Jate 2 Data 2 I	rue (non-inve	rted) bit				
	1 = 1CX021 is 0 = 1cxd2T is	gated into icxo	j2 Jexa2					
hit 2		Gate 2 Data 2 I	Negated (inve	rted) hit				
Sit 2	1 = lcxd2N is	aated into Icxo	1090100 (mrve) 12					
	0 = lcxd2N is	not gated into	lcxg2					
bit 1	LCxG2D1T: 0	Gate 2 Data 1 1	rue (non-inve	rted) bit				
	1 = Icxd1T is	gated into lcxg	j2					
	0 = Icxd1T is	not gated into	lcxg2					
bit 0	LCxG2D1N: (Gate 2 Data 1	Negated (inve	rted) bit				
	1 = lcxd1N is	gated into lcx	j2 Java2					
	v = icxu in is	not gated into	icxgz					

REGISTER 19-8: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxG4D4T:	Gate 4 Data 4 1	Frue (non-inve	rted) bit			
	1 = Icxd4T is	gated into lcx	g4				
	0 = lcxd4T is	not gated into	lcxg4				
bit 6	LCxG4D4N:	Gate 4 Data 4	Negated (inve	rted) bit			
	1 = lcxd4N is	s gated into Icx	g4 Joya4				
bit E			True (nen inve	rtad) bit			
DIL 5	$1 = \log d3T$ is	Gated into love	nue (non-inve M	nied) bli			
	0 = lcxd3T is	not gated into	lcxq4				
bit 4	LCxG4D3N:	Gate 4 Data 3	Negated (inve	rted) bit			
	1 = Icxd3N is	gated into lcx	g4	,			
	0 = Icxd3N is	s not gated into	lcxg4				
bit 3	LCxG4D2T: (Gate 4 Data 2	Frue (non-inve	rted) bit			
	1 = lcxd2T is	gated into Icxo	g4				
	0 = 1 cx d 21 is	not gated into	Icxg4				
bit 2	LCxG4D2N:	Gate 4 Data 2	Negated (inve	rted) bit			
	$\perp = 1 c x d 2 N ls$ 0 = 1 c x d 2 N ls	s gated into icx	g4 Jexa4				
bit 1		Gate 4 Data 1 1	True (non-inve	rted) hit			
Sit 1	1 = lcxd1T is	aated into Icxo	n4				
	0 = lcxd1T is	not gated into	lcxg4				
bit 0	LCxG4D1N:	Gate 4 Data 1	Negated (inve	rted) bit			
	1 = Icxd1N is	s gated into lcx	g4				
	0 = Icxd1N is	not gated into	lcxg4				

REGISTER 19-10: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

24.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 24-1 is a block diagram of the Timer0 module.

24.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

24.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 24-1: BLOCK DIAGRAM OF THE TIMER0

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

PIC16(L)F1704/8

FIGURE 25-5:	TIMER1 GATE SINGLE-PUL	LSE MODE
TMR1GE		
T1GPOL		
T1GSPM		
T1GG <u>O/</u> DONE	Set by software Counting enabled on	Cleared by hardware on falling edge of T1GVAL
t1g_in	rising edge of T1G	
т1СКІ		
T1GVAL		
Timer1	N	N + 1 N + 2
TMR1GIF	— Cleared by software	Cleared by Set by hardware on falling edge of T1GVAL

28.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 28-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I^2C Specification that states no bus collision can occur on a Start.

28.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note:	At least one SCL low time must appear
	before a Stop is valid, therefore, if the SDA
	line goes low then high again while the SCL
	line stays high, only the Start condition is
	detected.

28.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 28-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/W clear in 10-bit mode, a prior match flag is set and maintained until a Stop condition, a high address with R/W clear, or high address match fails.

28.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 28-12: I²C START AND STOP CONDITIONS

FIGURE 28-13: I²C RESTART CONDITION

28.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON1 register is set. The BOEN bit of the SSPCON3 register modifies this operation. For more information see Register 28-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPIF, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPCON1 register, except sometimes in 10-bit mode. See **Section 28.5.6.2** "**10-bit Addressing Mode**" for more detail.

28.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 28-14 and Figure 28-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPIF bit.
- 5. Software clears the SSPIF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSPIF bit.
- 10. Software clears SSPIF.
- 11. Software reads the received byte from SSPBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPSTAT, and the bus goes idle.

28.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 28-16 displays a module using both address and data holding. Figure 28-17 includes the operation with the SEN bit of the SSPCON2 register set.

- 1. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSPIF.
- Slave can look at the ACKTIM bit of the SSPCON3 register to determine if the SSPIF was after or before the ACK.
- 5. Slave reads the address value from SSPBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPIF.

Note: SSPIF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPIF not set

- 11. SSPIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

28.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 28-5) is available in I^2C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

28.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated

- Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

28.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 28-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 28-39).

FIGURE 28-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 28-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

PIC16(L)F1704/8

MOVIW	Move INDFn to W				
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]				
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31				
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{•} \ &\text{FSR} + 1 \ (\text{preincrement}) \\ &\text{•} \ &\text{FSR} + 1 \ (\text{predecrement}) \\ &\text{•} \ &\text{FSR} + k \ (\text{relative offset}) \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{•} \ &\text{FSR} + 1 \ (\text{all increments}) \\ &\text{•} \ &\text{FSR} - 1 \ (\text{all decrements}) \\ &\text{•} \ &\text{Unchanged} \end{split}$				
Status Affected:	Z				

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB	Move literal to BSR

Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \leq k \leq 31$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>]MOVLP k
Operands:	$0 \le k \le 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None

Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

PIC16LF	PIC16LF1704/8 Standard Operating Conditions (unless otherwise stated)								
PIC16F1	704/8	Standa	d Operating Conditions (unless otherwise stated)						
Param.	Device						Conditions		
No.	Characteristics	Min.	Тур.†	Max.	Units	Vdd	Note		
D009	LDO Regulator		75	_	μA	_	High Power mode, normal operation		
		_	15	_	μA		Sleep, VREGCON<1> = 0		
			0.3		μA		Sleep, VREGCON<1> = 1		
D010		—	5.0	12	μA	1.8	Fosc = 32 kHz, LP Oscillator mode (Note 4),		
		_	8.0	18	μA	3.0	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D010			16	26	μA	2.3	Fosc = 32 kHz, LP Oscillator mode (Note 4,		
			18	32	μA	3.0	Note 5),		
		—	22	35	μA	5.0	$-40 C \le 1A \le +85 C$		
D012		—	160	240	μA	1.8	Fosc = 4 MHz,		
		_	280	380	μA	3.0	XT Oscillator mode		
D012		_	250	320	μA	2.3	Fosc = 4 MHz,		
		_	320	420	μA	3.0	XT Oscillator mode (Note 5)		
			400	500	μA	5.0			
D014			140	180	μA	1.8	Fosc = 4 MHz,		
		—	240	300	μA	3.0	External Clock (ECM), Medium-Power mode		
D014		_	210	280	μA	2.3	Fosc = 4 MHz,		
		_	280	350	μA	3.0	External Clock (ECM),		
		_	360	420	μA	5.0			
D015			1.9	2.6	mA	3.0	Fosc = 32 MHz,		
		—	2.4	3.0	mA	3.6	External Clock (ECH), High-Power mode (Note 5)		
D015		_	2	2.6	mA	3.0	Fosc = 32 MHz,		
		—	2.2	2.8	mA	5.0	External Clock (ECH), High-Power mode (Note 5)		
D017		—	115	170	μA	1.8	Fosc = 500 kHz,		
		—	135	200	μA	3.0	MFINTOSC mode		
D017		_	150	200	μA	2.3	Fosc = 500 kHz,		
		_	170	220	μA	3.0	MFINTOSC mode		
		—	215	280	μA	5.0			
D019			0.7	1.1	mA	1.8	Fosc = 16 MHz,		
		—	1.2	1.8	mA	3.0	HEIN FOSC mode		
D019			0.9	1.5	mA	2.3	Fosc = 16 MHz,		
			1.3	1.8	mA	3.0	HFINTOSC mode		
		—	1.4	2.0	mA	5.0			

TABLE 32-2: SUPPLY CURRENT (IDD)^(1,2)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 8 MHz clock with 4x PLL enabled.

PIC16LF1704/8 Standard Operating Conditions (unless otherwise stated)							rwise stated)		
PIC16F17	704/8	Standa	Standard Operating Conditions (unless otherwise stated)						
Param. Device		Min	T		l lucito	Conditions			
No.	Characteristics	win.	тур.т	wax.	Units	Vdd	Note		
D020		—	2.3	3.0	mA	3.0	Fosc = 32 MHz,		
		—	2.8	3.5	mA	3.6	HFINTOSC mode (Note 5)		
D020			2.4	3.1	mA	3.0	Fosc = 32 MHz,		
		—	2.6	3.4	mA	5.0	HFINTOSC mode (Note 5)		
D022		—	2	3.0	mA	3.0	Fosc = 32 MHz,		
		—	2.6	3.5	mA	3.6	HS Oscillator mode (Note 5)		
D022		—	2.1	3.0	mA	3.0	Fosc = 32 MHz,		
			3	3.5	mA	5.0	HS Oscillator mode (Note 5)		

TABLE 32-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 8 MHz clock with 4x PLL enabled.

32.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

1. TppS2ppS

2. TppS

Т				
F	Frequency	Т	Time	
Lowerc	case letters (pp) and their meanings:			
рр				
сс	CCP1	osc	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O PORT	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:			
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	

FIGURE 32-4: LOAD CONDITIONS

PLL CLOCK TIMING SPECIFICATIONS **TABLE 32-9:**

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz		
F11	Fsys	On-Chip VCO System Frequency	16	_	32	MHz		
F12	TRC	PLL Start-up Time (Lock Time)	_	_	2	ms		
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	_	+0.25%	%		
* These parameters are characterized but not tested								

These parameters are characterized but not tested.

† Data in "Typ." column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 32-7: CLKOUT AND I/O TIMING

PIC16(L)F1704/8

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-68: LPBOR F

FIGURE 33-69: PWRT Pe PIC16F1704/8 Only.

FIGURE 33-70: PWRT Period. PIC16LF1704/8 Only.

FIGURE 33-71: POR Release Voltage. All devices

FIGURE 33-72: POR Rearm Voltage, Normal Power Mode (VREGPM 1 = 0), PIC16F1704/8 Only.