E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1708-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) is an essential part of the Reset subsystem. Refer to Figure 5-1 to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (\overline{BOR}) is changed to indicate that a BOR Reset has occurred. The same bit is set for both the BOR and the LPBOR. Refer to Register 5-2.

5.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

5.4.1.1 LPBOR Module Output

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR'd together with the Reset signal of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block.

5.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 5-2).

TABLE 5-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

5.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

```
Note: A Reset does not drive the \overline{MCLR} pin low.
```

5.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.1 "PORTA Registers"** for more information.

5.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0** "**Watchdog Timer (WDT)**" for more information.

5.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 5-4 for default conditions after a RESET instruction has occurred.

5.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **3.6.2** "**Overflow/Underflow Reset**" for more information.

5.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

5.10 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of Configuration Words.

5.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 5-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

6.6 Register Definitions: Oscillator Control

REGISTER 6-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN	N	IRCF	<3:0>		—	SCS	<1:0>
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is clea	ared				
bit 7	SPLLEN: So I <u>f PLLEN in C</u> SPLLEN bit i I <u>f PLLEN in C</u> 1 = 4x PLL I 0 = 4x PLL is	ftware PLL Ena <u>Configuration W</u> s ignored. 4x Pl <u>Configuration W</u> s enabled s disabled	ble bit <u>ords = 1:</u> _L is always e <u>ords = 0:</u>	enabled (subjec	t to oscillator re	quirements)	
bit 6-3 IRCF<3:0>: Internal Oscillator Frequency Select bits 1111 = 16 MHz HF $1110 = 8 \text{ MHz or 32 MHz HF}^{(2)}$ 1101 = 4 MHz HF 1000 = 2 MHz HF 1011 = 1 MHz HF $1010 = 500 \text{ kHz HF}^{(1)}$ $1001 = 250 \text{ kHz HF}^{(1)}$ $1000 = 125 \text{ kHz HF}^{(1)}$ 0111 = 500 kHz MF (default upon Reset) 0110 = 250 kHz MF 0101 = 125 kHz MF 0100 = 62.5 kHz MF $0110 = 31.25 \text{ kHz HF}^{(1)}$ 0110 = 31.25 kHz MF							
bit 2	Unimplemer	Unimplemented: Read as '0'					
bit 1-0 SCS<1:0>: System Clock Select bits 1x = Internal oscillator block 01 = Secondary oscillator 00 = Clock determined by FOSC<2:0> in Configuration Words							
Note 1: 2:	Duplicate frequen 32 MHz when SP Selection ".	cy derived from LLEN bit is set.	HFINTOSC. Refer to Sect	ion 6.2.2.6 "32	MHz Internal	Oscillator Fre	quency

R/W-0/0) R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OSFIF	C2IF	C1IF	—	BCL1IF	TMR6IF	TMR4IF	CCP2IF
bit 7	•	•		•	•	•	bit 0
r							
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is :	set	0° = Bit is clea	ared				
bit 7	OSFIF: Oscil	lator Fail Interru	ipt Flag bit				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 6	C2IF: Compa	rator C2 Interru	ipt Flag bit				
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 5	C1IF: Compa	rator C1 Interru	ipt Flag bit				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 4	Unimplemen	ted: Read as ')'				
bit 3	BCL1IF: MSS	SP Bus Collision	n Interrupt FI	ag bit			
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 2	TMR6IF: Tim	er6 to PR6 Inte	rrupt Flag bit				
	1 = Interrupt	1 = Interrupt is pending					
	0 = Interrupt	is not pending					
bit 1	TMR4IF: Tim	er4 to PR4 Inte	rrupt Flag bit				
	1 = Interrupt 0 = Interrupt	is pending					
bit 0	CCP2IF: CCP2 Interrupt Flag bit						
	1 = Interrupt is pending						
	0 = Interrupt	is not pending					
Note:	Interrupt flag bits a condition occurs, r its corresponding Enable bit, GIE, o User software appropriate interr prior to enabling a	re set when an egardless of the enable bit or th of the INTCON should ensu upt flag bits a n interrupt.	interrupt e state of e Global register. ire the ire clear				

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

8.2 Low-Power Sleep Mode

The PIC16F1704/8 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. The PIC16F1704/8 allows the user to optimize the operating current in Sleep, depending on the application requirements.

A Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. With this bit set, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use only with the following peripherals:

- Brown-Out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source<100 kHz)

Note: The PIC16LF1704/8 does not have a configurable Low-Power Sleep mode. PIC16LF1704/8 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum VDD and I/O voltage than the PIC16F1704/8. See Section 32.0 "Electrical Specifications" for more information.

11.2 Register Definitions: PORTA

REGISTER 11-1: PORTA: PORTA REGISTER

U-0	U-0	R/W-x/x	R/W-x/x	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x
—		RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Unimplemented: Read as '0'
RA<5:0>: PORTA I/O Value bits ⁽¹⁾
1 = Port pin is <u>></u> Vн
0 = Port pin is <u><</u> VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	TRISA<5:4>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 3	Unimplemented: Read as '1'
bit 2-0	TRISA<2:0>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

Note 1: Unimplemented, read as '1'.

REGISTER 11-20: ANSELC: PORTC ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	ANSC5 ⁽³⁾	ANSC4 ⁽³⁾	ANSC3	ANSC2	ANSC1	ANSC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSC<7:0>: Analog Select between Analog or Digital Function on pins RC<7:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function.
 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

- 2: ANSC<7:6> are available on PIC16(L)F1708 only.
- 3: ANSC<5:4> are available on PIC16(L)F1704 only.

REGISTER 11-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

WPUC<7:0>: Weak Pull-up Register bits(3) bit 7-0

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is configured as an output.
- 3: WPUC<7:6> are available on PIC16(L)F1708 only.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators, and DAC is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 20.0 "Analog-to-Digital Converter (ADC) Module"** for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 22.0 "8-Bit Digital-to-Analog Converter (DAC1) Module" and Section 16.0 "Comparator Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See Figure 33-74: Wake from Sleep, VREGPM = 0.

© 2013-2015 Microchip Technology Inc.

18.5.4 RISING EVENT DEAD-BAND

Rising event dead band delays the turn-on of the primary outputs from when complementary outputs are turned off. The rising event dead-band time starts when the rising_ event output goes true.

See Section 18.5.1, Asynchronous delay chain dead-band delay and Section 18.5.2, Synchronous counter dead-band delay for more information on setting the rising edge dead-band time.

18.5.5 FALLING EVENT DEAD-BAND

Falling event dead band delays the turn-on of complementary outputs from when the primary outputs are turned off. The falling event dead-band time starts when the falling_ event output goes true.

See Section 18.5.1, Asynchronous delay chain dead-band delay and Section 18.5.2, Synchronous counter dead-band delay for more information on setting the rising edge dead-band time.

18.5.6 DEAD-BAND OVERLAP

There are two cases of dead-band overlap:

- Rising-to-falling
- Falling-to-rising

18.5.6.1 Rising-to-Falling Overlap

In this case, the falling event occurs while the rising event dead-band counter is still counting. When this happens, the primary drives are suppressed and the dead-band extends by the falling event dead-band time. At the termination of the extended dead-band time, the complementary drive goes true.

18.5.6.2 Falling-to-Rising Overlap

In this case, the rising event occurs while the falling event dead-band counter is still counting. When this happens, the complementary drive is suppressed and the dead-band extends by the rising event dead-band time. At the termination of the extended dead-band time, the primary drive goes true.

18.6 Blanking Control

Input blanking is a function, whereby, the event inputs can be masked or blanked for a short period of time. This is to prevent electrical transients caused by the turn-on/off of power components from generating a false input event.

The COG contains two blanking counters: one triggered by the rising event and the other triggered by the falling event. The counters are cross coupled with the events they are blanking. The falling event blanking counter is used to blank rising input events and the rising event blanking counter is used to blank

falling input events. Once started, blanking extends for the time specified by the corresponding blanking counter.

Blanking is timed by counting COG_clock periods from zero up to the value in the blanking count register. Use Equation 18-1 to calculate blanking times.

18.6.1 FALLING EVENT BLANKING OF RISING EVENT INPUTS

The falling event blanking counter inhibits rising event inputs from triggering a rising event. The falling event blanking time starts when the rising event output drive goes false.

The falling event blanking time is set by the value contained in the COGxBLKF register (Register 18-13). Blanking times are calculated using the formula shown in Equation 18-1.

When the COGxBLKF value is zero, falling event blanking is disabled and the blanking counter output is true, thereby, allowing the event signal to pass straight through to the event trigger circuit.

18.6.2 RISING EVENT BLANKING OF FALLING EVENT INPUTS

The rising event blanking counter inhibits falling event inputs from triggering a falling event. The rising event blanking time starts when the falling event output drive goes false.

The rising event blanking time is set by the value contained in the COGxBLKR register (Register 18-12).

When the COGxBLKR value is zero, rising event blanking is disabled and the blanking counter output is true, thereby, allowing the event signal to pass straight through to the event trigger circuit.

18.6.3 BLANKING TIME UNCERTAINTY

When the rising and falling sources that trigger the blanking counters are asynchronous to the COG_clock, it creates uncertainty in the blanking time. The maximum uncertainty is equal to one COG_clock period. Refer to Equation 18-1 and Example 18-1 for more detail.

18.7 Phase Delay

It is possible to delay the assertion of either or both the rising event and falling events. This is accomplished by placing a non-zero value in COGxPHR or COGxPHF phase-delay count register, respectively (Register 18-14 and Register 18-15). Refer to Figure 18-10 for COG operation with CCP1 and phase delay. The delay from the input rising event signal switching to the actual assertion of the events is calculated the same as the dead-band and blanking delays. Refer to Equation 18-1.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
_	GxFSIM6	GxFSIM5	GxFSIM4	GxFSIM3	GxFSIM2	GxFSIM1	GxFSIM0					
bit 7							bit 0					
Legend:	Legena: P = Poodeble bit $W = Writeble bit$ $U = Unimplemented bit read as '0'$											
R = Readable	bit	W = Writable	bit		t DOD and DOC	as '0'						
u = Bit is uncha	angeo	x = Bit is unknown	iown	-n/n = value a	ands on condition	value at all otr	ier Resets					
I - Dit is set												
bit 7	Unimplemen	ted: Read as '0)'									
bit 6	GxFSIM6: CO	OGx Falling Eve	ent Input Sour	ce 6 Mode bit								
	<u>GxFIS6 = 1:</u>											
	1 = PWM3 o 0 = PWM3 o	utput high-to-lov	w transition w	ill cause a falling	g event after falli n event	ing event phase	delay					
	$\frac{G = FWWS 0}{G \times FIS6 = 0}$		will cause all i		gevent							
	PWM3 output	t has no effect o	on falling even	t								
bit 5	GxFSIM5: CO	DGx Falling Eve	ent Input Sour	ce 5 Mode bit								
	$\frac{\text{GxFIS5} = 1:}{1 = \text{CCP2} \text{ or}}$	itout high-to-low	/ transition wil	l cause a falling	event after fallir	na event nhase	delav					
	0 = CCP2 ou	itput low level w	vill cause an ir	nmediate falling	event	ig event phase	uciay					
	GxFIS5 = 0:	haa na affaat ay	a falling avant									
hit 1		Thas no effect of	ant Input Sour	ce 4 Mode hit								
DIL 4	GxFIS4 = 1:	JGX Failing Eve	int input Sour									
	1 = CCP1 hig	gh-to-low transi	tion will cause	a falling event a	after falling ever	nt phase delay						
	0 = CCP1 lov GyElS4 = 0:	w level will caus	e an immedia	ite falling event								
	CCP1 has no	effect on falling	g event									
bit 3	GxFSIM3: CO	OGx Falling Eve	ent Input Sour	ce 3 Mode bit								
	GxFIS3 = 1:	tout high to low	transition will		overt offer fallin	a overt phase	dolov					
	0 = CLC1 ou	tput low level w	ill cause an in	nmediate falling	event	ig event phase	Jelay					
	<u>GxFIS3 = 0:</u>			-								
h # 0	CLC1 output	has no effect or	n falling event	aa O Mada hit								
DIT 2	GxFSIW2: CC GxFIS2 = 1:	JGX Failing Eve	ent input Sour	ce 2 mode dit								
	1 = Compara	ator 2 high-to-lov	w transition w	ill cause a falling	g event after fall	ing event phase	delay					
	0 = Compara	ator 2 low level	will cause an i	mmediate falling	g event							
	Comparator 2	has no effect c	on falling even	t								
bit 1	GxFSIM1: CO	OGx Falling Eve	ent Input Sour	ce 1 Mode bit								
	<u>GxFIS1 = 1:</u>											
	1 = Compara $0 = Compara$	ator 1 high-to-lov ator 1 low level v	w transition w will cause an i	III cause a falling	g event after fall o event	ing event phase	delay					
	$\frac{G}{G} = 0$											
	Comparator 1	has no effect of	on falling even	t								
bit 0	GxFSIM0: CO	DGx Falling Eve	ent Input Sour	ce 0 Mode bit								
	$\frac{GXFISU = 1}{1} = Pin select$	ted with COGxI	PPS control hi	gh-to-low transit	ion will cause a	falling event after	er falling event					
	phase de	elay		-			5					
	0 = Pin selectGxFIS0 = 0.000	cted with COGx	PPS control lo	ow level will caus	se an immediate	e talling event						
	Pin selected v	with COGxPPS	control has no	o effect on falling	g event							

REGISTER 18-6: COGxFSIM: COG FALLING EVENT SOURCE INPUT MODE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
GxSDATD	GxSDATC	GxSDATB	GxSDATA	GxSTRD	GxSTRC	GxSTRB	GxSTRA		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'			
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value at	POR and BOR	/Value at all ot	her Resets		
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value depe	ends on condition	on			
bit 7	GxSDATD: (COGxD Static (Dutput Data bit						
	1 = COGxD	static data is h	igh						
	0 = COGxD	static data is lo	W						
bit 6	GxSDATC: (COGxC Static C	Dutput Data bit						
	1 = COGXC 0 = COGXC	static data is h	igh						
hit 5		COGyB Static ()utnut Data hit						
bit 0	1 = COG xB	static data is h	iah						
	0 = COGxB	static data is lo	w						
bit 4	GxSDATA: (COGxA Static C	Output Data bit						
	1 = COGxA	static data is h	igh						
	0 = COGxA	static data is lo	W						
bit 3	GxSTRD: CO	OGxD Steering	Control bit						
	1 = COGxD	output has the	COGxD wavef	form with polarity	CONTROL FROM G	xPOLD bit			
hit O		Output is the si		determined by ti	IE GXSDATD DI	L			
DIL Z	1 = COGYC	output has the	COGyC wave	form with polarity	control from G	vPOLC hit			
	0 = COGxC	output is the st	atic data level	determined by th	ne GxSDATC bi	t			
bit 1	GxSTRB: CO	JGxB Steering	Control bit	,					
	1 = COGxB output has the COGxB waveform with polarity control from GxPOLB bit								
	0 = COGxB	output is the st	atic data level	determined by th	ne GxSDATB bi	t			
bit 0	GxSTRA: CO	OGxA Steering	Control bit						
	1 = COGxA output has the COGxA waveform with polarity control from GxPOLA bit								
	0 = COGXA	output is the st	auc data level (betermined by th	IE GXSDATA DI				

REGISTER 18-9: COGxSTR: COG STEERING CONTROL REGISTER 1

25.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

25.4 Timer1 (Secondary) Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

25.5 Timer1 Operation in Asynchronous Counter Mode

If the control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 25.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

25.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

25.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

25.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 25-3 for timing details.

TABLE 25-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

27.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains two standard Capture/Compare/PWM modules (CCP1 and CCP2).

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

27.1 Capture Mode

The Capture mode function described in this section is available and identical for all CCP modules.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value. Figure 27-1 shows a simplified diagram of the capture operation.

27.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 27-1:

CAPTURE MODE OPERATION BLOCK DIAGRAM

FIGURE 28-6: SPI MODE WAVEFORM (MASTER MODE)

29.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

29.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

29.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

29.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

29.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

- 29.5.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 29.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

FIGURE 31-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register ope	erations 0							
OPCODE d	f (FILE #)							
d = 0 for destination W d = 1 for destination f f = 7-bit file register address								
Bit-oriented file register operations								
OPCODE b (BIT #	#) f (FILE #)							
b = 3-bit bit address f = 7-bit file register addre	ss							
Literal and control operations	6							
General								
13 8 7	0							
OPCODE	k (literal)							
k = 8-bit immediate value								
CALL and GOTO instructions onl	У							
13 11 10	0							
OPCODE k	(literal)							
k = 11-bit immediate value)							
MOVED instruction only								
13 7	6 0							
OPCODE	k (literal)							
k = 7-bit immediate value								
- in the still and the								
MOVLB Instruction only	54 0							
OPCODE	k (literal)							
k = 5-bit immediate value								
13 9 8	0							
OPCODE	k (literal)							
k = 9-bit immediate value								
FSR Offset instructions	- o							
OPCODE n	5 U							
	(itterar)							
k = 6-bit immediate value								
FSR Increment instructions								
13	3 2 1 0							
OPCODE	n m (mode)							
n = appropriate FSR m = 2-bit mode value								
OPCODE only								
13	- 0							
OPCODE	-							

PIC16LF	1704/8	Standard Operating Conditions (unless otherwise stated)									
PIC16F1	704/8	Standard Operating Conditions (unless otherwise stated)									
Param.	Device						Conditions				
No.	Characteristics	Min.	Тур.†	Max.	Units	Vdd	Note				
D009	LDO Regulator		75	_	μA	_	High Power mode, normal operation				
		_	15	_	μA		Sleep, VREGCON<1> = 0				
			0.3		μA		Sleep, VREGCON<1> = 1				
D010		—	5.0	12	μA	1.8	Fosc = 32 kHz, LP Oscillator mode (Note 4),				
		_	8.0	18	μA	3.0	$-40^{\circ}C \le TA \le +85^{\circ}C$				
D010			16	26	μA	2.3	Fosc = 32 kHz, LP Oscillator mode (Note 4,				
			18	32	μA	3.0	Note 5),				
		—	22	35	μA	5.0	$-40 C \le 1A \le +85 C$				
D012		—	160	240	μA	1.8	Fosc = 4 MHz,				
		_	280	380	μA	3.0	XT Oscillator mode				
D012		_	250	320	μA	2.3	Fosc = 4 MHz,				
		_	320	420	μA	3.0	XT Oscillator mode (Note 5)				
			400	500	μA	5.0					
D014			140	180	μA	1.8	Fosc = 4 MHz,				
		—	240	300	μA	3.0	External Clock (ECM), Medium-Power mode				
D014		_	210	280	μA	2.3	Fosc = 4 MHz,				
		_	280	350	μA	3.0	External Clock (ECM),				
		_	360	420	μA	5.0					
D015			1.9	2.6	mA	3.0	Fosc = 32 MHz,				
		—	2.4	3.0	mA	3.6	External Clock (ECH), High-Power mode (Note 5)				
D015		_	2	2.6	mA	3.0	Fosc = 32 MHz,				
		—	2.2	2.8	mA	5.0	External Clock (ECH), High-Power mode (Note 5)				
D017		—	115	170	μA	1.8	Fosc = 500 kHz,				
		—	135	200	μA	3.0	MFINTOSC mode				
D017		_	150	200	μA	2.3	Fosc = 500 kHz,				
		_	170	220	μA	3.0	MFINTOSC mode				
		—	215	280	μA	5.0					
D019			0.7	1.1	mA	1.8	Fosc = 16 MHz,				
		—	1.2	1.8	mA	3.0	HEIN FOSC mode				
D019			0.9	1.5	mA	2.3	Fosc = 16 MHz,				
			1.3	1.8	mA	3.0	HFINTOSC mode				
		—	1.4	2.0	mA	5.0					

TABLE 32-2: SUPPLY CURRENT (IDD)^(1,2)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 8 MHz clock with 4x PLL enabled.

PIC16LF1704/8		Standard Operating Conditions (unless otherwise stated)									
PIC16F1704/8		Standa	Standard Operating Conditions (unless otherwise stated)								
Param. Device						Conditions					
No.	Characteristics	win.	тур.т	wax.	Units	Vdd	Note				
D020		—	2.3	3.0	mA	3.0	Fosc = 32 MHz,				
		—	2.8	3.5	mA	3.6	HFINTOSC mode (Note 5)				
D020			2.4	3.1	mA	3.0	Fosc = 32 MHz,				
		—	2.6	3.4	mA	5.0	HFINTOSC mode (Note 5)				
D022		—	2	3.0	mA	3.0	Fosc = 32 MHz,				
		—	2.6	3.5	mA	3.6	HS Oscillator mode (Note 5)				
D022		—	2.1	3.0	mA	3.0	Fosc = 32 MHz,				
			3	3.5	mA	5.0	HS Oscillator mode (Note 5)				

TABLE 32-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 8 MHz clock with 4x PLL enabled.

Standar	Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions				
		Program Memory Programming Specifications									
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 1, Note 2)				
D111	IDDP	Supply Current during Programming	—	—	10	mA					
D112	VBE	VDD for Bulk Erase	2.7		VDDMAX	V					
D113	VPEW	VDD for Write or Row Erase	VDDMIN	_	VDDMAX	V					
D114	IPPGM	Current on MCLR/VPP during Erase/Write	—	—	1.0	mA					
D115	IDDPGM	Current on VDD during Erase/ Write	—	—	5.0	mA					
		Program Flash Memory									
D121	Ер	Cell Endurance	10K	—	_	E/W	-40°C ≤ TA ≤ +85°C (Note 3)				
D122	VPR	VDD for Read	VDDMIN	—	VDDMAX	V					
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms					
D124	TRETD	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated				
D125	EHEFC	High-Endurance Flash Cell	100K	—	—	E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, Lower byte last 128 addresses				

TABLE 32-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Required only if single-supply programming is disabled.

2: The MPLAB ICD2 does not support variable VPP output. Circuitry to limit the ICD2 VPP voltage must be placed between the ICD2 and target system when programming or debugging with the ICD2.

3: Self-write and Block Erase.