

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1708-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Register Definitions: Status

REGISTER 3-1: STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/a	R-1/a	R/W-0/u	R/W-0/u	R/W-0/u					
_		_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾					
bit 7			10	1.0			bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets					
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion						
bit 7-5	Unimplemen	Unimplemented: Read as '0'										
bit 4	TO: Time-Out	TO: Time-Out bit										
	1 = After pow	er-up, CLRWDT	instruction or	SLEEP instruc	tion							
	0 = A WDT T	ime-out occurre	ed									
bit 3	PD: Power-D	own bit										
	1 = After pow 0 = Bv execu	ver-up or by the tion of the SLE	CLRWDT instr	ruction								
bit 2	Z: Zero bit											
	1 = The resul	t of an arithmet	ic or logic ope	eration is zero								
	0 = The resul	t of an arithmet	ic or logic ope	eration is not ze	ero							
bit 1	DC: Digit Car	ry/Digit Borrow	bit (ADDWF, A	DDLW, SUBLW,	SUBWF instruction	ons) ⁽¹⁾						
	1 = A carry-o	ut from the 4th	low-order bit	of the result oc	curred							
0 = No carry-out from the 4th low-order bit of the result												
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾											
	1 = A carry-o	ut from the Mos	st Significant I	oit of the result	occurred							
	0 = No carry-out from the Most Significant bit of the result occurred											
Note 1. To	Porrow the ne		d A aubtract	ion in overwhere	hy adding the	wo'o oomolom	ont of the					

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

6.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (EXTRC) mode circuits.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 6.3** "**Clock Switching**" for additional information.

6.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Secondary oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See **Section 6.3 "Clock Switching**" for more information.

6.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 6-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, 4-32 MHz
- ECM Medium power, 0.5-4 MHz
- ECL Low power, 0-0.5 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

EXTERNAL CLOCK (EC) MODE OPERATION

6.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 6-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 6-3 and Figure 6-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

8.2 Low-Power Sleep Mode

The PIC16F1704/8 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. The PIC16F1704/8 allows the user to optimize the operating current in Sleep, depending on the application requirements.

A Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. With this bit set, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use only with the following peripherals:

- Brown-Out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source<100 kHz)

Note: The PIC16LF1704/8 does not have a configurable Low-Power Sleep mode. PIC16LF1704/8 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum VDD and I/O voltage than the PIC16F1704/8. See Section 32.0 "Electrical Specifications" for more information.

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION (PIC16(L)F1704)

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u				
	—	—			xxxPPS<4:0>						
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on periph	eral					
bit 7-5	Unimplemen	ted: Read as '	0'								
bit 4-0	4-0 xxxPPS<4:0>: Peripheral xxx Input Selection bits										
	11xxx = Res	erved. Do not u	ise.								
	1011 Depended De netwoo										
	1011x = Res	erved. Do not l	ise.								
	10101 = Peri	pheral input is i									
	10100 = Peri	pheral input is i									
	10011 - Peri	pheral input is i									
	10010 - Peli	pheral input is i									
	10000 = Peri	pheral input is I	RC0								
	01xxx = Res	erved. Do not ι	ise.								
	0011x = Res	erved. Do not u	ise.								
	00101 = Peri	pheral input is	RA5								
	00100 = Peri	pheral input is	RA4								
	00011 = Peri	, pheral input is l	RA3								
	00010 = Peri	pheral input is	RA2								
	00001 = Peri	pheral input is									
	00000 = Peri	pheral input is	RA0								

REGISTER 12-4: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0				
_	—	—	—	—	—	_	PPSLOCKED				
bit 7 bit 0											
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								
'1' = Bit is set	langed	'0' = Bit is clea	ared								

bit 7-1 Unimplemented: Read as '0'

bit 0 **PPSLOCKED:** PPS Locked bit

 $\ensuremath{\texttt{1=PPS}}$ is locked. PPS selections can not be changed.

0= PPS is not locked. PPS selections can be changed.

16.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 16-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

FIGURE 18-6: SIMPLIFIED COG BLOCK DIAGRAM (PUSH-PULL MODE, GXMD = 5)

FIGURE 18-8: COG (RISING/FALLING) DEAD-BAND BLOCK

REGISTER	20-2: ADC	ON1: ADC CO	NTROL REG	GISTER 1				
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
ADFM		ADCS<2:0>		—	ADNREF	ADPRE	EF<1:0>	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'		
u = Bit is un	changed	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is s	et	'0' = Bit is clea	ared					
bit 7	ADFM: ADC 1 = Right ju loaded. 0 = Left just loaded.	Result Format stified. Six Most ified. Six Least	Select bit Significant bi Significant bit	ts of ADRESH	are set to '0' w are set to '0' w	when the conve	ersion result is ersion result is	
bit 6-4	ADCS<2:0> 111 = FRC 110 = Fosc 101 = Fosc 100 = Fosc 011 = FRC 010 = Fosc 001 = Fosc 000 = Fosc	: ADC Conversion (clock supplied f /64 /16 (clock supplied f /32 /8 /2	on Clock Sele rom an intern rom an intern	ct bits al RC oscillator al RC oscillator	.)			
bit 3	Unimpleme	nted: Read as ')'					
bit 2	ADNREF: A/D Negative Voltage Reference Configuration 0 = VREF- is connected to VSS 1 = VREF- is connected to external VREF							
bit 1-0	ADPREF<1: 11 = VREF+ 10 = VREF+ 01 = Reserv 00 = VREF+	0>: ADC Positiv is connected to is connected to red is connected to	e Voltage Rei internal FVR_ external VREF VDD	ference Configu Buffer1 ⁽¹⁾ + pin ⁽¹⁾	uration bits			
Note 1: V	When selecting th	ne VREE+ nin as	the source of	the positive re	ference be awa	are that a mini	mum voltage	

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Table 32-16: ADC Conversion Requirements for details.

25.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 25-1 displays the Timer1 enable selections.

TABLE 25-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

25.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 25-2 displays the clock source selections.

25.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1
 gate
- C1 or C2 comparator input to Timer1 gate

25.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI, which can be synchronized to the microcontroller system clock or can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

- Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - · Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - Timer1 is disabled
 - Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 25-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	T10SCEN	Clock Source
11	x	LFINTOSC
10	0	External Clocking on T1CKI Pin
01	x	System Clock (Fosc)
0 0	х	Instruction Clock (Fosc/4)

FIGURE 28-19: I²C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1)

28.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 28-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 28-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 28-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—		ANSA4		ANSA2	ANSA1	ANSA0	122
ANSELB ⁽¹⁾	_	—	ANSB5	ANSB4	-	_	_	—	128
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5 ⁽²⁾	ANSC4 ⁽²⁾	ANSC3	ANSC2	ANSC1	ANSC0	133
BAUD1CON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	336
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	86
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89
RC1REG			EUS	SART Receiv	e Data Regis	ter			329*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	335
RxyPPS		—			F	RxyPPS<4:0	>		140
SP1BRGL				BRG<	7:0>				337
SP1BRGH				BRG<	15:8>				337
TRISA	_	—	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	121
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	127
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISA0	132
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	334

TABLE 29-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

Note 1: PIC16(L)F1708 only.

2: PIC16(L)F1704 only.

3: Unimplemented, read as '1'.

29.3 Register Definitions: EUSART Control

REGISTER 29-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0				
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D				
bit 7							bit 0				
							,				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other R							
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7	CSRC: Clock Asynchronous Don't care Synchronous 1 = Master n 0 = Slave m	Source Select <u>s mode</u> : <u>mode</u> : node (clock ge ode (clock fron	bit nerated intern n external sou	ally from BRG)						
bit 6	 Slave mode (clock from external source) TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission 										
bit 5	TXEN: Transi 1 = Transmit 0 = Transmit	mit Enable bit ⁽¹ enabled disabled)								
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	RT Mode Sele nous mode onous mode	ct bit								
bit 3	SENDB: Sen Asynchronous 1 = Send Syn 0 = Sync Bre Synchronous Don't care	d Break Chara <u>s mode</u> : nc Break on ne ak transmissio <u>mode</u> :	cter bit ext transmissic n completed	on (cleared by h	nardware upon (completion)					
bit 2	BRGH: High Baud Rate Select bit <u>Asynchronous mode</u> : 1 = High speed 0 = Low speed <u>Synchronous mode</u> : Unused in this mode										
bit 1	TRMT: Transi 1 = TSR emp 0 = TSR full	mit Shift Regist oty	er Status bit								
bit 0	TX9D: Ninth b Can be addre	oit of Transmit ss/data bit or a	Data a parity bit.								
Note 1: SR	REN/CREN over	rides TXEN in	Sync mode.								

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300						_	_		_	_			
1200		—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	—	—	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	_	_	—	_	—	_	_	_	_	_	_	

TABLE 29-5: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)			
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51			
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12			
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—			
9600	9615	0.16	12	—	—	—	9600	0.00	5	—	—	—			
10417	10417	0.00	11	10417	0.00	5	—	_	_	—	_	_			
19.2k	_	_	_	—	_	_	19.20k	0.00	2	—	_	_			
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—			
115.2k	—	_	_	—	_	_	—	_	—	—	_	_			

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD RATE	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—	—	_	—			_		_	_
1200	—	—	—	—	—	—	—	—	—	—	—	—
2400	_	_	_	_	_	_	—	_	_	—	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

TABLE 29-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	—	—		ANSA4		ANSA2	ANSA1	ANSA0	122	
ANSELB ⁽¹⁾	—	_	ANSB5	ANSB4	_	_	_	_	128	
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5(2)	ANSC4(2)	ANSC3	ANSC2	ANSC1	ANSC0	133	
BAUD1CON	ABDOVF	RCIDL	-	SCKP	BRG16	_	WUE	ABDEN	336	
CKPPS					138, 139					
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	86	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89	
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	335	
RXPPS					138, 139					
RxyPPS	— — — RxyPPS<4:0>							140		
TRISA	—	—	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	121	
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	_	—	127	
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISA0	132	
TX1REG	EUSART Transmit Data Register									
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	334	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission.

* Page provides register information.

Note 1: PIC16(L)F1708 only.

2: PIC16(L)F1704 only.

3: Unimplemented, read as '1'.

FIGURE 32-3: POR AND POR REARM WITH SLOW RISING VDD

TABLE 32-25: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions		
SP100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz		
			SSP module	1.5 TCY	_				
SP101*	TLOW	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz		
			SSP module	1.5 TCY	—	_			
SP102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns			
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF		
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns			
			400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF		
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns			
			400 kHz mode	0	0.9	μS			
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)		
			400 kHz mode	100	—	ns			
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)		
			400 kHz mode	—	—	ns			
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free		
			400 kHz mode	1.3	—	μS	before a new transmission can start		
SP111	Св	Bus capacitive loading		400	pF				

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TSU:DAT \geq 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.