

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1708t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
		LVP ⁽¹⁾	DEBUG ⁽²⁾	LPBOR	BORV ⁽³⁾	STVREN	PLLEN	
		bit 13					bit 8	
R/P-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1	
ZCDDIS	—	—	—	—	PPS1WAY	WRT	<1:0>	
bit 7							bit 0	
							1	
Legend:								
R = Readab	le bit	P = Programma	able bit	U = Unimpleme	ented bit, read as	'1'		
'0' = Bit is cle	eared	'1' = Bit is set		-n = Value whe	n blank or after B	ulk Erase		
bit 13	LVP: Low-Vol 1 = Low-voltag 0 = High-volta	tage Programming ge pro <u>gramm</u> ing e ge on MCLR mus	g Enable bit ⁽¹⁾ enabled t be used for pro	gramming				
bit 12	2 DEBUG: In-Circuit Debugger Mode bit ⁽²⁾ 1 = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins 0 = In-Circuit Debugger enabled, ICSPCI K and ICSPDAT are dedicated to the debugger							
bit 11	LPBOR: Low-Power BOR Enable bit 1 = Low-Power Brown-out Reset is disabled 0 = Low-Power Brown-out Reset is enabled							
bit 10	BORV: Brown 1 = Brown-out 0 = Brown-out	BORV: Brown-out Reset Voltage Selection bit ⁽³⁾ 1 = Brown-out Reset voltage (VBOR), low trip point selected. 0 = Brown-out Reset voltage (VBOR), bigh trip point selected.						
bit 9	STVREN: Sta 1 = Stack Ove 0 = Stack Ove	ck Overflow/Unde rflow or Underflov rflow or Underflov	erflow Reset Enal v will cause a Re v will not cause a	ole bit set i Reset				
bit 8	PLLEN: PLL I 1 = 4xPLL ena 0 = 4xPLL dis	Enable bit abled abled						
bit 7	ZCDDIS: ZCD 1 = ZCD disat 0 = ZCD alwa) Disable bit bled. ZCD can be vs enabled	enabled by settir	ng the ZCDSEN	bit of ZCDCON			
bit 6-3	Unimplement	ed: Read as '1'						
bit 2	PPS1WAY: PR	SLOCK Bit One-	Way Set Enable	bit				
	1 = The PPSL future ch 0 = The PPSL	OCK bit can only anges to PPS reg OCK bit can be s	 be set once after isters are preven et and cleared as 	er an unlocking s ited s needed (provid	sequence is exec ed an unlocking s	cuted; once PPSI	_OCK is set, all uted)	
bit 1-0	WRT<1:0>: F <u>4 kW Flash m</u> 11 = Writ 10 = 000 01 = 000 00 = 000	lash Memory Self <u>emory</u> e protection off h to 1FFh write pr h to 7FFh write pr h to FFFh write p	Write Protection rotected, 200h to rotected, 800h to rotected, no addr	bits FFFh may be m FFFh may be m esses may be m	odified by PMCO odified by PMCO odified by PMCO	N control N control N control		
Note 1: 2:	The <u>LVP bit</u> canno The DEBUG bit in and programmers.	t be programmed Configuration Wo For normal devic	to '0' when Prog ords is managed a e operation, this	ramming mode i automatically by bit should be ma	s entered via LVF device developm aintained as a '1'.	o. ent tools includin	g debuggers	

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2

- **3:** See VBOR parameter for specific trip point voltages.

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIF	- ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7	TMR1GIF: Tin	ner1 Gate Inte	rrupt Flag bit				
	1 = Interrupt is	s pending					
hit C		s not pending			:.		
טונ ט		-io-Digital Con	verter (ADC)	merrupt Flag b	л		
	0 = Interrupt is	s not pending					
bit 5	RCIF: USART	Receive Inter	rupt Flag bit				
	1 = Interrupt is pending						
	0 = Interrupt is	s not pending					
bit 4	TXIF: USART	Transmit Inter	rupt Flag bit				
	1 = Interrupt is	s pending					
hit 2		s not penaing		Interrupt Ele-	h:t		
DIC 3		nionous Seria	i Port (IVISSP)	interrupt Flag	DIL		
	1 = Interrupt is 0 = Interrupt is	s not pending					
bit 2	CCP1IF: CCP	1 Interrupt Fla	g bit				
	1 = Interrupt is	spending	-				
	0 = Interrupt is	s not pending					
bit 1	TMR2IF: Time	er2 to PR2 Inte	rrupt Flag bit				
	1 = Interrupt is	s pending					
h :+ 0			to much Elec 1	:4			
dit U		eri Overtiow In	terrupt Hag b	JI			
1 = Interrupt is pending 0 = Interrupt is not pending							
Note:	Interrupt flag bits a	re set when an	interrupt				
(ts corresponding e	egaratess of the	e Global				
	Enable bit, GIE, of	f the INTCON	register.				
I	User software	should ensu	ure the				
í	appropriate interru	ipt flag bits a	ire clear				
F	prior to enabling ar	n interrupt.					

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

REGISTER 10-5:	PMCON1: PROGRAM MEMORY	CONTROL 1 REGISTER
----------------	------------------------	---------------------------

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpleme	nted bit, read as	'0'	
S = Bit can on	ly be set	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is clear	ed	HC = Bit is clea	red by hardware		
bit 7	Unimplemen	ted: Read as '1'					
bit 6	CFGS: Config	juration Select bit					
	1 = Access 0 = Access	-lash program me	n ID and Device	ID Registers			
bit 5	LWLO: Load	Write Latches Onl	v bit ⁽³⁾				
	1 = Only the	addressed progra	im memory write	e latch is loaded/	updated on the n	ext WR comman	d
	0 = The add	ressed program m	emory write latc	h is loaded/update	ed and a write of	all program memo	ory write latches
L:1. 4		itiated on the next	WR command				
DIT 4	1 = Performe	am Flash Erase Er s an erase operati	able bit	VR command (ha	irdware cleared i	upon completion)	
	0 = Performs	a write operation	on the next WF	R command			
bit 3	WRERR: Pro	gram/Erase Error	Flag bit				
	1 = Conditio	n indicates an imp	proper program	or erase sequen	ce attempt or ter	mination (bit is s	et automatically
	on any s 0 = The proc	et attempt (write " aram or erase ope	 of the WR bit ration complete 	:). d normally			
bit 2	WREN: Progr	am/Erase Enable	bit	a			
	1 = Allows p	rogram/erase cycl	es				
	0 = Inhibits p	programming/erasi	ng of program F	Flash			
bit 1	WR: Write Co	ntrol bit					
	1 = Initiates	a program Flash p ration is self-timed	orogram/erase o	peration. leared by bardwa	re once operatio	n is complete	
	The WR	bit can only be se	t (not cleared) ii	n software.		in is complete.	
	0 = Program	/erase operation t	o the Flash is co	omplete and inac	tive		
bit 0	RD: Read Co	ntrol bit					
	1 = Initiates	a program Flash r	ead. Read takes	s one cycle. RD is	s cleared in hard	ware. The RD bit	can only be set
	0 = Does no	t initiate a progran	n Flash read				
Note 1: U	nimplemented bit	read as '1'.					

- 2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1).
- **3:** The LWLO bit is ignored during a program memory erase operation (FREE = 1).

11.0 I/O PORTS

Each port has six standard registers for its operation. These registers are:

- TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- INLVLx (input level control)
- ODCONx registers (open-drain)
- · SLRCONx registers (slew rate

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

TABLE 11-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC
PIC16(L)F1704	•		•
PIC16(L)F1708	•	•	•

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1: GENERIC I/O PORT OPERATION

REGISTER 13-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBP7	IOCBP6	IOCBP5	IOCBP4		—	—	—
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as ')'	

u = Bit is unchan	ged x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	
bit 7-4	IOCBP<7:4>: Interrupt-on-Change PORTB Pos	sitive Edge Enable bits

	Toobi (1.42. Interrupt on onlarge rortron oblive Edge Enable bits
	1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon
	detecting an edge.
	0 = Interrupt-on-Change disabled for the associated pin.
bit 3-0	Unimplemented: Read as '0'

Note 1: PIC16(L)F1708 only.

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBN<7:4>:** Interrupt-on-Change PORTB Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

bit 3-0 Unimplemented: Read as '0'

Note 1: PIC16(L)F1708 only.

REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits
	 An enabled change was detected on the associated pin.
	Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was
	detected on RBx.
	0 = No change was detected, or the user cleared the detected change.

bit 3-0 Unimplemented: Read as '0'

Note 1: PIC16(L)F1708 only.

18.1.4 HALF-BRIDGE MODE

In half-bridge mode, the COG generates a two output complementary PWM waveform from rising and falling event sources. In the simplest configuration, the rising and falling event sources are the same signal, which is a PWM signal with the desired period and duty cycle. The COG converts this single PWM input into a dual complementary PWM output. The frequency and duty cycle of the dual PWM output match those of the single input PWM signal. The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time immediately after the PWM transition where neither output is driven. This is referred to as dead time and is covered in **Section 18.5 "Dead-Band Control"**.

A typical operating waveform, with dead-band, generated from a single CCP1 input is shown in Figure 18-9.

The primary output can be steered to either or both COGxA and COGxC. The complementary output can be steered to either or both COGxB and COGxD.

Half-Bridge mode is selected by setting the GxMD bits of the COGxCON0 register to '100'.

18.1.5 PUSH-PULL MODE

In Push-Pull mode, the COG generates a single PWM output that alternates, every PWM period, between the two pairs of the COG outputs. COGxA has the same signal as COGxC. COGxB has the same signal as COGxD. The output drive activates with the rising input event and terminates with the falling event input. Each rising event starts a new period and causes the output to switch to the COG pair not used in the previous period.

The push-pull configuration is shown in Figure 18-6. A typical push-pull waveform generated from a single CCP1 input is shown in Figure 18-11.

Push-Pull mode is selected by setting the GxMD bits of the COGxCON0 register to '101'.

18.1.6 EVENT DRIVEN PWM (ALL MODES)

Besides generating PWM and complementary outputs from a single PWM input, the COG can also generate PWM waveforms from a periodic rising event and a separate falling event. In this case, the falling event is usually derived from analog feedback within the external PWM driver circuit. In this configuration, high power switching transients may trigger a false falling event that needs to be blanked out. The COG can be configured to blank falling (and rising) event inputs for a period of time immediately following the rising (and falling) event drive output. This is referred to as input blanking and is covered in **Section 18.6 "Blanking Control"**. It may be necessary to guard against the possibility of circuit faults. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 18.8 "Auto-shutdown Control"**.

The COG can be configured to operate in phase delayed conjunction with another PWM. The active drive cycle is delayed from the rising event by a phase delay timer. Phase delay is covered in more detail in **Section 18.7 "Phase Delay"**.

A typical operating waveform, with phase delay and dead-band, generated from a single CCP1 input is shown in Figure 18-10.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	GxFSIM6	GxFSIM5	GxFSIM4	GxFSIM3	GxFSIM2	GxFSIM1	GxFSIM0
bit 7							bit 0
Legend:	L. 14		L 14			(0)	
R = Readable	DIt	W = Writable	Dit		t DOD and DOC	as 'U'	or Doooto
u = Bit is uncha	angeu	x = Bit is unknown	lown	-n/n = value a	ends on condition		iel Resels
				q = value dep		511	
bit 7	Unimplemen	ted: Read as '0)'				
bit 6	GxFSIM6: CO	OGx Falling Eve	ent Input Sour	ce 6 Mode bit			
	GxFIS6 = 1:						deles.
	1 = PWM30 0 = PWM30	utput nign-to-io\ utput low level \	w transition w	mmediate falling) event aπer talli a event	ing event phase	delay
	<u>GxFIS6 = 0:</u>				,		
	PWM3 output	t has no effect o	on falling even	t			
bit 5	GXEIS5 - 1	DGx Falling Eve	ent Input Sour	ce 5 Mode bit			
	1 = CCP2 out	Itput high-to-low	rtransition wil	l cause a falling	event after fallir	ng event phase	delay
	0 = CCP2 ou	itput low level w	vill cause an ir	nmediate falling	event		
	$\frac{GXF1S5 = 0}{CCP2 \text{ output}}$	has no effect or	n falling event				
bit 4	GxFSIM4: CO	DGx Falling Eve	ent Input Sour	ce 4 Mode bit			
	<u>GxFIS4 = 1:</u>	-					
	1 = CCP1 hig	gh-to-low transit w level will caus	tion will cause an immedia	e a falling event a te falling event	after falling ever	nt phase delay	
	<u>GxFIS4 = 0:</u>			tto iulling oront			
	CCP1 has no	effect on falling	g event				
bit 3	GxFSIM3: CC	JGx Falling Eve	ent Input Sour	ce 3 Mode bit			
	1 = CLC1 ou	tput high-to-low	transition wil	l cause a falling	event after fallir	ng event phase	delay
	0 = CLC1 ou	tput low level w	ill cause an in	nmediate falling	event		
	CLC1 output	has no effect or	n falling event				
bit 2	GxFSIM2: CO	OGx Falling Eve	ent Input Sour	ce 2 Mode bit			
	$\frac{\text{GxFIS2} = 1:}{1 - Compared}$	tor 2 high to los	u transition w	ill aguag a falling	n overt ofter fall	ing avant phase	dolov
	0 = Compara	ator 2 high-to-lov ator 2 low level v	w transition w will cause an i	mmediate falling	g event after fail	ing event phase	delay
	<u>GxFIS2 = 0:</u>		c				
h# 1	Comparator 2	has no effect o	on falling even	it aa 1 Mada hit			
DICI	GxFSIM1: CC GxFIS1 = 1:	JGX Failing Eve	ent input Sour	ce i mode dit			
	1 = Compara	ator 1 high-to-lov	w transition w	ill cause a falling	g event after fall	ing event phase	delay
0 = Comparator 1 low level will cause an immediate falling event							
	Comparator 1	has no effect o	on falling even	ıt			
bit 0	GxFSIM0: CO	DGx Falling Eve	ent Input Sour	ce 0 Mode bit			
	$\frac{\text{GxFIS0} = 1:}{1 = \text{Pin select}}$	ted with COCy	DPS control bi	ah-to-low transit	ion will cause a	falling event off	ar falling event
	phase delay						
	0 = Pin selected with COGxPPS control low level will cause an immediate falling event						
	GXFISU = 0: Pin selected v	with COGxPPS	control has no	o effect on falling	a event		

REGISTER 18-6: COGxFSIM: COG FALLING EVENT SOURCE INPUT MODE REGISTER

TABLE 19-3:	SUMMARY OF REGISTERS	ASSOCIATED WITH CLCx
-------------	----------------------	-----------------------------

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	122
ANSELB ⁽¹⁾	—	_	ANSB5	ANSB4	—	—	—	—	128
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5 ⁽²⁾	ANSC4 ⁽²⁾	ANSC3	ANSC2	ANSC1	ANSC0	133
CLC1CON	LC1EN	—	LC10UT	LC1INTP	LC1INTN	l	C1MODE<2:0	>	207
CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN	l	C2MODE<2:0	>	207
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN	L	C3MODE<2:0	>	207
CLCDATA	_	_	_	_	_	MLC3OUT	MLC2OUT	MLC1OUT	215
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	211
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	212
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	213
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	214
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	208
CLC1SEL0	—	—	—			LC1D1S<4:0>			209
CLC1SEL1	—	—	—			LC1D2S<4:0>			209
CLC1SEL2	—	—	—			LC1D3S<4:0>			209
CLC1SEL3	_	_	_			LC1D4S<4:0>			210
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	211
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	212
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	213
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	214
CLC2POL	LC2POL	_	_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	208
CLC2SEL0	—	—	—			LC2D1S<4:0>	•	•	209
CLC2SEL1	—	—	—			LC2D2S<4:0>			209
CLC2SEL2	—	—	—			LC2D3S<4:0>			209
CLC2SEL3	_	_	_			LC2D4S<4:0>			210
CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	211
CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	212
CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	213
CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	214
CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	208
CLC3SEL0	—	—	—			LC3D1S<4:0>			209
CLC3SEL1	—	—	—			LC3D2S<4:0>			209
CLC3SEL2	—	—	—			LC3D3S<4:0>			209
CLC3SEL3	_	_	_			LC3D4S<4:0>			210
CLCxPPS	_	_	_			CLCxPPS<4:0>			138, 139
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85
PIE3	_	_	COGIE	ZCDIE	_	CLC3IE	CLC2IE	CLC1IE	88
PIR3	—	—	COGIF	ZCDIF	_	CLC3IF	CLC2IF	CLC1IF	91
RxyPPS	—	_	_			RxyPPS<4:0>			140
TRISA	—	—	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	121
TRISB ⁽⁴⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	—	_	127
TRISC	TRISC7 ⁽⁴⁾	TRISC6 ⁽⁴⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	132
1		1	1				1		1

 — = unimplemented read as '0'. Shaded cells are not used for CLC module.
 PIC16(L)F1708 only.
 Legend: Note 1:

2: PIC16(L)F1704 only.

3: Unimplemented, read as '1'.

27.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains two standard Capture/Compare/PWM modules (CCP1 and CCP2).

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

27.1 Capture Mode

The Capture mode function described in this section is available and identical for all CCP modules.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value. Figure 27-1 shows a simplified diagram of the capture operation.

27.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 27-1:

CAPTURE MODE OPERATION BLOCK DIAGRAM

27.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 25.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

27.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

Note:	Clocking Timer1 from the system clock (FOSC) should not be used in Capture
	mode. In order for Capture mode to
	pin, Timer1 must be clocked from the
	instruction clock (Fosc/4) or from an external clock source.

27.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 27-1 demonstrates the code to perform this function.

EXAMPLE 27-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	CCPxCON	;Set Bank bits to point ;to CCPxCON
CLRF	CCPxCON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value

27.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

27.2 Compare Mode

The Compare mode function described in this section is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- · Toggle the CCPx output
- Set the CCPx output
- · Clear the CCPx output
- · Generate an Auto-conversion Trigger
- · Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 27-2 shows a simplified diagram of the compare operation.

COMPARE MODE OPERATION BLOCK DIAGRAM

28.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- · Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSPCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCONx registers and then set the <u>SSPEN</u> bit. This configures the SDI, SDO, SCK and <u>SS</u> pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDI must have corresponding TRIS bit set
- · SDO must have corresponding TRIS bit cleared
- SCK (Master mode) must have corresponding TRIS bit cleared
- SCK (Slave mode) must have corresponding TRIS bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Detect bit, BF of the SSPSTAT register, and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any SSPBUF register write to the during transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF of the SSPSTAT register, indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSPSTAT register indicates the various Status conditions.

29.1.1.5 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

29.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 29.1.2.7** "Address **Detection**" for more information on the Address mode.

29.1.1.7 Asynchronous Transmission Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 29.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 29-3: ASYNCHRONOUS TRANSMISSION

29.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 29-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

29.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

29.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 29.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIF	O is overrun, n received until	o additional
	condition is clear	ed. See Secti	on 29.1.2.5
	information on or	verrun errors.	for more

29.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE, Interrupt Enable bit of the PIE1 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	k → PC<10:0> PCLATH<6:3> → PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f	IORWF	Inclusive OR W with f			
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)			
Status Affected:	Z	Status Affected:	Z			
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			

32.3 DC Characteristics

TABLE 32-1:SUPPLY VOLTAGE

PIC16LF1704/8		Standard Operating Conditions (unless otherwise stated)						
PIC16F1704/8			Standard Operating Conditions (unless otherwise stated)					
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
		PIC16LF1704/8	1.8 2.5	_	3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 2)	
D001		PIC16F1704/8	2.3 2.5		5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾						
		PIC16LF1704/8	1.5	_	_	V	Device in Sleep mode	
D002*		PIC16F1704/8	1.7	_	_	V	Device in Sleep mode	
D002A*	VPOR	Power-on Reset Release Voltage ⁽³⁾						
		PIC16LF1704/8		1.6		V		
D002A*		PIC16F1704/8	_	1.6		V		
D002B*	VPORR*	ORR* Power-on Reset Rearm Voltage ⁽³⁾						
		PIC16LF1704/8		0.8		V		
D002B*		PIC16F1704/8	_	1.5		V		
D003	VFVR	Fixed Voltage Reference Voltage						
		1x gain (1.024 nominal)	-4	—	+4	%	$V\text{DD} \geq 2.5\text{V},\text{-}40^\circ\text{C}$ to 85°C	
		2x gain (2.048 nominal)	-4	—	+4	%	$V\text{DD} \geq 2.5 \text{V}, \mbox{ -40}^\circ\text{C} \mbox{ to } 85^\circ\text{C}$	
		4x gain (4.096 nominal)	-5	—	+5	%	$V\text{DD} \geq 4.75V\text{,}$ -40°C to 85°C	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal ⁽²⁾	0.05	—	_	V/ms	See Section 5.1 "Power-On Reset (POR)" for details.	

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

*

3: See Figure 32-3: POR and POR Rearm with Slow Rising VDD.

TABLE 32-24: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Charact	Min.	Тур.	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—	—	ns	Only relevant for repeated
		Setup time	400 kHz mode	600	_	—		Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first
		Hold time	400 kHz mode	600		—		clock pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	—	ns	
		Setup time	400 kHz mode	600	_	—		
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	_	ns	
		Hold time	400 kHz mode	600	_	_		

These parameters are characterized but not tested. *

I²C BUS DATA TIMING **FIGURE 32-22:**

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-20: IDD, LFINTOSC Mode, Fosc = 31 kHz. PIC16F1704/8 Only.

FIGURE 33-21: IDD, MFINTOSC Mode, Fosc = 500 kHz. PIC16LF1704/8 Only.

FIGURE 33-22: IDD, MFINTOSC Mode, Fosc = 500 kHz. PIC16F1704/8 Only.

FIGURE 33-23: IDD Typical, HFINTOSC Mode. PIC16LF1704/8 Only.

FIGURE 33-24: IDD Maximum, HFINTOSC Mode. PIC16LF1704/8 Only.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support