E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1708t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	K 7										
38Ch	INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111
38Dh	INLVLB ⁽³⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4		—			1111	1111
38Eh	INLVLC	INLVLC7(3)	INLVLC6(3)	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
38Fh	_	Unimplement	ted							_	_
390h	_	Unimplement	ted							_	
391h	IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF		_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h	IOCBP ⁽³⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_		_	_	0000	0000
395h	IOCBN ⁽³⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_		_	_	0000	0000
396h	IOCBF ⁽³⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	_	_	_	0000	0000
397h	IOCCP	IOCCP7 ⁽³⁾	IOCCP6 ⁽³⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IIOCCP1	IOCCP0	0000 0000	0000 0000
398h	IOCCN	IOCCN7 ⁽³⁾	IOCCN6 ⁽³⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IIOCCN1	IOCCN0	0000 0000	0000 0000
399h	IOCCF	IOCCF7 ⁽³⁾	IOCCF6 ⁽³⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IIOCCF1	IOCCF0	0000 0000	0000 0000
39Ah		Linimplement	hot								
39Fh		Unimplement	leu								
Banl	K 8										
40Ch	—	Unimplement	Inimplemented					—	_		
415h	TMR4	Holding Regi	ster for the Lea	ast Significant	Byte of the 16	-bit TMR4 Red	nister			XXXX XXXX	1111111 1111111
416h	PR4	Holding Regi	ster for the Mo	st Significant I	Byte of the 16-	bit TMR4 Reg	lister			xxxx xxxx	1111111 1111111
417h	T4CON			T4OUTI	PS<3:0>		TMR4ON	T4CKF	PS<1:0>	-000 0000	-000 0000
418h											
41Bh	_	Unimplement	ted							—	—
41Ch	TMR6	Holding Regi	ster for the Lea	ast Significant	Byte of the 16	-bit TMR6 Reg	gister			XXXX XXXX	uuuu uuuu
41Dh	PR6	Holding Regi	ster for the Mo	st Significant I	Byte of the 16-	bit TMR6 Reg	lister			XXXX XXXX	uuuu uuuu
41Eh	T6CON	_		T6OUTI	PS<3:0>		TMR6ON	T6CKF	PS<1:0>	-000 0000	-000 0000
41Fh	_	Unimplement	ted							_	_
Banl	k 9										1
48Ch to 49Fh	_	Unimplement	ted							—	—
Banl	< 10										
50Ch											
 510h	—	Unimplement	ted							—	—
511h	OPA1CON	OPA1EN	OPA1SP	_	OPA1UG	_	_	OPA1P	CH<1:0>	00-000	00-000
512h			L		L						
— 514h	—	Unimplement	ted							—	—
515h	OPA2CON	OPA2EN	OPA2SP		OPA2UG	_	_	OPA2P	CH<1:0>	00-000	00-000
516h 51Fh	_	Unimplement	ted							_	—
Legen	d: x = unki	nown, u = uncl	hanged, q = va	alue depends	on condition, -	= unimpleme	nted, read as '	0', r = reserve	ed.		

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-10:**

Note

Unimplemented, read as '1'. PIC16(L)F1704 only. 1:

2:

3:

PIC16(L)F1708 only. Unimplemented on PIC16LF1704/8. 4:

4.2 Register Definitions: Configuration Words

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		FCMEN	IESO	CLKOUTEN	BORE	EN<1:0>	_
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
CP(1) MCLRE PWRTE WDTE<1:0> FOSC<2:0>							
bit 7 k						bit 0	
Legend:							
R = Readable	e bit	P = Programm	able bit	U = Unimpleme	ented bit, rea	id as '1'	
'0' = Bit is cle	eared	'1' = Bit is set		-n = Value whe	n blank or af	ter Bulk Erase	
bit 13 bit 12	FCMEN: Fail 1 = Fail-Safe 0 = Fail-Safe IESO: Internal 1 = Internal/E	-Safe Clock Mor Clock Monitor a Clock Monitor is al External Switch	nitor Enable b ind internal/e s disabled shover bit ver mode is e	bit xternal switchove enabled	er are both er	nabled.	
bit 11	 0 = Internal/External Switchover mode is disabled it 11 CLKOUTEN: Clock Out Enable bit <u>If FOSC configuration bits are set to LP, XT, HS modes</u>: This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin. <u>All other FOSC modes</u>: 1 = CLKOUT function is disabled. I/O function on the CLKOUT pin. <i>a</i> = CLKOUT function is disabled on the CLKOUT pin. 					pin.	
bit 10-9	BOREN<1:0: 11 = BOR en 10 = BOR en 01 = BOR co 00 = BOR dis	>: Brown-out Re abled abled during op ntrolled by SBO sabled	eset Enable b eration and d REN bit of th	its lisabled in Sleep e BORCON regis	ster		
bit 8	Unimplemen	ted: Read as '1	3				
bit 7	CP : Code Pro 1 = Program 0 = Program	otection bit ⁽¹⁾ memory code p memory code p	rotection is d	isabled nabled			
bit 6	MCLRE: MCI <u>If LVP bit = 1</u> This bit is <u>If LVP bit = 0</u> 1 = <u>MCLF</u> 0 = MCLF WPUE	IR/VPP Pin Fun i ignored. N/VPP pin function VPP pin function S bit.	n is MCLR; W	iea <u>k pull-</u> up enable ut; MCLR internall	ed. y disabled; W	/eak pull-up unde	r control of
bit 5	PWRTE : Pov 1 = PWRT d 0 = PWRT e	ver-up Timer En isabled nabled	able bit				
bit 4-3	WDTE<1:0>: 11 = WDT en 10 = WDT en 01 = WDT co 00 = WDT dis	Watchdog Time abled abled while run ntrolled by the S sabled	er Enable bit ning and disa SWDTEN bit i	bled in Sleep in the WDTCON i	register		

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1

6.6 Register Definitions: Oscillator Control

REGISTER 6-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN	N	IRCF	<3:0>		—	SCS	<1:0>
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is clea	ared				
bit 7	SPLLEN: So I <u>f PLLEN in C</u> SPLLEN bit i I <u>f PLLEN in C</u> 1 = 4x PLL I 0 = 4x PLL is	ftware PLL Ena <u>Configuration W</u> s ignored. 4x Pl <u>Configuration W</u> s enabled s disabled	ble bit <u>ords = 1:</u> _L is always e <u>ords = 0:</u>	enabled (subjec	t to oscillator re	quirements)	
bit 6-3	IRCF<3:0>: 1 1111 = 16 M 1110 = 8 M 1101 = 4 M 1100 = 2 M 1011 = 1 M 1010 = 500 1001 = 250 1000 = 125 0111 = 500 0110 = 250 0101 = 125 0100 = 62.5 0011 = 31.2 0010 = 31.2 000x = 31 H	Internal Oscillat MHz HF Hz or 32 MHz H Hz HF Hz HF KHz HF ⁽¹⁾ kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ kHz MF kHz MF kHz MF 25 kHz MF 25 kHz HF ⁽¹⁾ 25 kHz MF	or Frequency IF ⁽²⁾ It upon Reset	Select bits			
bit 2	Unimplemer	nted: Read as '	D'				
bit 1-0	SCS<1:0>: S 1x = Internal 01 = Second 00 = Clock d	System Clock So oscillator block ary oscillator etermined by Fo	elect bits OSC<2:0> in	Configuration V	Vords		
Note 1: 2:	Duplicate frequen 32 MHz when SP Selection ".	cy derived from LLEN bit is set.	HFINTOSC. Refer to Sect	ion 6.2.2.6 "32	MHz Internal	Oscillator Fre	quency

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 or PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	are are	set,
	regardless	of	the	state	of	any	other
	enable bits						

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

									_
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>			—	SCS	<1:0>	77
STATUS	—	_	—	TO	PD	Z	DC	С	23
WDTCON	—	_		١	VDTPS<4:0	>		SWDTEN	100

 TABLE 9-3:
 SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4:	SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			FCMEN	IESO	CLKOUTEN	BORE	N<1:0>		40
CONFIGI	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	F	OSC<2:0	>	49

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

11.4 Register Definitions: PORTB

REGISTER 11-9: PORTB: PORTB REGISTER

•x/u R/w-x/u R/w-x/u R/W-x/u U-0 U-	-0 l	J-0	U-0
7 RB6 RB5 RB4 — –		_	—
			bit 0
dable bit W = Writable bit U = Unimplemented bi	it, read as '0'		
unchanged x = Bit is unknown -n/n = Value at POR a	nd BOR/Value a	at all othe	er Resets
is set '0' = Bit is cleared			
s unchanged x = Bit is unknown -n/n = Value at POR ar is set '0' = Bit is cleared	nd BOR	/Value	/Value at all othe

bit 7-4	RB<7:4>: PORTB General Purpose I/O Pin bits ⁽¹⁾
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VIL
bit 3-0	Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-10: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—
bit 7							bit 0

edend.

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	TRISB<7:4>: PORTB Tri-State Control bits 1 = PORTB pin configured as an input (tri-stated)
	0 = PORTB pin configured as an output
bit 3-0	Unimplemented: Read as '0'

REGISTER 11-11: LATB: PORTB DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
LATB7	LATB6	LATB5	LATB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 LATB<7:4>: PORTB Output Latch Value bits⁽¹⁾

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	—	—	—	—	128
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	-	—	—	-	129
LATB	LATB7	LATB6	LATB5	LATB4	-	—	—	_	127
ODCONB	ODB7	ODB6	ODB5	ODB4	-	—	—	_	129
PORTB	RB7	RB6	RB5	RB4	-	—	—	_	127
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	-	—	—	-	129
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	-	—	—	-	129
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—	128

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

18.9 Buffer Updates

Changes to the phase, dead band, and blanking count registers need to occur simultaneously during COG operation to avoid unintended operation that may occur as a result of delays between each register write. This is accomplished with the GxLD bit of the COGxCON0 register and double buffering of the phase, blanking, and dead-band count registers.

Before the COG module is enabled, writing the count registers loads the count buffers without need of the GxLD bit. However, when the COG is enabled, the count buffer updates are suspended after writing the count registers until after the GxLD bit is set. When the GxLD bit is set, the phase, dead-band, and blanking register values are transferred to the corresponding buffers synchronous with COG operation. The GxLD bit is cleared by hardware when the transfer is complete.

18.10 Input and Output Pin Selection

The COG has one selection for an input from a device pin. That one input can be used as rising and falling event source or a fault source. The COG1PPS register is used to select the pin. Refer to Register 12-1 and Register 12-2.

The pin PPS control registers are used to enable the COG outputs. Any combination of outputs to pins is possible including multiple pins for the same output. See the RxyPPS control register and **Section 12.2 "PPS Outputs"** for more details.

18.11 Operation During Sleep

The COG continues to operate in Sleep provided that the COG_clock, rising event, and falling event sources remain active.

The HFINTSOC remains active during Sleep when the COG is enabled and the HFINTOSC is selected as the COG_clock source.

18.12 Configuring the COG

The following steps illustrate how to properly configure the COG to ensure a synchronous start with the rising event input:

- 1. If a pin is to be used for the COG fault or event input, use the COGxPPS register to configure the desired pin.
- 2. Clear all ANSEL register bits associated with pins that are used for COG functions.
- Ensure that the TRIS control bits corresponding to the COG outputs to be used are set so that all are configured as inputs. The COG module will enable the output drivers as needed later.
- 4. Clear the GxEN bit, if not already cleared.
- 5. Set desired dead-band times with the COGxDBR and COGxDBF registers and select the source with the COGxRDBS and COGxFDBS bits of the COGxCON1 register.
- 6. Set desired blanking times with the COGxBLKR and COGxBLKF registers.
- 7. Set desired phase delay with the COGxPHR and COGxPHF registers.
- 8. Select the desired shutdown sources with the COGxASD1 register.
- 9. Setup the following controls in COGxASD0 auto-shutdown register:
 - Select both output override controls to the desired levels (this is necessary, even if not using auto-shutdown because start-up will be from a shutdown state).
 - Set the GxASE bit and clear the GxARSEN bit.
- 10. Select the desired rising and falling event sources with the COGxRIS and COGxFIS registers.
- 11. Select the desired rising and falling event modes with the COGxRSIM and COGxFSIM registers.
- 12. Configure the following controls in the COGxCON1 register:
 - · Select the desired clock source
 - Select the desired dead-band timing sources
- 13. Configure the following controls in the COGxSTR register:
 - Set the steering bits of the outputs to be used.
 - Set the static levels.
- 14. Set the polarity controls in the COGxCON1 register.
- 15. Set the GxEN bit.
- 16. Set the pin PPS controls to direct the COG outputs to the desired pins.
- 17. If auto-restart is to be used, set the GxARSEN bit and the GxASE will be cleared automatically. Otherwise, clear the GxASE bit to start the COG.

REGISTER 18-12: COGxBLKR: COG RISING EVENT BLANKING COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
				GxBL	(R<5:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Reset				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depends on condition				

bit 7-6	Unimplemented:	Read	as	'0'
	•			

bit 5-0

GxBLKR<5:0>: Rising Event Blanking Count Value bits

= Number of COGx clock periods to inhibit falling event inputs

REGISTER 18-13: COGxBLKF: COG FALLING EVENT BLANKING COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
			GxBLKF<5:0>							
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 GxBLKF<5:0>: Falling Event Blanking Count Value bits

= Number of COGx clock periods to inhibit rising event inputs

TABLE 19-3:	SUMMARY OF REGISTERS	ASSOCIATED WITH CLCx
-------------	----------------------	----------------------

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	122
ANSELB ⁽¹⁾	—	_	ANSB5	ANSB4	—	—	—	—	128
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5 ⁽²⁾	ANSC4 ⁽²⁾	ANSC3	ANSC2	ANSC1	ANSC0	133
CLC1CON	LC1EN	—	LC10UT	LC1INTP	LC1INTN	l	C1MODE<2:0	>	207
CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN	l	C2MODE<2:0	>	207
CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN	L	C3MODE<2:0	>	207
CLCDATA	_	_	_	_	_	MLC3OUT	MLC2OUT	MLC1OUT	215
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	211
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	212
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	213
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	214
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	208
CLC1SEL0	—	—	—			LC1D1S<4:0>			209
CLC1SEL1	—	—	—			LC1D2S<4:0>			209
CLC1SEL2	—	—	—			LC1D3S<4:0>			209
CLC1SEL3	_	_	_			LC1D4S<4:0>			210
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	211
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	212
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	213
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	214
CLC2POL	LC2POL	_	_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	208
CLC2SEL0	—	—	—			LC2D1S<4:0>	•	•	209
CLC2SEL1	—	—	—			LC2D2S<4:0>			209
CLC2SEL2	—	—	—			LC2D3S<4:0>			209
CLC2SEL3	_	_	_			LC2D4S<4:0>			210
CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	211
CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	212
CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	213
CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	214
CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	208
CLC3SEL0	—	—	—			LC3D1S<4:0>			209
CLC3SEL1	—	—	—			LC3D2S<4:0>			209
CLC3SEL2	—	—	—			LC3D3S<4:0>			209
CLC3SEL3	_	_	_			LC3D4S<4:0>			210
CLCxPPS	_	_	_			CLCxPPS<4:0>			138, 139
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	85
PIE3	_	_	COGIE	ZCDIE	_	CLC3IE	CLC2IE	CLC1IE	88
PIR3	—	—	COGIF	ZCDIF	_	CLC3IF	CLC2IF	CLC1IF	91
RxyPPS	—	_	_			RxyPPS<4:0>			140
TRISA	—	—	TRISA5	TRISA4	(3)	TRISA2	TRISA1	TRISA0	121
TRISB ⁽⁴⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	—	_	127
TRISC	TRISC7 ⁽⁴⁾	TRISC6 ⁽⁴⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	132
1		1	1				1		1

 — = unimplemented read as '0'. Shaded cells are not used for CLC module.
 PIC16(L)F1708 only.
 Legend: Note 1:

2: PIC16(L)F1704 only.

3: Unimplemented, read as '1'.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
	TRIGSE	L<3:0> ⁽¹⁾		_	_	_	_
bit 7							bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7-4	TRIGSEL<3	:0>: Auto-Conv	ersion Triaaer	Selection bits ⁽¹)		
		auto convorsior	trigger soloct	od			
	0000 - 1000		i ingger seleci	eu			
		ו -					
	0010 - CCF	-z r0 T0 overfle	(2)				
	0011 - Time	$T_{10} = T_{10} = 0$	(2)				
	0100 - Time	$r^2 = T^2$ motob	Jvv. ,				
	0101 = 1000	$r_2 - r_2$ match					
	0110 – Co m	1 parator C1 – C					
			2001_Sync				
	1000 - CLC	$1 - LC1_0ut$					
	1001 - CLC	$2 - LC2_0ut$					
	1010 - CLC	orved					
	1011 - Res	erveu erv – Tv match					
	1100 = Time	ere – Te match					
	1110 - Pes	erved					
	1111 - Res	erved					
h:+ 0 0			o.'				
DIT 3-0	Unimpleme	nted: Read as '	0.				
Note 1.	This is a rising ed	lae sensitive inr	out for all sour	201			

REGISTER 20-3: ADCON2: ADC CONTROL REGISTER 2

- This is a rising edge sensitive input for all sources. Note 1:
 - 2: Signal also sets its corresponding interrupt flag.

25.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 25-1 displays the Timer1 enable selections.

TABLE 25-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

25.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 25-2 displays the clock source selections.

25.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- C1 or C2 comparator input to Timer1 gate

25.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI, which can be synchronized to the microcontroller system clock or can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

- **Note:** In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - · Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - Timer1 is disabled
 - Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 25-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	T10SCEN	Clock Source			
11	x	LFINTOSC			
10	0	External Clocking on T1CKI Pin			
01	x	System Clock (Fosc)			
0 0	х	Instruction Clock (Fosc/4)			

© 2013-2015 Microchip Technology Inc.

REGISTER 28-2: SSP1CON1: SSP CONTROL REGISTER 1 (CONTINUED)

- bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits
 - 1111 = I²C Slave mode, 10-bit address with Start and Stop bit interrupts enabled
 - $1110 = I^2C$ Slave mode, 7-bit address with Start and Stop bit interrupts enabled
 - 1101 = Reserved
 - 1100 = Reserved
 - $1011 = I^2C$ firmware controlled Master mode (slave idle)
 - 1010 = SPI Master mode, clock = Fosc/(4 * (SSPADD+1))⁽⁵⁾
 - 1001 = Reserved
 - 1000 = I^2C Master mode, clock = Fosc / (4 * (SSPADD+1))⁽⁴⁾
 - 0111 = I^2C Slave mode, 10-bit address
 - 0110 = I^2C Slave mode, 7-bit address
 - 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
 - 0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled
 - 0011 = SPI Master mode, clock = T2_match/2
 - 0010 = SPI Master mode, clock = Fosc/64
 - 0001 = SPI Master mode, clock = Fosc/16
 - 0000 = SPI Master mode, clock = Fosc/4
- **Note 1:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
 - **2:** When enabled, these pins must be properly configured as input or output. Use SSPSSPPS, SSPCLKPPS, SSPDATPPS, and RxyPPS to select the pins.
 - **3:** When enabled, the SDA and SCL pins must be configured as inputs. Use SSPCLKPPS, SSPDATPPS, and RxyPPS to select the pins.
 - **4:** SSPADD values of 0, 1 or 2 are not supported for I²C mode.
 - **5:** SSPADD value of '0' is not supported. Use SSPM = 0000 instead.

29.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 29-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

29.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 29-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

29.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

29.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

29.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 29.5.1.2 "Clock Polarity"**.

29.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

DECFSZ	Decrement f, Skip if 0				
Syntax:	[label] DECFSZ f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.				

GOTO	Unconditional Branch			
Syntax:	[<i>label</i>] GOTO k			
Operands:	$0 \leq k \leq 2047$			
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>			
Status Affected:	None			
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.			

INCFSZ	Increment f, Skip if 0			
Syntax:	[label] INCFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.			

IORLW	Inclusive OR literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

32.0 ELECTRICAL SPECIFICATIONS

32.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40	0°C to +125°C
-68	5°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1704/8	-0.3V to +6.5V
PIC16LF1704/8	-0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins0.3V to	o (Vdd + 0.3V)
Maximum current ⁽¹⁾	
on Vss pin	
-40°C \leq TA \leq +85°C, Industrial	250 mA
+85°C \leq TA \leq +125°C, Extended	85 mA
on VDD pin	
-40°C \leq TA \leq +85°C, Industrial	250 mA
+85°C \leq TA \leq +125°C, Extended	85 mA
sunk by any I/O pin	50 mA
sourced by any I/O pin	50 mA
sourced by any op amp output pin	±100 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 32-3 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {VDD - VOH) x IOH} + Σ (VOL x IOI).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

FIGURE 32-5: CLOCK TIMING

TABLE 32-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC		0.5	MHz	EC Oscillator mode (low)
			DC	—	4	MHz	EC Oscillator mode (medium)
			DC	—	32	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾		32.768		kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	4	MHz	HS Oscillator mode
			1	—	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	—	4	MHz	RC Oscillator mode, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	×	μS	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	—	∞	ns	HS Oscillator mode
			31.25	—	∞	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	_	30.5	_	μS	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	125	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	—	—	μS	LP Oscillator mode
	TosL	External CLKIN Low	100	—	—	ns	XT Oscillator mode
			20	—	—	ns	HS Oscillator mode
OS05*	TosR,	External CLKIN Rise,	0	_	_	ns	LP Oscillator mode
	TosF	External CLKIN Fall	0	—	—	ns	XT Oscillator mode
			0	—	—	ns	HS Oscillator mode

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 33-55: VoH vs. IoH, Over Temperature, VDD = 1.8V. PIC16LF1704/8 Only.

FIGURE 33-56: VoL vs. loL, Over Temperature, VDD = 1.8V. PIC16LF1704/8 Only.

FIGURE 33-57: LFINTOSC Frequency. PIC16LF1704/8 Only.

FIGURE 33-58: LFINTOSC Frequency. PIC16F1704/8 Only.

FIGURE 33-59: WDT Time-Out Period. PIC16F1704/8 Only.

FIGURE 33-60: WDT Time-Out Period. PIC16LF1704/8 Only.