

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	H8SX
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, IrDA, SCI, SmartCard, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	92
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f61665d50fpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

30.9	Power-On Reset Circuit and Voltage-Detection Circuit Characteristics (H8SX/1665M Group)	
Appe	ndix	
A.	Port States in Each Pin State	
B.	Product Lineup	
C.	Package Dimensions	
D.	Treatment of Unused Pins	
Main	Revisions and Additions in this Edition	
Index	۲	1447

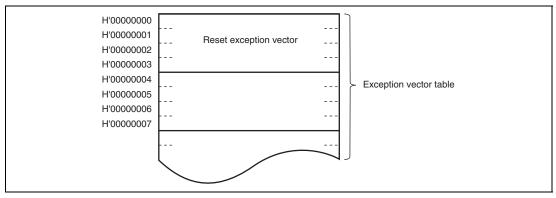


Figure 2.6 Exception Vector Table (Maximum Modes)

The memory indirect (@@aa:8) and extended memory indirect (@@vec:7) addressing modes are used in the JMP and JSR instructions. An 8-bit absolute address included in the instruction code specifies a memory location. Execution branches to the contents of the memory location. In maximum mode, an operand is a 32-bit (longword) operand, providing a 32-bit branch address.

Stack Structure

The stack structure of PC at a subroutine branch and that of PC and CCR at an exception handling are shown in figure 2.7. The PC contents are saved or restored in 32-bit units. The EXR contents are saved or restored regardless of whether or not EXR is in use.

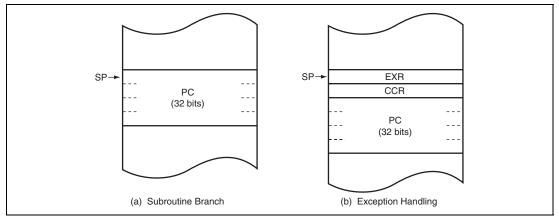


Figure 2.7 Stack Structure (Maximum Mode)

2.8 Addressing Modes and Effective Address Calculation

The H8SX CPU supports the 11 addressing modes listed in table 2.12. Each instruction uses a subset of these addressing modes.

Bit manipulation instructions use register direct, register indirect, or absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:2,ERn)/@(d:16,ERn)/@(d:32,ERn)
4	Index register indirect with displacement	@(d:16, RnL.B)/@(d:16,Rn.W)/@(d:16,ERn.L)
		@(d:32, RnL.B)/@(d:32,Rn.W)/@(d:32,ERn.L)
5	Register indirect with post-increment	@ERn+
	Register indirect with pre-decrement	@-ERn
	Register indirect with pre-increment	@+ERn
	Register indirect with post-decrement	@ERn-
6	Absolute address	@aa:8/@aa:16/@aa:24/@aa:32
7	Immediate	#xx:3/#xx:4/#xx:8/#xx:16/#xx:32
8	Program-counter relative	@(d:8,PC)/@(d:16,PC)
9	Program-counter relative with index register	@(RnL.B,PC)/@(Rn.W,PC)/@(ERn.L,PC)
10	Memory indirect	@@aa:8
11	Extended memory indirect	@ @ vec:7

Table 2.12 Addressing Modes

2.8.1 Register Direct—Rn

The operand value is the contents of an 8-, 16-, or 32-bit general register which is specified by the register field in the instruction code.

R0H to R7H and R0L to R7L can be specified as 8-bit registers.

R0 to R7 and E0 to E7 can be specified as 16-bit registers.

ER0 to ER7 can be specified as 32-bit registers.

			vector Address Offset*	-			
Classification	Interrupt Source	Vector Number	Advanced Mode, Middle Mode, Maximum Mode	IPR	Priority	DTC Activation	DMAC Activation
TPU_11	TGI11A	188	H'02F0	IPRO10 to IPRO8	High	0	0
	TGI11B	189	H'02F4	-	1	0	_
	TCI11V	190	H'02F8	IPRO6 to IPRO4		_	_
	TCI11U	191	H'02FC	-		_	_
_	Reserved for	192	H'0300	_	-	_	_
	system use	I	I			I	I
		215	H'035C			_	_
IIC2_0	IICI0	216	H'0360	IPRQ6 to IPRQ4	-	_	_
	Reserved for system use	217	H'0364	-		_	_
IIC2_1	IICI1	218	H'0368	-		_	_
	Reserved for system use	219	H'036C	-		_	_
SCI_5	RXI5	220	H'0370	IPRQ2 to IPRQ0	-	_	0
	TXI5	221	H'0374	-		_	0
	ERI5	222	H'0378	-		_	_
	TEI5	223	H'037C	-		_	_
SCI_6	RXI6	224	H'0380	IPRR14 to IPRR12	-	_	0
	TXI6	225	H'0384	-		_	0
	ERI6	226	H'0388	-		_	_
	TEI6	227	H'038C	-		_	_
TMR_4	CMIA4 or CMIB4	228	H'0390	IPRR10 to IPRR8	-	_	_
TMR_5	CMIA5 or CMIB5	229	H'0394	-		_	_
TMR_6	CMIA6 or CMIB6	230	H'0398	-		_	_
TMR_7	CMIA7 or CMIB7	231	H'039C	-	Low	_	_

RENESAS

Vector Address Offset*1

9.10.6 Controlling Column Address Output Cycle

The number of column address output cycles can be changed from two to three clock cycles by setting the CAST bit in DRAMCR. Set the bit according to the DRAM to be used and the frequency of this LSI so that the \overline{CAS} pulse width can be optimal.

Figure 9.39 shows a timing example when the number of column address output cycles is set to three clock cycles.

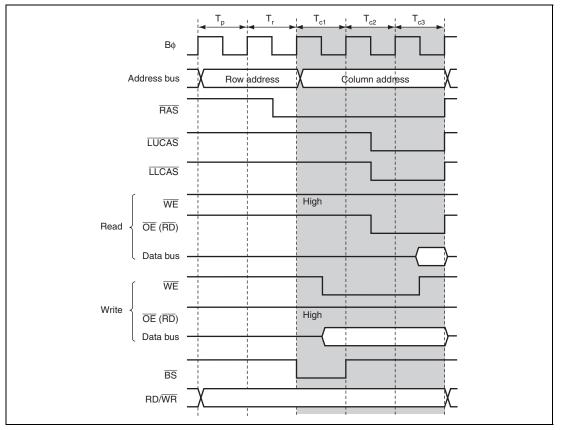


Figure 9.39 Access Timing Example of Column Address Output Cycles for 3 Clock Cycles (RAST = 0)

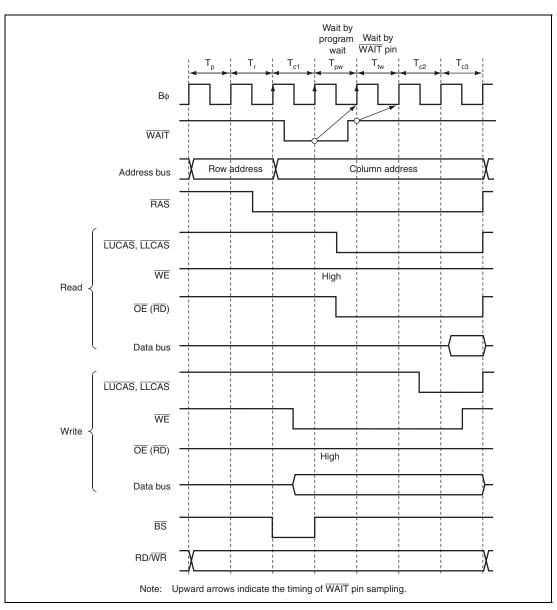


Figure 9.44 Example of Wait Cycle Insertion Timing for 3-Cycle Column Address Output

10.3.7 DMA Address Control Register (DACR)

Bit	31	30	29	28	27	26	25	24
Bit Name	AMS	DIRS	_	_	_	RPTIE	ARS1	ARS0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R	R	R	R/W	R/W	R/W
Bit	23	22	21	20	19	18	17	16
Bit Name	—		SAT1	SAT0	—	—	DAT1	DAT0
Initial Value	0	0	0	0	0	0	0	0
R/W	R	R	R/W	R/W	R	R	R/W	R/W
Bit	15	14	13	12	11	10	9	8
Bit Name	SARIE	—	_	SARA4	SARA3	SARA2	SARA1	SARA0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Bit Name	DARIE		_	DARA4	DARA3	DARA2	DARA1	DARA0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W

DACR specifies the operating mode and transfer method.

D :4	Dit Name	Initial	DAV	Description
Bit	Bit Name	Value	R/W	Description
31	AMS	0	R/W	Address Mode Select
				Selects address mode from single or dual address mode. In single address mode, the $\overline{\text{DACK}}$ pin is enabled according to the DACKE bit.
				0: Dual address mode
				1: Single address mode
30	DIRS	0	R/W	Single Address Direction Select
				Specifies the data transfer direction in single address mode. This bit s ignored in dual address mode.
				0: Specifies DSAR as source address
				1: Specifies DDAR as destination address
29 to 27	_	All 0	R	Reserved
				These bits are always read as 0 and cannot be modified.

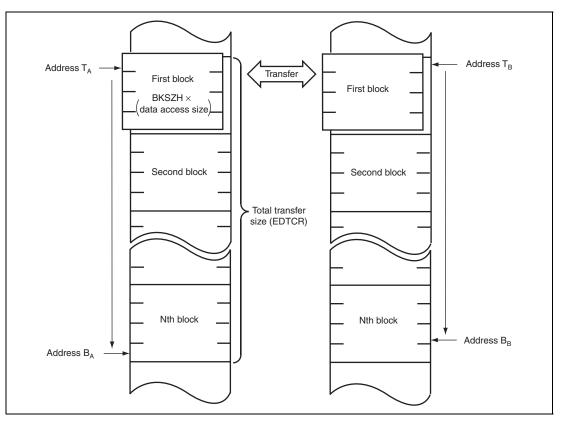


Figure 11.12 Block Transfer Mode Operation in Dual Address Mode (without Block Area Specified)

Table 14.15 TIORL_0

					Description
Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	TGRD_0 Function	TIOCD0 Pin Function* ³
0	0	0	0	Output	Output disabled
0	0	0	1	compare register* ²	Initial output is 0 output
				register	0 output at compare match
0	0	1	0	_	Initial output is 0 output
					1 output at compare match
0	0	1	1	_	Initial output is 0 output
					Toggle output at compare match
0	1	0	0	_	Output disabled
0	1	0	1	_	Initial output is 1 output
					0 output at compare match
0	1	1	0		Initial output is 1 output
					1 output at compare match
0	1	1	1		Initial output is 1 output
					Toggle output at compare match
1	0	0	0	Input	Capture input source is TIOCD0 pin
				capture – register* ²	Input capture at rising edge
1	0	0	1		Capture input source is TIOCD0 pin
					Input capture at falling edge
1	0	1	х	_	Capture input source is TIOCD0 pin
					Input capture at both edges
1	1	х	х	_	Capture input source is channel 1/count clock
					Input capture at TCNT_1 count-up/count-down*1

Description

[Legend]

x: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR_1 are set to B'000 and $P\phi/1$ is used as the TCNT_1 count clock, this setting is invalid and input capture is not generated.

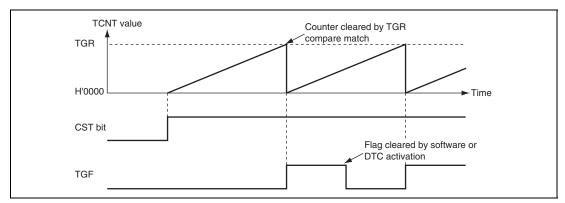
- 2. When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer register, this setting is invalid and input capture/output compare is not generated.
- 3. In PWM mode 1, the IOD3 to IOD0 settings control output of the TIOCC0 pin functions.

14.3.6 Timer Counter (TCNT)

TCNT is a 16-bit readable/writable counter. The TPU has six TCNT counters, one for each channel.

TCNT is initialized to H'0000 by a reset or in hardware standby mode.

TCNT cannot be accessed in 8-bit units. TCNT must always be accessed in 16-bit units.


Bit	15	14	13	12	11	10	9	8
Bit Name								
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Bit Name								
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

14.3.7 Timer General Register (TGR)

TGR is a 16-bit readable/writable register with a dual function as output compare and input capture registers. The TPU has 16 TGR registers, four each for channels 0 and 3 and two each for channels 1, 2, 4, and 5. TGRC and TGRD for channels 0 and 3 can also be designated for operation as buffer registers. The TGR registers cannot be accessed in 8-bit units; they must always be accessed in 16-bit units. TGR and buffer register combinations during buffer operations are TGRA–TGRC and TGRB–TGRD.

Bit	15	14	13	12	11	10	9	8
Bit Name								
Initial Value	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Bit Name								
Initial Value	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

(2) Waveform Output by Compare Match

The TPU can perform 0, 1, or toggle output from the corresponding output pin using a compare match.

(a) Example of setting procedure for waveform output by compare match

Figure 14.6 shows an example of the setting procedure for waveform output by a compare match.

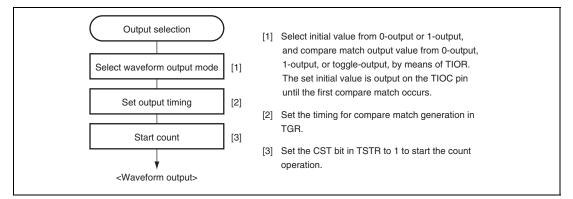


Figure 14.6 Example of Setting Procedure for Waveform Output by Compare Match

Bit	Bit Name	Initial Value	R/W	Description
6	CMIEA	0	R/W	Compare Match Interrupt Enable A
				Selects whether CMFA interrupt requests (CMIA) are enabled or disabled when the CMFA flag in TCSR is set to 1. $*^2$
				0: CMFA interrupt requests (CMIA) are disabled
				1: CMFA interrupt requests (CMIA) are enabled
5	OVIE	0	R/W	Timer Overflow Interrupt Enable*3
				Selects whether OVF interrupt requests (OVI) are enabled or disabled when the OVF flag in TCSR is set to 1.
				0: OVF interrupt requests (OVI) are disabled
				1: OVF interrupt requests (OVI) are enabled
4	CCLR1	0	R/W	Counter Clear 1 and 0*1
3	CCLR0	0	R/W	These bits select the method by which TCNT is cleared.
				00: Clearing is disabled
				01: Cleared by compare match A
				10: Cleared by compare match B
				 11: Cleared at rising edge (TMRIS in TCCR is cleared to 0) of the external reset input or when the external reset input is high (TMRIS in TCCR is set to 1) *³
2	CKS2	0	R/W	Clock Select 2 to 0*1
1	CKS1	0	R/W	These bits select the clock input to TCNT and count
0	CKS0	0	R/W	condition. See table 16.2.

Notes: 1. To use an external reset or external clock, the DDR and ICR bits in the corresponding pin should be set to 0 and 1, respectively. For details, see section 13, I/O Ports.

2. In unit 2 and unit 3, one interrupt signal is used for CMIEB or CMIEA. For details, see section 16.7, Interrupt Sources.

3. Available only in unit 0 and unit 1.

19.3.11 Serial Extended Mode Register 5 and 6 (SEMR_5 and SEMR_6)

SEMR_5 and SEMR_6 select the clock source in asynchronous mode of SCI_5 and SCI_6. The base clock is automatically specified when the average transfer rate operation is selected. TMO output in TMR unit 2 and unit 3 can also be set as the serial transfer base clock. Figure 19.3 describes the examples of base clock features when the average transfer rate operation is selected. Figure 19.4 describes the examples of base clock features when the TMO output in TMR is selected.

Bit	7	6	5	4	3	2	1	0
Bit Nam	e —	_	_	ABCS ACS3 ACS2 ACS1 ACS0				
Initial Va	lue Undefined	Undefined	Undefined	0	0	0	0	0
R/W	R	R	R	R/W	R/W	R/W	R/W	R/W
		Initial						
Bit	Bit Name	Value	R/W	Descriptio	n			
7 to 5	_	Undefined	R	Reserved				
				These bits modified.	are always	read as ur	ndefined ar	nd cannot be
4	ABCS	0	R/W	Asynchrono asynchrono		Base Clock	Select (va	lid only in
				Selects the	base cloci	k for a 1-bit	t period.	
				0: The base rate	e clock has	a frequen	cy 16 times	the transfer
				1: The base rate	e clock has	a frequen	cy 8 times	the transfer
3	ACS3	0	R/W	Asynchron	ous Mode (Clock Sour	ce Select	
2	ACS2	0	R/W	These bits				
1	ACS1	0	11/ • •					node. When
0	ACS0	0	R/W	the average transfer rate function is enabled, the base clock is automatically specified regardless of the ABCS bit value. The average transfer rate only corresponds to 8MHz, 10.667MHz, 12MHz, 16MHz, 24MHz, and 32MHz. No other clock is available. Setting of ACS3 to ACS0 must be done in the asynchronous mode (the C/\overline{A} bit in SMR = 0) and the external clock input mode (the CKE bit I SCR = 1). The setting examples are in figures 19.3 and 19.4. (Each number in the four-digit number below				
					ls to the va	lue in the b		w o ACS0 from

20.3.5 Interrupt Select Register 1 (ISR1)

ISR1 selects the vector numbers of the interrupt requests indicated in interrupt flag register 1 (IFR1). If the USB issues an interrupt request to the INTC when a bit in ISR1 is cleared to 0, the interrupt corresponding to the bit will be USBINTN2. If the USB issues an interrupt request to the INTC when a bit in ISR1 is set to 1, the corresponding interrupt will be USBINTN3.

Bit	7	6	5	4	3	2	1	0
Bit Name	_	—	—	—	—	EP3 TR	EP3 TS	VBUSF
Initial Value	0	0	0	0	0	1	1	1
R/W	R	R	R	R	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	R	Reserved
6		0	R	These bits are always read as 0. The write value
5		0	R	should always be 0.
4	_	0	R	
3		0	R	
2	EP3 TR	1	R/W	EP3 Transfer Request
1	EP3 TS	1	R/W	EP3 Transmission Complete
0	VBUSF	1	R/W	USB Bus Connect

(b) Programming

FPFR indicates the return value of the programming result.

Bit		7	6	5	4	3	2	1	0	
Bit Nar	Bit Name		MD	EE	FK	_	WD	WA	SF	
Bit	Bit N	Init Name Val		W D	Description					
7	—	_	_	- U	nused					
				R	eturns 0.					
6	MD	_	R/	W P	rogrammin	g Mode R	elated Set	ting Error I	Detect	
				W to ca co	hen the er 1. Whethe an be confi	ror protec er the erro rmed with enter the	tion state i r protectio the FLER error prot	s entered, n state is e bit in FCC	ns the result. this bit is set entered or not S. For e see section	
				0:	Normal op	peration (F	ELER = 0			
				1:	Error prote performed			gramming	cannot be	
5	EE	—	R/	W P	rogrammin	g Executio	on Error D	etect		
				w is ha th H w us	Writes 1 to this bit when the specified data could not be written because the user MAT was not erased. If this bit is set to 1, there is a high possibility that the user MAT has been written to partially. In this case, after removing the error factor, erase the user MAT. If FMATS is set to H'AA and the user boot MAT is selected, an error occurs when programming is performed. In this case, both the user MAT and user boot MAT have not been written to. Programming the user boot MAT should be performed in boot mode or programmer mode.					
				0:	Programm	ning has e	nded norn	nally		
				1:	Programm result is n			ormally (pr	ogramming	

3. Programming/erasing state

Programming and erasure by the boot program take place in this state. The boot program is made to transfer the programming/erasing programs to the on-chip RAM by commands from the host. Sum checks and blank checks are executed by sending these commands from the host.

These boot program states are shown in figure 25.23.

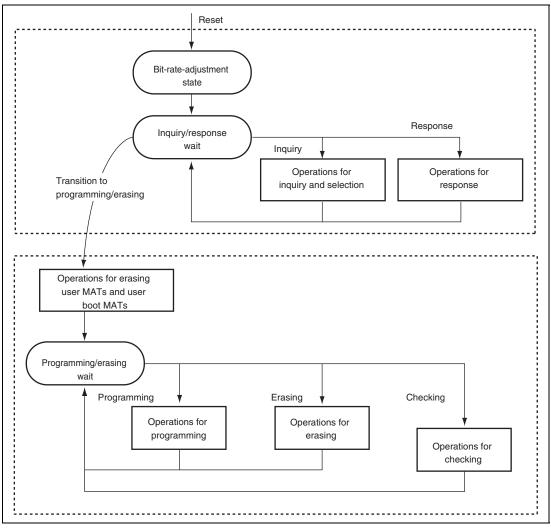


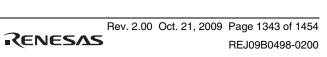
Figure 25.23 Boot Program States

- 12. A programming/erasing program for the flash memory used in a conventional F-ZTAT H8, H8S microcomputer which does not support download of the on-chip program by setting the SCO bit in FCCS to 1 cannot run in this LSI. Be sure to download the on-chip program to execute programming/erasure of the flash memory in this F-ZTAT H8SX microcomputer.
- 13. Unlike a conventional F-ZTAT H8 or H8S microcomputers, measures against a program crash are not taken by WDT while programming/erasing and downloading a programming/erasing program. When needed, measures should be taken by user. A periodic interrupt generated by the WDT can be used as the measures, as an example. In this case, the interrupt generation period should take into consideration time to program/erase the flash memory.
- 14. When downloading the programming/erasing program, do not clear the SCO bit in FCCS to 0 immediately after setting it to 1. Otherwise, download cannot be performed normally. Immediately after executing the instruction to set the SCO bit to 1, dummy read of the FCCS must be executed twice.
- 15. The contents of general registers ER0 and ER1 are not saved during download of an on-chip program, initialization, programming, or erasure. When needed, save the general registers before a download request or before execution of initialization, programming, or erasure using the procedure program.

Note: * The oscillation settling time, which includes a period where the oscillation by an oscillator is not stable, depends on the resonator characteristics. The above figures are for reference.

28.8.6 Deep Software Standby Mode Application Example

(1) Transition to and Exit from Deep Software Standby Mode


Figure 28.4 shows an example where the transition to deep software standby mode is initiated by a falling edge on the NMI pin and exit from deep software standby mode is initiated by a rising edge on the NMI pin.

In this example, falling-edge sensing of NMI interrupts has been specified by clearing the NMIEG bit in INTCR to 0 (not shown). After an NMI interrupt has been sensed, rising-edge sensing is specified by setting the DNMIEG bit to 1, the SSBY and DPSBY bits are set to 1, and the transition to deep software standby mode is triggered by execution of a SLEEP instruction.

After that, deep software standby mode is canceled at the rising edge on the NMI pin.

Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	Module
SSR_0*1	TDRE	RDRF	ORER	FER (ERS)	PER	TEND	MPB	MPBT	SCI_0
RDR_0									_
SCMR_0	_	_	_	_	SDIR	SINV	_	SMIF	-
SMR_1*1	C/Ā (GM)	CHR (BLK)	PE (PE)	O/Ē (O/Ē)	STOP (BCP1)	MP (BCP0)	CKS1	CKS0	SCI_1
BRR_1									-
SCR_1*1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR_1									-
SSR_1*1	TDRE	RDRF	ORER	FER (ERS)	PER	TEND	MPB	MPBT	_
RDR_1									-
SCMR_1	_	_	_	_	SDIR	SINV	_	SMIF	-
ADDRA_0	_								A/D_0
ADDRB_0									-
ADDRC_0									-
ADDRD_0									-
ADDRE_0									-
ADDRF_0									-
ADDRG_0									-
ADDRH_0									-

Item	Page	e Revision (See Manual for Details)				
Section 22 A/D	1082	Note amended				
Converter		(1) Continuous Scan Mode				
22.4 Operation						
22.4.2 Scan Mode		Notes: 1. Only possible in unit 0.				
		 As conversion start trigger, units 0 and 1 of TMR, and units 2 and 3 of TMR are available in unit 0, and unit 1, respectively. 				
		 Unit 0: The full-spec emulator (E6000H) should not be used, but the on-chip emulator (E10A-USB) is usable. 				
22.4.3 Input Sampling	1086	The following tables replaced				
and A/D Conversion Time	to 1088	Table 22.3 Characteristics of A/D Conversion (Unit 0: when EXCKS* = 0, ICKSEL = 0, and $ADSSTR^* = H'0F$) (1)				
		Table 22.3 Characteristics of A/D Conversion (Unit 0: when EXCKS* = 1, ICKSEL = 0, and $ADSSTR^* = H'0F$) (2)				
		Table 22.4 Characteristics of A/D Conversion (Unit 1: when EXCKS = 0, ICKSEL = 0, and ADSSTR* = H'0F) (1)				
		Table 22.4 Characteristics of A/D Conversion (Unit 1: when EXCKS = 1, ICKSEL = 0, and $ADSSTR^* = H'0F$) (2)				
		Table 22.5 Characteristics of A/D Conversion (When EXCKS* ¹ : 1, ICKSEL* ¹ = 0, and ADSSTR* ² = H'19)				
Table 22.6 Period of A/D		Note deleted				
Conversion (Scan Mode) (Units 0 and 1)		Notes: 1. Make the sampling setting15 (ADSSRT = D'15).				
		2. When $P\phi = I\phi/2$, make the sampling setting 25 (ADSSRT = D'25).				
		 Unit 0: The full-spec emulator (E6000H) should not be used, but the on-chip emulator (E10A-USB) is usable. 				
		 Unit 0: The full spee emulator (E6000H) should not be used, but the on chip emulator (E10A USB) is usable. 				
		Unit 1: Access to the full-spec emulator (E6000H) is prohibited but the on-chip emulator (E10A-USB) is usable.				

