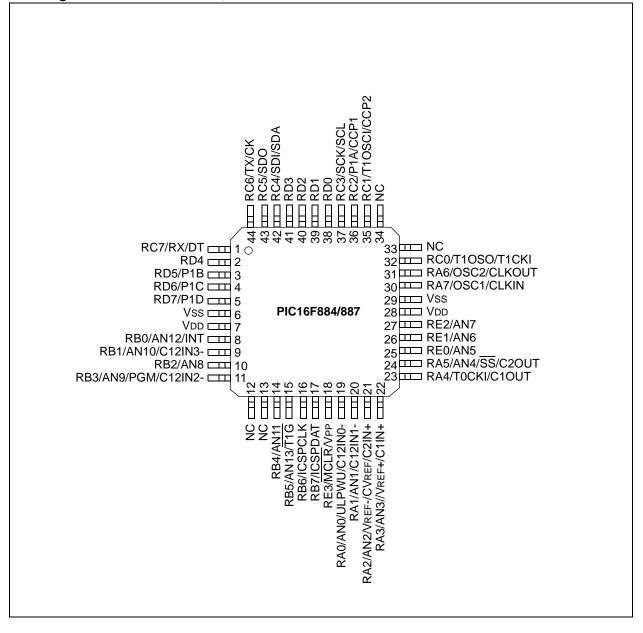


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f882-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams - PIC16F884/887, 44-Pin TQFP

6.12 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER DEFINITIONS: TIMER1 CONTROL

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T1GINV ⁽¹⁾	TMR1GE ⁽²⁾	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	T1GINV: Timer1 Gate Invert bit ⁽¹⁾
	 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)
bit 6	TMR1GE: Timer1 Gate Enable bit ⁽²⁾
	$\frac{\text{If TMR1ON} = 0}{1000}$
	This bit is ignored If TMR1ON = 1:
	1 = Timer1 counting is controlled by the Timer1 Gate function
	0 = Timer1 is always counting
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1:8 Prescale Value
	10 = 1:4 Prescale Value 01 = 1:2 Prescale Value
	00 = 1:1 Prescale Value
bit 3	T1OSCEN: LP Oscillator Enable Control bit
	1 = LP oscillator is enabled for Timer1 clock
	0 = LP oscillator is off
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	<u>TMR1CS = 1:</u> 1 = Do not synchronize external clock input
	0 = Synchronize external clock input
	$\underline{TMR1CS} = 0:$
1 1 4	This bit is ignored. Timer1 uses the internal clock
bit 1	TMR1CS: Timer1 Clock Source Select bit
	1 = External clock from T1CKI pin (on the rising edge) 0 = Internal clock (Fosc/4)
bit 0	TMR10N: Timer1 On bit
	1 = Enables Timer1
	0 = Stops Timer1
Note 1:	T1GINV bit inverts the Timer1 gate logic, regardless of source.
2.	TMR1GE bit must be set to use either $\overline{116}$ pip or C20UT as selected by the T1GSS bit of the CM2CON1

2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CM2CON1 register, as a Timer1 gate source.

REGISTER DEFINITIONS: TIMER2 CONTROL

REGISTER 7-1: T2CON: TIMER2 CONTROL REGISTER

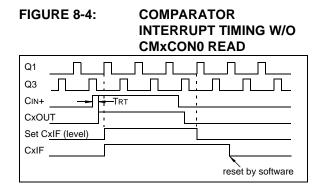
U-0	R/	/W-0	R/W-0	R/W-0	R/W-0) R	/W-0	R/W-0	R/W-0
—	TOL	JTPS3	TOUTPS2	TOUTPS1	TOUTP	S0 TN	IR2ON	T2CKPS1	T2CKPS0
bit 7									bit 0
Lowende									
Legend: R = Readab	la hit		W = Writable	hit	II – I Inin	nplemente	d hit road	1 as 'O'	
-n = Value a			'1' = Bit is set	UIL		s cleared	a bit, read	x = Bit is unkr	nwn
					0 – Dit i	s cleared			
bit 7	Unim	plement	ed: Read as '	0'					
bit 6-3	TOUT	TPS<3:0>	-: Timer2 Outp	out Postscale	er Select bits	5			
		= 1:1 Po	-						
	0001	= 1:2 Po	stscaler						
	0010	= 1:3 Po	stscaler						
		= 1:4 Po							
		= 1:5 Po							
		= 1:6 Po							
		= 1:7 Po = 1:8 Po							
		= 1.0 P0							
		= 1:10 P							
		= 1:11 P							
		= 1:12 P							
	1100	= 1:13 P	ostscaler						
	1101	= 1:14 P	ostscaler						
		= 1:15 P							
	1111	= 1:16 P	ostscaler						
bit 2	TMR	20N: Tim	er2 On bit						
	1 = T	Fimer2 is	on						
	0 = T	Fimer2 is	off						
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits								
	00 =	Prescaler	r is 1						
	01 =	Prescaler	is 4						
	1x =	Prescaler	r is 16						
	. פוו								
TABLE 7-1	. 30	ININAR Y	' OF ASSOC		IER2 REG	ISTERS			

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	32
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	33
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	35
PR2	Timer2 Module Period Register							83	
TMR2	Holding Register for the 8-bit TMR2 Register						83		
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	84

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

8.4 Comparator Interrupt Operation

The comparator interrupt flag can be set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusiveor gate (see Figures 8-2 and 8-3). One latch is updated with the comparator output level when the CMxCON0 register is read. This latch retains the value until the next read of the CMxCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. At this point the two mismatch latches have opposite output levels which is detected by the exclusive-or gate and fed to the interrupt circuitry. The mismatch condition persists until either the CMxCON0 register is read or the comparator output returns to the previous state.


- Note 1: A write operation to the CMxCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle.
 - **2:** Comparator interrupts will operate correctly regardless of the state of CxOE.

The comparator interrupt is set by the mismatch edge and not the mismatch level. This means that the interrupt flag can be reset without the additional step of reading or writing the CMxCON0 register to clear the mismatch registers. When the mismatch registers are cleared, an interrupt will occur upon the comparator's return to the previous state, otherwise no interrupt will be generated.

Software will need to maintain information about the status of the comparator output, as read from the CMxCON0 register, or CM2CON1 register, to determine the actual change that has occurred.


The CxIF bit of the PIR2 register is the comparator interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, an interrupt can be generated.

The CxIE bit of the PIE2 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CxIF bit of the PIR2 register will still be set if an interrupt condition occurs.

COMPARATOR INTERRUPT TIMING WITH CMxCON0 READ

- Note 1: If a change in the CMxCON0 register (CxOUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CxIF of the PIR2 register interrupt flag may not get set.
 - 2: When either comparator is first enabled, bias circuitry in the comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μ s for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

8.8 Additional Comparator Features

There are three additional comparator features:

- Timer1 count enable (gate)
- Synchronizing output with Timer1
- Simultaneous read of comparator outputs

8.8.1 COMPARATOR C2 GATING TIMER1

This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CM2CON1 register will enable Timer1 to increment based on the output of Comparator C2. This requires that Timer1 is on and gating is enabled. See **Section 6.0 "Timer1 Module with Gate Control"** for details.

It is recommended to synchronize the comparator with Timer1 by setting the C2SYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment.

8.8.2 SYNCHRONIZING COMPARATOR C2 OUTPUT TO TIMER1

The Comparator C2 output can be synchronized with Timer1 by setting the C2SYNC bit of the CM2CON1 register. When enabled, the C2 output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figures 8-2 and 8-3) and the Timer1 Block Diagram (Figure 6-1) for more information.

8.8.3 SIMULTANEOUS COMPARATOR OUTPUT READ

The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

Note 1: Obtaining the status of C1OUT or C2OUT by reading CM2CON1 does not affect the comparator interrupt mismatch registers.

REGISTER 8-3: CM2CON1: COMPARATOR C2 CONTROL REGISTER 1

R-0	R-0	R/W-0	R/W-0	U-0	U-0	R/W-1	R/W-0
MC1OUT	MC2OUT	C1RSEL	C2RSEL	—		T1GSS	C2SYNC
bit 7 b							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	MC10UT: Mirror Copy of C10UT bit
bit 6	MC2OUT: Mirror Copy of C2OUT bit
bit 5	C1RSEL: Comparator C1 Reference Select bit
	1 = CVREF routed to C1VREF input of Comparator C1
	 0 = Absolute voltage reference (0.6) routed to C1VREF input of Comparator C1 (or 1.2V precision reference on parts so equipped)
bit 4	C2RSEL: Comparator C2 Reference Select bit
	1 = CVREF routed to C2VREF input of Comparator C2
	0 = Absolute voltage reference (0.6) routed to C2VREF input of Comparator C2 (or 1.2V precision
	reference on parts so equipped)
bit 3-2	Unimplemented: Read as '0'
bit 1	T1GSS: Timer1 Gate Source Select bit
	1 = Timer1 gate source is $\overline{T1G}$
	0 = Timer1 gate source is SYNCC2OUT.
bit 0	C2SYNC: Comparator C2 Output Synchronization bit
	1 = Output is synchronous to falling edge of Timer1 clock
	0 = Output is asynchronous

9.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 9-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 9-4. The maximum recommended impedance for analog sources is 10 k Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 9-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 9-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 5.0V VDD

$$T_{ACQ} = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
= 2µs + TC + [(Temperature - 25°C)(0.05µs/°C)]
The value for Tc can be approximated with the following equations:
$$V_{APPLIED} \left(1 - \frac{1}{(2^{n+1}) - 1} \right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb
V_{APPLIED} \left(1 - \frac{1}{(2^{n+1}) - 1} \right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED}
$$V_{APPLIED} \left(1 - e^{\frac{-TC}{RC}} \right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED}
V_{APPLIED} \left(1 - e^{\frac{-TC}{RC}} \right) = V_{APPLIED} \left(1 - \frac{1}{(2^{n+1}) - 1} \right) \qquad ;combining [1] and [2]$$
Solving for TC:

$$T_{C} = -C_{HOLD} (RIC + RSS + RS) ln(1/2047) = -10pF(1k\Omega + 7k\Omega + 10k\Omega) ln(0.0004885) = 1.37µs$$
Therefore:

$$T_{ACQ} = 2MS + 1.37MS + [(50°C - 25°C)(0.05MS/°C)] = 4.67MS$$$$$$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

© 2006-2015 Microchip Technology Inc.

P1M<′	1.0>	Signal		Width	— Period —	
00	(Single Output)	P1A Modulated				
		P1A Modulated	 Dela		Delay ⁽¹⁾	į
10	(Half-Bridge)	P1B Modulated		y(')		
		P1A Active	_ ;			
01	(Full-Bridge, Forward)	P1B Inactive	- :		 	 1 1
	Forward)	P1C Inactive				
		P1D Modulated	= — <u> </u>			
		P1A Inactive	_ !		i	<u> </u>
11	(Full-Bridge,	P1B Modulated				
Reverse)	P1C Active			· · ·		
		P1D Inactive	;			

FIGURE 11-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

Delay = 4 * Tosc * (PWM1CON<6:0>)

Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.6.6 "Programmable Dead-Band Delay Mode").

R-0	R-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN				
bit 7				1			bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unki	nown				
bit 7	-	uto-Baud Deteo	ct Overflow bit	:							
	Asynchrono										
		ud timer overflo ud timer did not									
	<u>Synchronou</u>		overnow								
	Don't care										
bit 6	RCIDL: Rec	eive Idle Flag b	it								
	<u>Asynchrono</u>	<u>us mode</u> :									
		1 = Receiver is Idle									
	 0 = Start bit has been received and the receiver is receiving Synchronous mode: 										
	Don't care	<u>s mode</u> .									
bit 5	Unimpleme	Unimplemented: Read as '0'									
bit 4	SCKP: Synchronous Clock Polarity Select bit										
	Asynchronous mode:										
	1 = Transmit inverted data to the RB7/TX/CK pin										
		t non-inverted d	ata to the RB	7/TX/CK pin							
	Synchronou		n odgo of tho	alaak							
		clocked on rising									
bit 3		bit Baud Rate C	• •								
		aud Rate Gene									
	0 = 8-bit Ba	ud Rate Generation	ator is used								
bit 2	Unimpleme	nted: Read as	ʻ0'								
bit 1	WUE: Wake	-up Enable bit									
	Asynchronous mode:										
		1 = Receiver is waiting for a falling edge. No character will be received byte RCIF will be set. WUE will									
		tically clear afte									
	 0 = Receiver is operating normally Synchronous mode: 										
	Don't care	<u>s mode</u> .									
bit 0		to-Baud Detect	Enable bit								
	Abden. Auto-Baud Delect Enable bit Asynchronous mode:										
	-		e is enabled (clears when aut	o-baud is con	nplete)					
		aud Detect mod				. ,					
	<u>Synchronou</u>	<u>s mode</u> :									
	Don't care										

REGISTER 12-3: BAUDCTL: BAUD RATE CONTROL REGISTER

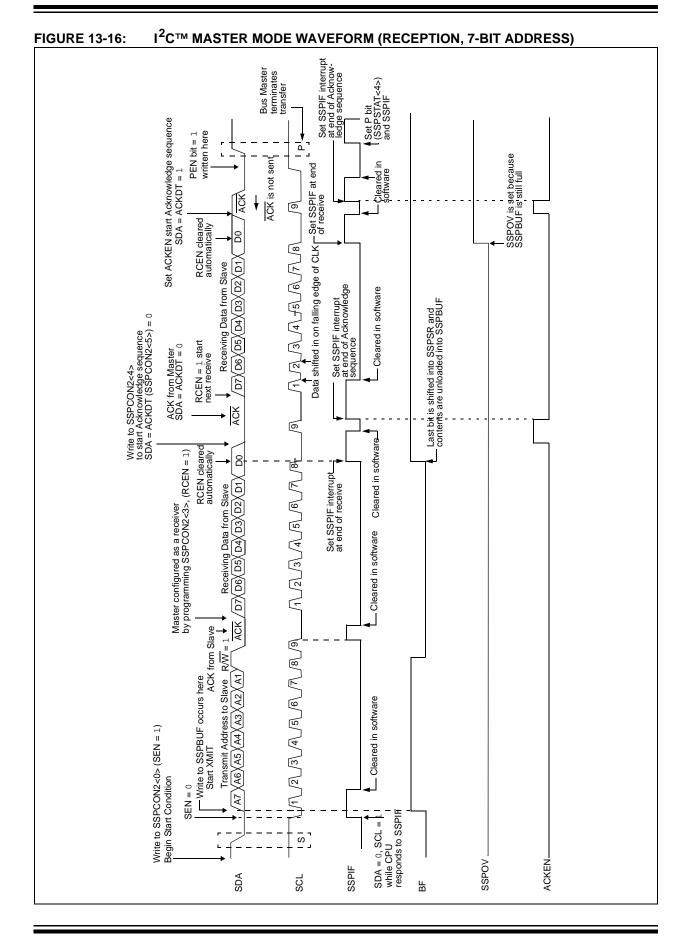
© 2006-2015 Microchip Technology Inc.

13.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

13.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit[™] (I²C[™])
 - Full Master mode
 - Slave mode (with general address call).


The I^2C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode.

13.2 Control Registers

The MSSP module has three associated registers. These include a STATUS register and two control registers.

Register 13-1 shows the MSSP STATUS register (SSPSTAT), Register 13-2 shows the MSSP Control Register 1 (SSPCON), and Register 13-3 shows the MSSP Control Register 2 (SSPCON2).

TABLE 14-4:	INITIALIZATION CONDITION FOR REGISTER (CONTINUED)
-------------	---

Register	Address	Power-on Reset	MCLR Reset WDT Reset (Continued) Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out (Continued)
CCPR2H	1Ch	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	1Dh	00 0000	00 0000	uu uuuu
ADRESH	1Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	1Fh	00-0 0000	00-0 0000	uu-u uuuu
OPTION_REG	81h/181h	1111 1111	1111 1111	uuuu uuuu
TRISA	85h	1111 1111	1111 1111	uuuu uuuu
TRISB	86h/186h	1111 1111	1111 1111	uuuu uuuu
TRISC	87h	1111 1111	1111 1111	uuuu uuuu
TRISD	88h	1111 1111	1111 1111	սսսս սսսս
TRISE	89h	1111	1111	uuuu
PIE1	8Ch	0000 0000	0000 0000	սսսս սսսս
PIE2	8Dh	0000 0000	0000 0000	uuuu uuuu
PCON	8Eh	010x	0uuu (1, 5)	uuuu
OSCCON	8Fh	-110 q000	-110 q000	-uuu uuuu
OSCTUNE	90h	0 0000	u uuuu	u uuuu
SSPCON2	91h	0000 0000	0000 0000	uuuu uuuu
PR2	92h	1111 1111	1111 1111	1111 1111
SSPADD ⁽⁶⁾	93h	0000 0000	0000 0000	uuuu uuuu
SSPMSK ⁽⁶⁾	93h	1111 1111	1111 1111	1111 1111
SSPSTAT	94h	0000 0000	0000 0000	uuuu uuuu
WPUB	95h	1111 1111	1111 1111	uuuu uuuu
IOCB	96h	0000 0000	0000 0000	uuuu uuuu
VRCON	97h	0000 0000	0000 0000	uuuu uuuu
TXSTA	98h	0000 -010	0000 -010	uuuu –uuu
SPBRG	99h	0000 0000	0000 0000	uuuu uuuu
SPBRGH	9Ah	0000 0000	0000 0000	uuuu uuuu
PWM1CON	9Bh	0000 0000	0000 0000	uuuu uuuu
ECCPAS	9Ch	0000 0000	0000 0000	uuuu uuuu
PSTRCON	9Dh	0 0001	0 0001	u uuuu
ADRESL	9Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON1	9Fh	0-00	0-00	u-uu
WDTCON	105h	0 1000	0 1000	u uuuu
CM1CON0	107h	0000 0-00	0000 0-00	uuuu u-uu
CM2CON0	108h	0000 0-00	0000 0-00	uuuu u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 14-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

6: Accessible only when SSPCON register bits SSPM<3:0 > = 1001.

RLF	Rotate Left f through Carry						
Syntax:	[label] RLF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	See description below						
Status Affected:	С						
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example:	RLF REG1,0						
	Before Instruction REG1 = 1110 0110 C = 0						
	After Instruction						
	REG1 = 1110 0110 W = 1100 1100						
	C = 1						

RRF	Rotate Right f through Carry			
Syntax:	[<i>label</i>] RRF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	See description below			
Status Affected:	С			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			
	C Register f			

SLEEP	Enter Sleep mode			
Syntax:	[label] SLEEP			
Operands:	None			
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT}, \\ 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \text{PD} \end{array}$			
Status Affected:	TO, PD			
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.			

SUBLW	Subtract W from literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \text{ - } (W) \to (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.				
	C = 0 $W > k$				

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	$W < 3:0 > \le k < 3:0 >$

SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) - (W) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W < 3:0 > \le f < 3:0 >$

SWAPF	Swap Nibbles in f				
Syntax:	[<i>label</i>] SWAPF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$				
Status Affected:	None				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.				

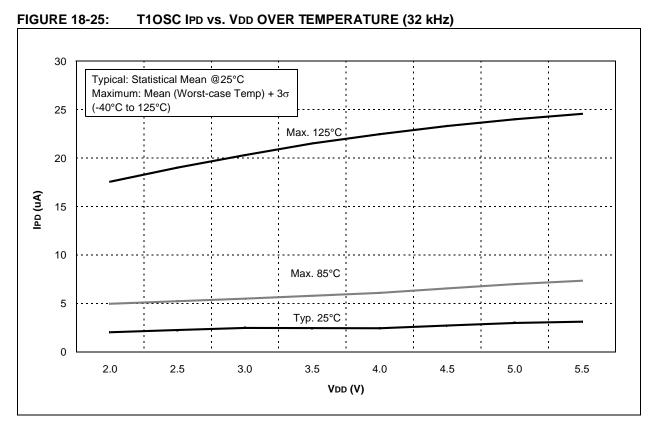
XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

XORWF	Exclusive OR W with f				
Syntax:	[label] XORWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

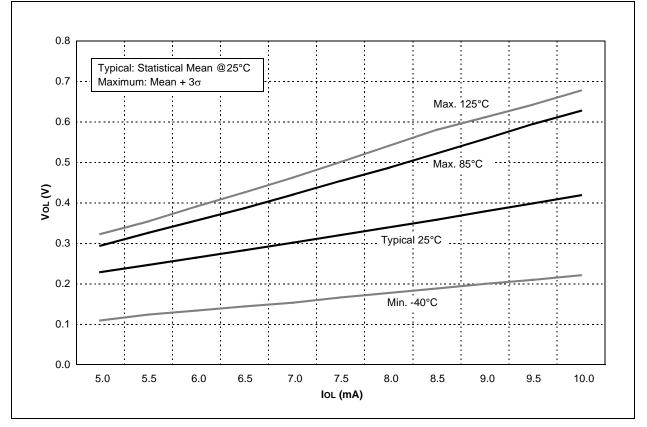
TABLE 17-10: PIC16F882/883/884/886/887 A/D CONVERTER (ADC) CHARACTERISTICS

	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD01	NR	Resolution	—		10 bits	bit	
AD02	EIL	Integral Error		—	±1	LSb	VREF = 5.12V
AD03	Edl	Differential Error		_	±1	LSb	No missing codes to 10 bits VREF = 5.12V
AD04	EOFF	Offset Error	0	+1.5	+3.0	LSb	VREF = 5.12V
AD07	Egn	Gain Error	_	_	±1	LSb	VREF = 5.12V
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.7		— Vdd	V	Absolute minimum to ensure 1 LSb accuracy
AD07	VAIN	Full-Scale Range	Vss	_	Vref	V	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	
AD09*	IREF	VREF Input Current ⁽³⁾	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.
			_	_	50	μA	During A/D conversion cycle.

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.


2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.

4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

© 2006-2015 Microchip Technology Inc.

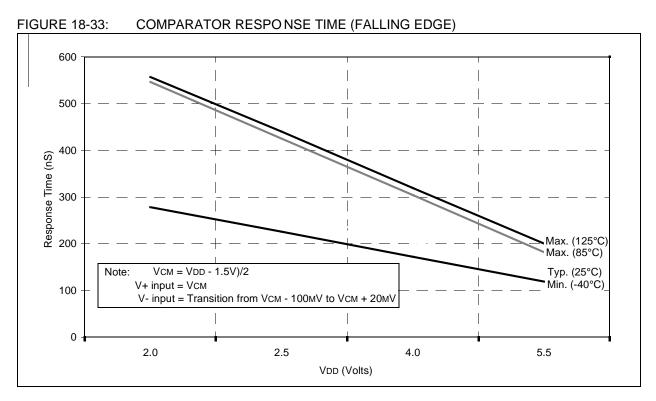


FIGURE 18-34: LFINTOSC FREQUENCY vs. V dd OVER TEMPERATURE (31 kHz)

¤ 2006-2015 Microchip Technology Inc.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (5/2006)

Initial release of this data sheet.

Revision B (7/2006)

Pin Diagrams (44-Pin QFN drawing); Revised Table 2-1, Addr. 1DH (CCP2CON); Section 3.0, 3.1; Section 3.4.4.6; Table 3; Table 3-1 (ANSEL); Table 3-3 (CCP2CON); Register 3-1; Register 3.2; Register 3-3; Register 3-4; Register 3-9; Register 3-10; Register 3-11; Register 3-12; Register 3-14; Table 3-5 (ANSEL); Figure 3-5; Figure 3-11; Figure 8-2; Figure 8-3; Figure 9-1; Register 9-1; Section 9.1.4; Example 10-4; Figure 11-5; Table 11-5 (P1M); Section 11.5.2; Section 11.5.7, Number 4; Table 11-7 (CCP2CON); Section 12.3.1 (Para. 3); Figure 12-6 (Title); Sections 14.2, 14.3 and 14.4 DC Characteristics (Max); Table 14-4 (OSCCON); Section 14.3 (TMR0); Section 14.3.2 (TMR0).

Revision C

Section 19.0 Packaging Information: Replaced package drawings and added note. Added PIC16F882 part number. Replaced PICmicro with PIC.

Revision D

Replaced Package Drawings (Rev. AM); Replaced Development Support Section; Revised Product ID Section.

Revision E (01/2008)

Added Char Data; Removed Preliminary status; Revised Device Table (PIC16F882, I/O); Revised the following: Pin Diagram 44 TQFP, pin 30; Table 5, I/O RA7; Table 1-1, RA1 and RA4; Section 2.2.1; Register 2-3, INTCON; Example 3-1; Section 3.2.2; Example 3-2; Figure 6-1; Section 6.2.2; Section 6.6; Section 8.10.3; Table 9-1; Equation 11-1; Added Figure 11-14 and renumbered remaining Figures; Register 11-3; Register 13-3; Section 14.0; Section 14.1; Section 14.9; Section 14.10; Section 17.0; Updated Package Drawings.

Revision F (04/2009)

Revised Product ID: Removed 'F' (std. voltage range) from part numbers; Revised Figure 6-1: Timer1 Block Diagram; Revised Figure 8-3, Comparator C2 Block Diagram; Added note to Section 8.10.3; Revised Section 8.10.7.

Revision G (10/2012)

Updated data sheet to new format; Updated Register 13-1 and Register 13-2; Updated the Packaging Information section; Updated the Product Identification System section; Other minor corrections.

Revision H (04/2015)

Added Section 17.9: High Temperature Operation in the Electrical Specifications section.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC16F88X Family of devices.

B.1 PIC16F87X to PIC16F88X

TABLE B-1: FE/	ATURE COMPARISON
----------------	------------------

Feature	PIC16F87X	PIC16F88X
Max Operating Speed	20 MHz	20 MHz
Max Program Memory (Words)	8192	8192
SRAM (bytes)	368	368
A/D Resolution	10-bit	10-bit
Data EEPROM (Bytes)	256	256
Timers (8/16-bit)	2/1	2/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y (2.1V/4V)
Software Control Option of WDT/BOR	Ν	Y
Internal Pull-ups	RB<7:4>	RB<7:0>, MCLR
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	2	2
References	CVREF	CVREF and VP6
ECCP/CCP	0/2	1/1
Ultra Low-Power Wake-Up	Ν	Y
Extended WDT	N	Y
INTOSC Frequencies	N	32 kHz-8 MHz
Clock Switching	N	Y
MSSP	Standard	w/Slave Address Mask
USART	AUSART	EUSART
ADC Channels	8	14

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.