

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f882-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams – PIC16F882/883/886, 28-Pin QFN

IADL	ABLE 3: 40-PIN PDIP ALLOCATION TABLE (PIC16F884/887)									
0/1	40-Pin PDIP	Analog	Comparators	Timers	ECCP	EUSART	MSSP	Interrupt	dn-llud	Basic
RA0	2	AN0/ULPWU	C12IN0-	—	_	_	—	—		—
RA1	3	AN1	C12IN1-	—	_	_	_			_
RA2	4	AN2	C2IN+	—	_	_				VREF-/CVREF
RA3	5	AN3	C1IN+	—	_	_			_	VREF+
RA4	6		C1OUT	T0CKI	—		—	_	_	_
RA5	7	AN4	C2OUT	—	_	_	SS			_
RA6	14	—	_	—	_		_	_	_	OSC2/CLKOUT
RA7	13	—		—	_	_		_		OSC1/CLKIN
RB0	33	AN12	_	—	—	_	—	IOC/INT	Y	—
RB1	34	AN10	C12IN3-	—	—	_	—	IOC	Y	—
RB2	35	AN8	_	—	_	_	_	IOC	Y	—
RB3	36	AN9	C12IN2-	—	—	_	—	IOC	Y	PGM
RB4	37	AN11	_	—	_	_	_	IOC	Y	—
RB5	38	AN13	_	T1G	_	-	_	IOC	Y	—
RB6	39	—	—	—	_	_	_	IOC	Y	ICSPCLK
RB7	40	—	_	—	_	-	_	IOC	Y	ICSPDAT
RC0	15	—	_	T1OSO/T1CKI	_	_	_	_	_	—
RC1	16	—		T1OSI	CCP2		_	_		—
RC2	17	—	_	—	CCP1/P1A	_	—		_	—
RC3	18	—	_	—	—		SCK/SCL	_		—
RC4	23	—	_	—	—	-	SDI/SDA		_	—
RC5	24	—		—	—		SDO	_		—
RC6	25	—	_	—	—	TX/CK	_	_		—
RC7	26	—		—	—	RX/DT	_	_		—
RD0	19	—		—	—		—	_		—
RD1	20	—		—	—		_	_		—
RD2	21	—	_	—	—	_	—	—	_	_
RD3	22	—	_	—	—	-		—	—	_
RD4	27	—	_	_	—	_	—	_	_	_
RD5	28	—	_	—	P1B	-		—	—	_
RD6	29	—	_	—	P1C	_	—	—	_	_
RD7	30	—		—	P1D		_	_		—
RE0	8	AN5		—	—	-	—	_	_	—
RE1	9	AN6		—	—		_	_		—
RE2	10	AN7	_	—	—		_	_		—
RE3	1	—	_	—	—	_	_	_	Y(1)	MCLR/VPP
	11	_	—		—	—		—		Vdd
_	32	_	_	_	_	_		_	_	Vdd
	12	_	_		_	_			—	Vss
	31	_	_		_	_		_	_	Vss

TABLE 3: 40-PIN PDIP ALLOCATION TABLE (PIC16F884/887)

Note 1: Pull-up activated only with external MCLR configuration.

IADL	TABLE 4. 44 -FIN QFN ALLOCATION TABLE (FIC 10F 804/887)									
0/1	44-Pin QFN	Analog	Comparators	Timers	ECCP	EUSART	MSSP	Interrupt	Pull-up	Basic
RA0	19	AN0/ULPWU	C12IN0-	—	_	_	_	_		_
RA1	20	AN1	C12IN1-	—	_	_	_	_		—
RA2	21	AN2	C2IN+	_	—	_	—	—	—	VREF-/CVREF
RA3	22	AN3	C1IN+	—	_	_	_	_		VREF+
RA4	23	_	C1OUT	TOCKI	_	_		_		_
RA5	24	AN4	C2OUT	_	_	_	SS	_	_	_
RA6	33	_	_	—	_	_		_		OSC2/CLKOUT
RA7	32	_	_		_	_	_	_	_	OSC1/CLKIN
RB0	9	AN12	_	_	_	_	_	IOC/INT	Y	
RB1	10	AN10	C12IN3-	_	_	_	_	IOC	Y	_
RB2	11	AN8	_	_	_	_	_	IOC	Y	_
RB3	12	AN9	C12IN2-	_	_	_	_	IOC	Y	PGM
RB4	14	AN11	_		_	_	_	IOC	Y	
RB5	15	AN13	_	T1G	_	_	_	IOC	Y	_
RB6	16	_	_		_	_	_	IOC	Y	ICSPCLK
RB7	17		_	_	_	_	_	IOC	Y	ICSPDAT
RC0	34		_	T10S0/T1CKI	_	_	_	_		_
RC1	35	_	_	T10SI	CCP2	_	_	_		_
RC2	36	_	_		CCP1/P1A	_	_	_		
RC3	37	_	_	_	_	_	SCK/SCL	_		
RC4	42				_	_	SDI/SDA	_		_
RC5	43	_	_		_	_	SDO	_	_	
RC6	44				_	TX/CK	_	_		_
RC7	1	_	_	_	_	RX/DT	_	_	_	_
RD0	38	_	_	—	_	_		_		_
RD1	39	_	_	_	_	_	_	_	_	_
RD2	40	—		—	_	_	_	—		_
RD3	41	_	ļ		_		_	_		
RD4	2	—		—	_	_	_	—		_
RD5	3	_	_		P1B		_	_		
RD6	4	—		—	P1C	_	_	—		_
RD7	5	_		—	P1D	_	_	_		_
RE0	25	AN5	_	_	—	_	—	—	—	
RE1	26	AN6		_	_	_	_	_		_
RE2	27	AN7	_	—	_	_		—		_
RE3	18	_		—	_	_	_	_	Y(1)	MCLR/VPP
_	7	_	_	_	_	_	_	_		Vdd
_	8	_	_	_	_	_	_	_	_	Vdd
_	28				_	_	_	_		Vdd
_	6	_	_	_	_	_	_	_	_	Vss
_	30	_	—		_	_	_	_	_	Vss
_	31	_	_	_	_	_	_	_	_	Vss
_	13	_	—		_	_	_	_	_	NC (no connect)
_	29		_	_	_	_	_	_	_	NC (no connect)

TABLE 4: 44-PIN QFN ALLOCATION TABLE (PIC16F884/887)

Note 1: Pull-up activated only with external MCLR configuration.

10.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The Data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDAT
- EEDATH
- EEADR
- EEADRH (bit 4 on PIC16F886/PIC16F887 only)

When interfacing the data memory block, EEDAT holds the 8-bit data for read/write, and EEADR holds the address of the EEDAT location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block of the PIC16F886/PIC16F887 devices, the EEDAT and EED-ATH registers form a 2-byte word that holds the 14-bit data for read/write, and the EEADR and EEADRH registers form a 2-byte word that holds the 12-bit address of the EEPROM location being read. The PIC16F882 devices have 2K words of program EEPROM with an address range from 0h to 07FFh. The PIC16F883/ PIC16F884 devices have 4K words of program EEPROM with an address range from 0h to 0FFFh. The program memory allows one-word reads.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Word Register 2, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are allowed.

When the device is code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory. When code-protected, the device programmer can no longer access data or program memory.

10.1 EEADR and EEADRH Registers

The EEADR and EEADRH registers can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 8K words of program EEPROM.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADR register. When selecting a data address value, only the LSB of the address is written to the EEADR register.

10.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, as it is when reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory. Program memory can only be read.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to data EEPROM. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR or a WDT Time-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence.

An example of the complete 8-word write sequence is shown in Example 10-4. The initial address is loaded into the EEADRH and EEADR register pair; the eight words of data are loaded using indirect addressing.

EXAMPLE 10-4: WRITING TO FLASH PROGRAM MEMORY

```
*****
       ; This write routine assumes the following:
           A valid starting address (the least significant bits = '000')
       ;
           is loaded in ADDRH:ADDRL
       ;
       ;
           ADDRH, ADDRL and DATADDR are all located in data memory
       ;
      BANKSEL EEADRH
      MOVF
              ADDRH,W
                        ; Load initial address
      MOVWF
              EEADRH
      MOVF
              ADDRL,W
      MOVWF
              EEADR
              DATAADDR,W ; Load initial data address
      MOVF
      MOVWF FSR
LOOP
      MOVF
             INDF,W
                       ; Load first data byte into lower
                       ;
      MOVWF EEDATA
                       ; Next byte
      INCE
              FSR,F
                       ; Load second data byte into upper
      MOVF
              INDF,W
      MOVWF
              EEDATH
      INCF
              FSR,F
      BANKSEL EECON1
              EECON1, EEPGD ; Point to program memory
      BSF
              EECON1,WREN ; Enable writes
      BSF
      BCF
              INTCON,GIE ; Disable interrupts (if using)
      BTFSC INTCON, GIE ; See AN576
      GOTO
              $-2
      Required Sequence
       ;
      MOVLW
              55h
                         ; Start of required write sequence:
              EECON2
      MOVWF
                        ; Write 55h
            0AAh
      MOVLW
                        ;
      MOVWF EECON2
                       ; Write OAAh
      BSF
              EECON1,WR ; Set WR bit to begin write
      NOP
                         ; Required to transfer data to the buffer
      NOP
                         ; registers
      BCF
              EECON1,WREN ; Disable writes
      BSF
              INTCON,GIE ; Enable interrupts (comment out if not using interrupts)
      BANKSEL EEADR
              EEADR, W
      MOVF
                        ; Increment address
      INCF
              EEADR, F
                        ; Indicates when sixteen words have been programmed
      ANDLW
              0x0F
      SUBLW
                        ; 0x0F = 16 words
              0x0F
                         ; 0x0B = 12 words (PIC16F884/883/882 only)
                        ; 0x07 = 8 words
                           0x03 = 4 \text{ words}(\text{PIC16F884}/883/882 \text{ only})
                        ;
      BTFSS
              STATUS,Z
                        ; Exit on a match,
      GOTO
              LOOP
                         ; Continue if more data needs to be written
```


© 2006-2015 Microchip Technology Inc.

REGISTER 11-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ECCPAS	SE ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating									
Dit 0-4	ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 = Auto-Shutdown is disabled 001 = Comparator C1 output high 010 = Comparator C2 output high ⁽¹⁾ 011 = Either Comparators output is high 100 = VIL on INT pin 101 = VIL on INT pin or Comparator C1 output high 110 = VIL on INT pin or Comparator C2 output high 110 = VIL on INT pin or Comparator C2 output high									
bit 3-2	PSSACn: Pi 00 = Drive pi 01 = Drive pi 1x = Pins P1	PSSACn: Pins P1A and P1C Shutdown State Control bits 00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 1x = Pins P1A and P1C tri-state								
bit 1-0	PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 1x = Pins P1B and P1D tri-state									
Note 1:	If C2SYNC is ena	bled, the shutd	own will be del	ayed by Timer	1.					

Note 1:	The auto-shutdown condition is a level-
	based signal, not an edge-based signal.
	As long as the level is present, the auto-
	shutdown will persist.

- 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.
- **3:** Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	122
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	123
CCPR1L	Capture/C	ompare/PW	/M Register	1 Low Byte	(LSB)				124
CCPR1H	Capture/C	ompare/PW	/M Register	1 High Byte	e (MSB)				124
CCPR2L	Capture/Compare/PWM Register 2 Low Byte (LSB)							124	
CCPR2H	Capture/Compare/PWM Register 2 High Byte (MSB)						124		
CM2CON1	MC1OUT	MC2OUT	C1RSEL	C2RSEL	_	—	T1GSS	C2SYNC	92
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	32
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	33
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	ULPWUIE	—	CCP2IE	34
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	35
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	ULPWUIF	—	CCP2IF	36
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	81
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						78		
TMR1H	Holding Re	egister for tl	he Most Sig	nificant Byte	e of the 16-bi	t TMR1 Reg	ster		78
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	54

TABLE 11-6: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Legend: – = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture and Compare.

TABLE 11-7: I	REGISTERS	ASSOCIATED	WITH PWM	AND	TIMER2
---------------	-----------	------------	----------	-----	--------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	122
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	123
ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	140
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	32
PR2	Timer2 Period Register							83	
PSTRCON	—	—	—	STRSYNC	STRD	STRC	STRB	STRA	144
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	143
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	84
TMR2	Timer2 Module Register						83		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	49
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	54
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	58

Legend: – = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

© 2006-2015 Microchip Technology Inc.

13.4.16.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e, another master is attempting to transmit a data '0', see Figure 13-24). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from highto-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (Figure 13-25).

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 13-24: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 13-25: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\bar{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ \text{1} \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

 $\ensuremath{\textcircled{}^{\odot}}$ 2006-2015 Microchip Technology Inc.

TABLE 17-7: COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristics		Min.	Тур†	Max.	Units	Comments
CM01	Vos	Input Offset Voltage		—	± 5.0	± 10	mV	(Vdd - 1.5)/2
CM02	Vcm	Input Common Mode Voltage		0	_	Vdd - 1.5	V	
CM03*	CMRR	Common Mode Rejection Ratio		+55		_	dB	
CM04*	Trt	Response Time	Falling	_	150	600	ns	(Note 1)
			Rising	_	200	1000	ns	
CM05*	Тмc2coV	Comparator Mode Change to Output Valid			_	10	μS	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 17-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$

Param No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments	
CV01*	CLSB	Step Size ⁽²⁾	—	VDD/24 VDD/32		V V	Low Range (VRR = 1) High Range (VRR = 0)	
CV02*	CACC	Absolute Accuracy	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)	
CV03*	CR	Unit Resistor Value (R)	_	2k	_	Ω		
CV04*	CST	Settling Time ⁽¹⁾	—	_	10	μS		

These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.
 - 2: See Section 8.10 "Comparator Voltage Reference" for more information.

TABLE 17-9: VOLTAGE (VR) REFERENCE SPECIFICATIONS

VR Voltage Reference Specifications		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
VR01	Vrout	VR voltage output	0.5	0.6	0.7	V	
VR02*	TSTABLE	Settling Time	—	10	100*	μS	

These parameters are characterized but not tested.

FIGURE 17-16: SPI SLAVE MODE TIMING (CKE = 0)

TABLE 17-18:ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V,
VREF \geq 2.5V)

ADC Clock	Period (TAD)				
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	100 ns	250 ns	500 ns	2.0 μs
Fosc/8	001	400 ns	1.0 μs	2.0 μs	8.0 μs
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs	32.0 μs
Frc	x11	2-6 μs	2-6 μs	2-6 μs	2-6 μs

Legend: Shaded cells should not be used for conversions at temperatures above +125°C.

Note 1: TAD must be between 1.6 μ s and 6.0 μ s.

18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	N		44		
Lead Pitch	е		0.80 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95 1.00 1.05			
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09 - 0.20			
Lead Length	Ĺ	0.45 0.60 0.7			
Footprint	L1	1.00 REF			
Foot Angle	θ	0° 3.5° 7°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2