

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f882-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0/1	28-Pin QFN	Analog	Comparators	Timers	ECCP	EUSART	MSSP	Interrupt	dn-llnd	Basic
RA0	27	AN0/ULPWU	C12IN0-	—	—	—	—	—	_	—
RA1	28	AN1	C12IN1-	—	—	-	—	—	_	—
RA2	1	AN2	C2IN+	—	—	_	_	—	_	VREF-/CVREF
RA3	2	AN3	C1IN+	—	—		—	—		VREF+
RA4	3	—	C1OUT	T0CKI	—	-	—	—	—	—
RA5	4	AN4	C2OUT	—	—	-	SS	—	_	—
RA6	7	—		—	—		—	—		OSC2/CLKOUT
RA7	6	_	_	—	—	-	—	—	_	OSC1/CLKIN
RB0	18	AN12	_	—	_	_	_	IOC/INT	Y	—
RB1	19	AN10	C12IN3-	—	P1C	_	_	IOC	Y	—
RB2	20	AN8	_	—	P1B	_	_	IOC	Y	—
RB3	21	AN9	C12IN2-	—	_	_	_	IOC	Y	PGM
RB4	22	AN11	_	—	P1D	_	_	IOC	Y	—
RB5	23	AN13	_	T1G	_	_	_	IOC	Y	—
RB6	24	—	_	—	—	-	—	IOC	Y	ICSPCLK
RB7	25	—		—	—		—	IOC	Y	ICSPDAT
RC0	8	—		T1OSO/T1CKI	—		—	—		—
RC1	9	_	_	T1OSI	CCP2	_	—	—		—
RC2	10	—		—	CCP1/P1A		—	_		—
RC3	11	—		—	—		SCK/SCL	—		—
RC4	12	—		—	—		SDI/SDA	—		—
RC5	13	—		—	—		SDO	—		—
RC6	14	—		—	—	TX/CK	—	—	_	—
RC7	15	—		—	—	RX/DT	—	—		—
RE3	26	—	_	—	_	_	—	—	Y ⁽¹⁾	MCLR/VPP
_	17	—	_	_	_	_	_	—	_	Vdd
—	5	—	_			—				Vss
—	16	—	_		_	_	_	_	_	Vss

TABLE 2: 28-PIN QFN ALLOCATION TABLE (PIC16F882/883/886)

Note 1: Pull-up activated only with external MCLR configuration.

Name	Function	Input Type	Output Type	Description
RA0/AN0/ULPWU/C12IN0-	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	—	A/D Channel 0 input.
	ULPWU	AN	—	Ultra Low-Power Wake-up input.
	C12IN0-	AN	—	Comparator C1 or C2 negative input.
RA1/AN1/C12IN1-	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	—	A/D Channel 1 input.
	C12IN1-	AN	—	Comparator C1 or C2 negative input.
RA2/AN2/VREF-/CVREF/C2IN+	RA2	TTL	CMOS	General purpose I/O.
	AN2	AN	—	A/D Channel 2.
	VREF-	AN	—	A/D Negative Voltage Reference input.
	CVREF	_	AN	Comparator Voltage Reference output.
	C2IN+	AN	—	Comparator C2 positive input.
RA3/AN3/VREF+/C1IN+	RA3	TTL	—	General purpose I/O.
	AN3	AN	—	A/D Channel 3.
	VREF+	AN	—	Programming voltage.
	C1IN+	AN	—	Comparator C1 positive input.
RA4/T0CKI/C1OUT	RA4	TTL	CMOS	General purpose I/O.
	T0CKI	ST	—	Timer0 clock input.
	C1OUT	_	CMOS	Comparator C1 output.
RA5/AN4/SS/C2OUT	RA5	TTL	CMOS	General purpose I/O.
	AN4	AN	—	A/D Channel 4.
	SS	ST	—	Slave Select input.
	C2OUT	_	CMOS	Comparator C2 output.
RA6/OSC2/CLKOUT	RA6	TTL	CMOS	General purpose I/O.
	OSC2	_	XTAL	Master Clear with internal pull-up.
	CLKOUT	_	CMOS	Fosc/4 output.
RA7/OSC1/CLKIN	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL	_	Crystal/Resonator.
	CLKIN	ST	—	External clock input/RC oscillator connection.
RB0/AN12/INT	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN12	AN	—	A/D Channel 12.
	INT	ST	—	External interrupt.
RB1/AN10/P1C/C12IN3-	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN10	AN	_	A/D Channel 10.
	P1C	_	CMOS	PWM output.
	C12IN3-	AN	—	Comparator C1 or C2 negative input.
RB2/AN8/P1B	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN8	AN	l —	A/D Channel 8.
	P1B	—	CMOS	PWM output.
Legend: AN = Analog input TTL = TTL compatil HV = High Voltage	or output ble input	CMOS ST XTAL	= CMO = Schm = Crysta	S compatible input or output OD = Open-Drain itt Trigger input with CMOS levels al

	DIC16E882/883/886		DESCRIPTION
IADLE I-I.	FIC 10F002/003/000	PINUUI	DESCRIPTION

FIGURE 2-4: PIC16F882 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	WDTCON	105h	SRCON	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	CM1CON0	107h	BAUDCTL	187h
	08h		88h	CM2CON0	108h	ANSEL	188h
PORTE	09h	TRISE	89h	CM2CON1	109h	ANSELH	189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved	18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved	18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h	VRCON	97h		117h		197h
RCSTA	18h	TXSTA	98h		118h		198h
TXREG	19h	SPBRG	99h		119h		199h
RCREG	1Ah	SPBRGH	9Ah		11Ah		19Ah
CCPR2L	1Bh	PWM1CON	9Bh		11Bh		19Bh
CCPR2H	1Ch	ECCPAS	9Ch		11Ch		19Ch
CCP2CON	1Dh	PSTRCON	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h	General	A0h		120h		1A0h
		Registers					
General		-					
Purpose		32 Bytes	BFh				
Registers			C0h				
96 Bytes			FFh		16Fb		1FFh
		accesses	 F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
Unimplement	ed data me	emory locations, re	ad as '0'.				

Note 1: Not a physical register.

3: Q1 is held high during Sleep mode.

8.9 Comparator SR Latch

The SR latch module provides additional control of the comparator outputs. The module consists of a single SR latch and output multiplexers. The SR latch can be set, reset or toggled by the comparator outputs. The SR latch may also be set or reset, independent of comparator output, by control bits in the SRCON control register. The SR latch output multiplexers select whether the latch outputs or the comparator outputs are directed to the I/O port logic for eventual output to a pin.

8.9.1 LATCH OPERATION

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. Each latch input is connected to a comparator output and a software controlled pulse generator. The latch can be set by C1OUT or the PULSS bit of the SRCON register. The latch can be reset by C2OUT or the PULSR bit of the SRCON register. The latch is reset-dominant, therefore, if both Set and Reset inputs are high the latch will go to the Reset state. Both the PULSS and PULSR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch set or Reset operation.

8.9.2 LATCH OUTPUT

The SR<1:0> bits of the SRCON register control the latch output multiplexers and determine four possible output configurations. In these four configurations, the CxOUT I/O port logic is connected to:

- C1OUT and C2OUT
- C1OUT and SR latch \overline{Q}
- C2OUT and SR latch Q
- SR latch Q and Q

After any Reset, the default output configuration is the unlatched C1OUT and C2OUT mode. This maintains compatibility with devices that do not have the SR latch feature.

The applicable TRIS bits of the corresponding ports must be cleared to enable the port pin output drivers. Additionally, the CxOE comparator output enable bits of the CMxCON0 registers must be set in order to make the comparator or latch outputs available on the output pins. The latch configuration enable states are completely independent of the enable states for the comparators.

FIGURE 8-7: SR LATCH SIMPLIFIED BLOCK DIAGRAM

8.10 Comparator Voltage Reference

The comparator voltage reference module provides an internally generated voltage reference for the comparators. The following features are available:

- Independent from Comparator operation
- Two 16-level voltage ranges
- Output clamped to Vss
- Ratiometric with VDD
- Fixed Reference (0.6V)

The VRCON register (Register 8-5) controls the voltage reference module shown in Figure 8-8.

The voltage source is selectable through both ends of the 16 connection resistor ladder network. Bit VRSS of the VRCON register selects either the internal or external voltage source.

The PIC16F882/883/884/886/887 allows the CVREF signal to be output to the RA2 pin of PORTA under certain configurations only. For more details, see Figure 8-9.

8.10.1 INDEPENDENT OPERATION

The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference.

8.10.2 OUTPUT VOLTAGE SELECTION

The CVREF voltage reference has two ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register.

The CVREF output voltage is determined by the following equations:

EQUATION 8-1: CVREF OUTPUT VOLTAGE

VRR = 1 (low range): CVREF = (VR<3:0>/24) × VLADDER VRR = 0 (high range): CVREF = (VLADDER/4) + (VR<3:0> × VLADDER/32) VLADDER = VDD or ([VREF+] - [VREF-]) or VREF+

The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 8-8.

8.10.3 OUTPUT CLAMPED TO Vss

The CVREF output voltage can be set to Vss with no power consumption by clearing the FVREN bit of the VRCON register.

This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current.

Note: Depending on the application, additional components may be required for a zero cross circuit. Reference TB3013, *"Using the ESD Parasitic Diodes on Mixed Signal Microcontrollers"* (DS93013), for more information.

8.10.4 OUTPUT RATIOMETRIC TO VDD

The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 17.0 "Electrical Specifications"**.

8.10.5 FIXED VOLTAGE REFERENCE

The Fixed Voltage Reference is independent of VDD, with a nominal output voltage of 0.6V. This reference can be enabled by setting the FVREN bit of the SRCON register to '1'. This reference is always enabled when the HFINTOSC oscillator is active.

8.10.6 FIXED VOLTAGE REFERENCE STABILIZATION PERIOD

When the Fixed Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. See **Section 17.0 "Electrical Specifications"** for the minimum delay requirement.

8.10.7 VOLTAGE REFERENCE SELECTION

Multiplexers on the output of the voltage reference module enable selection of either the CVREF or Fixed Voltage Reference for use by the comparators.

Setting the C1RSEL bit of the CM2CON1 register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C1. Clearing the C1RSEL bit selects the fixed voltage for use by C1.

Setting the C2RSEL bit of the CM2CON1 register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C2. Clearing the C2RSEL bit selects the fixed voltage for use by C2.

When both the C1RSEL and C2RSEL bits are cleared, current flow in the CVREF voltage divider is disabled minimizing the power drain of the voltage reference peripheral.

10.1.2 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register, and then set control bit RD. The data is available at the very next cycle, in the EEDAT register; therefore, it can be read in the next instruction. EEDAT will hold this value until another read or until it is written to by the user (during a write operation).

FXAMPI	F 10-1	ΔΔΤΔ	FFPROM	RFAD
	L IV-I.			NLAD

BANKSEL	EEADR	;
MOVLW	DATA_EE_ADDR	;
MOVWF	EEADR	;Data Memory
		;Address to read
BANKSEL	EECON1	;
BCF	EECON1, EEPGD	;Point to DATA memory
BSF	EECON1, RD	;EE Read
BANKSEL	EEDAT	;
MOVF	EEDAT, W	W = EEDAT
BCF	STATUS, RP1	;Bank 0

10.1.3 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDAT register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the above sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

	BANKSEL	EEADR	;
	MOVLW	DATA_EE_ADDR	;
	MOVWF	EEADR	;Data Memory Address to write
	MOVLW	DATA_EE_DATA	;
	MOVWF	EEDAT	;Data Memory Value to write
	BANKSEL	EECON1	;
	BCF	EECON1, EEPGD	;Point to DATA memory
	BSF	EECON1, WREN	;Enable writes
	DOE		
	BCF	INTCON, GIE	Disable INTS.
	BTFSC	INTCON, GIE	;SEE AN576
	GOTO	\$-2	
	MOVLW	55h	;
ce ed	MOVWF	EECON2	;Write 55h
Juire	MOVLW	AAh	;
Seg	MOVWF	EECON2	;Write AAh
т <i>о</i>	BSF	EECON1, WR	;Set WR bit to begin write
	BSF	INTCON, GIE	;Enable INTs.
	SLEEP		;Wait for interrupt to signal write complete
	BCF	EECON1, WREN	;Disable writes
	BCF	STATUS, RPO	;Bank 0
	BCF	STATUS, RP1	

EXAMPLE 10-2: DATA EEPROM WRITE

11.5.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.5.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

11.5.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.5.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCPx) output drivers as an input by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Set the PWM duty cycle by loading the CCPRxL register and DCxB<1:0> bits of the CCPxCON register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.

11.6.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Table 11-5.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 11.6.4** "Enhanced PWM Auto-Shutdown Mode". An autoshutdown event will only affect pins that have PWM outputs enabled.

REGISTER DEFINITIONS: PULSE STEERING CONTROL

REGISTER 11-5: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	_	—	STRSYNC	STRD	STRC	STRB	STRA
bit 7							bit 0

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4	STRSYNC: Steering Sync bit
	1 = Output steering update occurs on next PWM period
	0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRD: Steering Enable bit D
	1 = P1D pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1D pin is assigned to port pin
bit 2	STRC: Steering Enable bit C
	1 = P1C pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1C pin is assigned to port pin
bit 1	STRB: Steering Enable bit B
	1 = P1B pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1B pin is assigned to port pin
bit 0	STRA: Steering Enable bit A
	1 = P1A pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1A pin is assigned to port pin

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

Logondi

					SYNC	C = 0, BRGH	l = 0, BRC	G16 = 0				
BAUD	Foso	c = 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_		_	_	_	_	_	_	_	_
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	—	_	_
57.6k	_	_	_	57.60k	0.00	7	57.60k	0.00	2	—	—	—
115.2k	—	_	_	—	_	_	—	_	_	—	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRG	l = 0, BRG	616 = 0				
BAUD	Fos	c = 4.000) MHz	Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	—	—	—
9600	—	—	_	9600	0.00	5	—	—	—	—	—	—
10417	10417	0.00	5	—	—	_	10417	0.00	2	—	—	—
19.2k	—	—	—	19.20k	0.00	2	—	—	—	—	—	—
57.6k	—	—	—	57.60k	0.00	0	—	—	—	—	—	—
115.2k	—	_	—	—	_	_	—	_	—	—	_	—

					SYNC	C = 0, BRGH	H = 1, BRG	316 = 0				
BAUD	Fosc	= 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	_	_		_	_	_	_	_	—	—
1200	—	—	—	—	—	—	—	—	—	—	—	—
2400	—	—	—	—	—	—	—	_	_	2404	0.16	207
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	_	_

2. The EEEART terminals is the while the WOE bit to set.

12.3.3 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 12-9 for the timing of the Break character sequence.

12.3.3.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

12.3.4 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 12.3.2** "Auto-Wake-up on **Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCTL register before placing the EUSART in Sleep mode.

REGISTER 13-1: SSPSTAT: SSP STATUS REGISTER

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0		
SMP	CKE	D/Ā	Р	S	R/W	UA	BF		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplem	ented bit, read as	0'			
-n = Value at POF	२	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unknov	vn		
bit 7	SMP: Sample b	it <u>le:</u>							
	1 = Input data s 0 = Input data s	ampled at end of a ampled at middle	data output tim of data output	ie time					
	SMP must be cl	<u>.</u> leared when SPI is	s used in Slave	e mode					
	$\frac{\ln I^2 C \text{ Master or}}{1} = \text{Slew rate c}$	<u>Slave mode:</u> ontrol disabled for	standard spe	ed mode (100 kH	lz and 1 MHz)				
	0 = Slew rate c	control enabled for	high speed m	ode (400 kHz)					
bit 6		Edge Select bit							
	1 = Data transm0 = Data transm	nitted on falling ed nitted on rising edg	ge of SCK ge of SCK						
	CKP = 1: 1 = Data transmitted on rising edge of SCK Data transmitted on folling edge of SCK								
bit 5	D/A: Data/Addre	ess bit (I ² C mode at the last byte red	only) ceived or trans	mitted was data					
	0 = Indicates the	at the last byte rec	ceived or trans	mitted was addre	ess				
bit 4	P: Stop bit (I ² C mode only. 1 = Indicates that 0 = Stop bit was	This bit is cleared at a Stop bit has b a not detected last	l when the MS een detected l	SP module is dis ast (this bit is '0'	abled, SSPEN is c on Reset)	leared.)			
bit 3	S: Start bit								
	(I ² C mode only. 1 = Indicates the 0 = Start bit was	This bit is cleared at a Start bit has b s not detected last	I when the MS been detected I	SP module is dis ast (this bit is '0'	abled, SSPEN is c on Reset)	leared.)			
bit 2	R/W: Read/Writ	e bit information (I ² C mode only)					
	This bit holds th the next Start bi In I ² C Slave mo 1 = Read	e R/W bit informat t, Stop bit, or not A de:	<u>tion f</u> ollowing tl ACK bit.	ne last address m	natch. This bit is or	ly valid from the a	ddress match to		
	$0 = Write$ $\frac{\ln I^2 C \text{ Master m}}{1 = \text{ Transmit is}}$	i <u>ode:</u> s in progress							
	0 = Transmit is OR-ing thi	s not in progress is bit with SEN, RS	SEN, PEN, RC	EN, or ACKEN w	vill indicate if the M	SSP is in Idle mod	le.		
bit 1	UA: Update Add 1 = Indicates the 0 = Address doe	dress bit (10-bit I ²) at the user needs es not need to be	C mode only) to update the a updated	address in the SS	SPADD register				
bit 0	BF: Buffer Full S	Status bit							
	Receive (SPI and 1 = Receive con	nd I ² C modes): molete_SSPBLIF i	s full						
	0 = Receive not	complete, SSPBI	JF is empty						
	Transmit (I ² C m	ode only):				411			
	$\perp = Data transm0 = Data transm$	nit complete (does	not include the	e ACK and Stop	bits), SSPBUF is e	mpty			

14.2.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in EC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figures 14-4, 14-5 and 14-6 depict time-out sequences. The device can execute code from the INTOSC while OST is active by enabling Two-Speed Start-up or Fail-Safe Monitor (see Section 4.7.2 "Two-Speed Start-up Sequence" and Section 4.8 "Fail-Safe Clock Monitor").

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then, bringing MCLR high will begin execution immediately (see Figure 14-5). This is useful for testing purposes or to synchronize more than one PIC16F882/883/884/886/887 device operating in parallel.

Table 14-5 shows the Reset conditions for some special registers, while Table 14-4 shows the Reset conditions for all the registers.

14.2.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word Register 1).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 3.2.2 "Ultra Low-Power Wake-up" and Section 14.2.4 "Brown-out Reset (BOR)".

Occillator Configuration	Powe	er-up	Brown-o	ut Reset	Wake-up from
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
LP, T1OSCIN = 1	TPWRT	—	TPWRT	—	—
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 14-1: TIME-OUT IN VARIOUS SITUATIONS

TABLE 14-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	x	1	1	Power-on Reset
u	0	1	1	Brown-out Reset
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PCON		_	ULPWUE	SBOREN	_	_	POR	BOR	37
STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	30

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

17.2 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended)

DC CH	ARACTERISTICS	Standa Operat	ard Oper ing temp	ating Co erature	onditions -40°C -40°C	5 (unless ≤ TA ≤ +8 ≤ TA ≤ +1	o therwise stated) 5°C for industrial 25°C for extended
Param	Device Characteristics	Min	Truck	Max	Unite		Conditions
No.	Device Characteristics	MIN.	турт	max.	Units	Vdd	Note
D010	Supply Current (IDD) ^(1, 2)	—	13	19	μA	2.0	Fosc = 32 kHz
		—	22	30	μA	3.0	LP Oscillator mode
		—	33	60	μA	5.0	
D011*		_	180	250	μA	2.0	Fosc = 1 MHz
		—	290	400	μA	3.0	XT Oscillator mode
		_	490	650	μA	5.0	
D012		_	280	380	μA	2.0	Fosc = 4 MHz
		—	480	670	μA	3.0	XT Oscillator mode
		—	0.9	1.4	mA	5.0	
D013*		_	170	295	μA	2.0	Fosc = 1 MHz
		—	280	480	μA	3.0	EC Oscillator mode
		—	470	690	μA	5.0	
D014			290	450	μA	2.0	Fosc = 4 MHz
		—	490	720	μA	3.0	EC Oscillator mode
		—	0.85	1.3	mA	5.0	
D015		_	8	20	μA	2.0	Fosc = 31 kHz
		—	16	40	μA	3.0	LFINTOSC mode
		—	31	65	μA	5.0	
D016*		_	416	520	μA	2.0	Fosc = 4 MHz
		—	640	840	μA	3.0	HFINTOSC mode
		—	1.13	1.6	mA	5.0	
D017		_	0.65	0.9	mA	2.0	Fosc = 8 MHz
		—	1.01	1.3	mA	3.0	HFINTOSC mode
		—	1.86	2.3	mA	5.0	
D018		_	340	580	μA	2.0	Fosc = 4 MHz
			550	900	μΑ	3.0	EXTRC mode ⁽³⁾
		—	0.92	1.4	mA	5.0	
D019			3.8	4.7	mA	4.5	Fosc = 20 MHz
		—	4.0	4.8	mA	5.0	HS Oscillator mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 17-19: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

Param	Device	Min	Tun	Max	Unite	Condition			
No.	Characteristics	IVIII.	тур.	wax.	Units	Vdd	Note		
D001	Vdd	2.1	_	5.5	V	_	Fosc \leq 8 MHz: HFINTOSC, EC		
		2.1		5.5	V		$Fosc \le 4 MHz$		

TABLE 17-20: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

Param	Device	Unite	Min	True	Max		Condition
No.	Characteristics	Units	win.	тур.	wax.	Vdd	Note
D020E	Power Down Base	—	_	27		2.1	IPD Base: WDT, BOR,
	Current (IPD)	—		29	μA	3.0	Comparators, VREF and
		—	—	32		5.0	T1osc disabled
D021E		—		55		2.1	
		—		59	μA	3.0	WDT Current
		—	—	69		5.0	
D022E		—		75	^	3.0	POP Current
		—		147	μΑ	5.0	
D023E		—	_	73	μΑ	2.1	
		—		117		3.0	Comparator current, both
		—	_	235		5.0	
D024E		—		102		2.1	
				128	μΑ	3.0	CVREF current, high range
		_		170		5.0	
D024AE				133		2.1	
			_	167	μA	3.0	CVREF current, low range
			_	222		5.0	
D025E		_		36		2.1	
				41	μΑ	3.0	T1osc current, 32 kHz
		_		47		5.0	
D026E		_		22		3.0	Analog-to-Digital current,
		_		24	μΑ	5.0	no conversion in progress
D027E		—	—	189		3.0	VP6 current (Fixed Voltage
			_	250	μΑ	5.0	Reference)

TABLE 17-21: LEAKAGE CURRENT SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
D061	lı∟	Input Leakage Current ⁽¹⁾ (RA3/MCLR)		±0.5	±5.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D062	lıL	Input Leakage Current ⁽²⁾ (RA3/MCLR)	50	250	400	μA	VDD = 5.0V

Note 1: This specification applies when RA3/MCLR is configured as an input with the pull-up disabled. The leakage current for the RA3/MCLR pin is higher than for the standard I/O port pins.

2: This specification applies when RA3/MCLR is configured as the MCLR reset pin function with the weak pull-up enabled.

19.1 Package Marking Information (Continued)

44-Lead TQFP (10x10x1 mm)

Leger	nd: XXX Y YY WW NNN (©3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((23)) can be found on the outer packaging for this package.
Note:	In the eve be carrie characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	40			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	—	
Shoulder to Shoulder Width	E	.590	_	.625	
Molded Package Width	E1	.485	_	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	_	.023	
Overall Row Spacing §	eB	_	_	.700	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2