

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f882t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABL	- I.	1: 28-PIN PDIP, SOIC, SSOP ALLOCATION TABLE (PIC16F882/883/886)								
0/1	28-Pin PDIP/SOIC/SSOP	Analog	Comparators	Timers	ECCP	EUSART	dSSM	Interrupt	Pull-up	Basic
RA0	2	AN0/ULPWU	C12IN0-	—	—	_	—	—	—	—
RA1	3	AN1	C12IN1-	_		_	_			_
RA2	4	AN2	C2IN+	—	—	—	—	—		VREF-/CVREF
RA3	5	AN3	C1IN+	—	—	-	—	—	_	Vref+
RA4	6	—	C1OUT	TOCKI	_	_	_	—	_	—
RA5	7	AN4	C2OUT	—	_	_	SS	—	_	—
RA6	10	—	_	—	—	-	—	—	—	OSC2/CLKOUT
RA7	9	—	—	—	—	-	—	—	_	OSC1/CLKIN
RB0	21	AN12	—	—	—		—	IOC/INT	Y	—
RB1	22	AN10	C12IN3-	_	P1C		—	IOC	Y	—
RB2	23	AN8	—	_	P1B		—	IOC	Y	—
RB3	24	AN9	C12IN2-	_	_		—	IOC	Y	PGM
RB4	25	AN11	—	_	P1D		—	IOC	Y	—
RB5	26	AN13	—	T1G	_		—	IOC	Y	—
RB6	27	—	—	_	-		—	IOC	Y	ICSPCLK
RB7	28	—	_	_	—	_	—	IOC	Y	ICSPDAT
RC0	11	—	_	T1OSO/T1CKI	—	_	—	—	_	—
RC1	12	—	_	T1OSI	CCP2	_	—	—	_	_
RC2	13	—	—		CCP1/P1A	_	—	—	_	
RC3	14	—	_	_	—	_	SCK/SCL	—	_	—
RC4	15	—	_	_	—	_	SDI/SDA	—	_	_
RC5	16	—					SDO	—	_	_
RC6	17	—		_	—	TX/CK	—	—	—	_
RC7	18	—				RX/DT	_	_	_	_
RE3	1	—	_	_			—	—	Y(1)	MCLR/VPP
_	20	_			_	_	_	—	_	Vdd
—	8	_	_	_	—		—	_	_	Vss
—	19	—	_	—			—	—	_	Vss

TABLE 1: 28-PIN PDIP, SOIC, SSOP ALLOCATION TABLE (PIC16F882/883/886)

Note 1: Pull-up activated only with external MCLR configuration.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1											
80h	INDF	Addressing	this location	uses conten	ts of FSR to a	ddress data	memory (not	a physical r	egister)	xxxx xxxx	xxxx xxxx
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu (5)
84h	FSR	Indirect Date	a Memory Ac	Idress Pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
88h	TRISD ⁽³⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	_	_	_	_	TRISE3	TRISE2 ⁽³⁾	TRISE1 ⁽³⁾	TRISE0 ⁽³⁾	1111	1111
8Ah	PCLATH	_	_	_	Write Buffer	for the uppe	er 5 bits of the	Program Co	ounter	0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF ⁽¹⁾	x000 0000	0000 000u
8Ch	PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	0000 0000
8Dh	PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	ULPWUIE	_	CCP2IE	0000 00-0	0000 0000
8Eh	PCON		_	ULPWUE	SBOREN		_	POR	BOR	01qq	0uuu ^(4,6)
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 q000	-110 q000
90h	OSCTUNE	_	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD ⁽²⁾	Synchronou	is Serial Port	(I ² C mode)	Address Regi	ster				0000 0000	0000 0000
93h	SSPMSK ⁽²⁾	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	1111 1111	1111 1111
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
96h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	0000 0000	0000 0000
97h	VRCON	VREN	VROE	VRR	VRSS	VR3	VR2	VR1	VR0	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 -010
99h	SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	0000 0000	0000 0000
9Ah	SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	0000 0000	0000 0000
9Bh	PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	0000 0000
9Ch	ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	0000 0000
9Dh	PSTRCON	—	—	—	STRSYNC	STRD	STRC	STRB	STRA	0 0001	0 0001
9Eh	ADRESL	A/D Result	Register Low	Byte						xxxx xxxx	uuuu uuuu
9Fh	ADCON1	ADFM	_	VCFG1	VCFG0	—	—	_	_	0-00	0-00

TABLE 2-2: PIC16F882/883/884/886/887 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Legend: Note 1 - = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented MCLR and WDT Reset do not affect the previous value data latch. The RBIF bit will be cleared upon Reset but will set again if the mismatch 1: exists.

Accessible only when SSPCON register bits SSPM<3:0> = 1001. PIC16F884/PIC16F887 only. 2:

3:

4: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

See Table 14-5 for Reset value for specific condition. 5:

6: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- · the Reset status
- the bank select bits for data memory (GPR and SFR)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as `000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see **Section 15.0 "Instruction Set Summary"**

Note 1:	The C and DC bits operate as a Borrow
	and Digit Borrow out bit, respectively, in
	subtraction.

REGISTER DEFINITIONS: STATUS

REGISTER 2-1: STATUS: STATUS REGISTER

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) C = Bank 0, 4 (00h - 1FFh)
1 1 0 5	0 = Bank 0, 1 (00h-FFh)
bit 6-5	RP<1:0>: Register Bank Select bits (used for direct addressing)
	00 = Bank 0 (00h-7Fh) 01 = Bank 1 (80h-FFh)
	10 = Bank 2 (100h-17Fh)
	11 = Bank 3 (180h-1FFh)
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction
	0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1: For	Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of th
	erand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order l

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

2.2.2.5 PIE2 Register

The PIE2 register contains the interrupt enable bits, as shown in Register 2-5.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER DEFINITIONS: PIE2

REGISTER 2-5: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
OSFIE	C2IE	C1IE	EEIE	BCLIE	ULPWUIE		CCP2IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared	x = Bit is unknown

bit 7	OSFIE: Oscillator Fail Interrupt Enable bit
	1 = Enables oscillator fail interrupt0 = Disables oscillator fail interrupt
bit 6	C2IE: Comparator C2 Interrupt Enable bit
	1 = Enables Comparator C2 interrupt0 = Disables Comparator C2 interrupt
bit 5	C1IE: Comparator C1 Interrupt Enable bit
	1 = Enables Comparator C1 interrupt0 = Disables Comparator C1 interrupt
bit 4	EEIE: EEPROM Write Operation Interrupt Enable bit
	 1 = Enables EEPROM write operation interrupt 0 = Disables EEPROM write operation interrupt
bit 3	BCLIE: Bus Collision Interrupt Enable bit
	1 = Enables Bus Collision interrupt0 = Disables Bus Collision interrupt
bit 2	ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit
	 1 = Enables Ultra Low-Power Wake-up interrupt 0 = Disables Ultra Low-Power Wake-up interrupt
bit 1	Unimplemented: Read as '0'
bit 0	CCP2IE: CCP2 Interrupt Enable bit
	1 = Enables CCP2 interrupt0 = Disables CCP2 interrupt

4.4.4 EXTERNAL RC MODES

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO.

In RC mode, the RC circuit connects to OSC1. OSC2/ CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 4-5 shows the external RC mode connections.

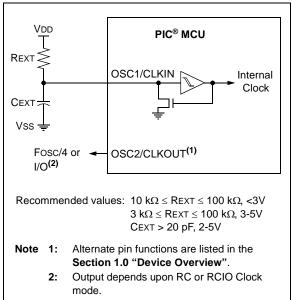


FIGURE 4-5: EXTERNAL RC MODES

In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

4.5 Internal Clock Modes

The oscillator module has two independent, internal oscillators that can be configured or selected as the system clock source.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 8 MHz. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 4-2).
- The LFINTOSC (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register.

The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS) bit of the OSCCON register. See **Section 4.6** "**Clock Switching**" for more information.

4.5.1 INTOSC AND INTOSCIO MODES

The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the Configuration Word Register 1 (CONFIG1).

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

In **INTOSCIO** mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O.

4.5.2 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 8 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 4-2).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 4-1). One of seven frequencies can be selected via software using the IRCF<2:0> bits of the OSCCON register. See **Section 4.5.4 "Frequency Select Bits (IRCF)"** for more information.

The HFINTOSC is enabled by selecting any frequency between 8 MHz and 125 kHz by setting the IRCF<2:0> bits of the OSCCON register \neq 000. Then, set the System Clock Source (SCS) bit of the OSCCON register to '1' or enable Two-Speed Start-up by setting the IESO bit in the Configuration Word Register 1 (CONFIG1) to '1'.

The HF Internal Oscillator (HTS) bit of the OSCCON register indicates whether the HFINTOSC is stable or not.

8.10 Comparator Voltage Reference

The comparator voltage reference module provides an internally generated voltage reference for the comparators. The following features are available:

- Independent from Comparator operation
- Two 16-level voltage ranges
- Output clamped to Vss
- Ratiometric with VDD
- Fixed Reference (0.6V)

The VRCON register (Register 8-5) controls the voltage reference module shown in Figure 8-8.

The voltage source is selectable through both ends of the 16 connection resistor ladder network. Bit VRSS of the VRCON register selects either the internal or external voltage source.

The PIC16F882/883/884/886/887 allows the CVREF signal to be output to the RA2 pin of PORTA under certain configurations only. For more details, see Figure 8-9.

8.10.1 INDEPENDENT OPERATION

The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference.

8.10.2 OUTPUT VOLTAGE SELECTION

The CVREF voltage reference has two ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register.

The CVREF output voltage is determined by the following equations:

EQUATION 8-1: CVREF OUTPUT VOLTAGE

VRR = 1 (low range): CVREF = (VR<3:0>/24) × VLADDER VRR = 0 (high range): CVREF = (VLADDER/4) + (VR<3:0> × VLADDER/32) VLADDER = VDD or ([VREF+] - [VREF-]) or VREF+

The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 8-8.

8.10.3 OUTPUT CLAMPED TO Vss

The CVREF output voltage can be set to Vss with no power consumption by clearing the FVREN bit of the VRCON register.

This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current.

Note: Depending on the application, additional components may be required for a zero cross circuit. Reference TB3013, *"Using the ESD Parasitic Diodes on Mixed Signal Microcontrollers"* (DS93013), for more information.

8.10.4 OUTPUT RATIOMETRIC TO VDD

The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 17.0 "Electrical Specifications"**.

8.10.5 FIXED VOLTAGE REFERENCE

The Fixed Voltage Reference is independent of VDD, with a nominal output voltage of 0.6V. This reference can be enabled by setting the FVREN bit of the SRCON register to '1'. This reference is always enabled when the HFINTOSC oscillator is active.

8.10.6 FIXED VOLTAGE REFERENCE STABILIZATION PERIOD

When the Fixed Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. See **Section 17.0 "Electrical Specifications"** for the minimum delay requirement.

8.10.7 VOLTAGE REFERENCE SELECTION

Multiplexers on the output of the voltage reference module enable selection of either the CVREF or Fixed Voltage Reference for use by the comparators.

Setting the C1RSEL bit of the CM2CON1 register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C1. Clearing the C1RSEL bit selects the fixed voltage for use by C1.

Setting the C2RSEL bit of the CM2CON1 register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C2. Clearing the C2RSEL bit selects the fixed voltage for use by C2.

When both the C1RSEL and C2RSEL bits are cleared, current flow in the CVREF voltage divider is disabled minimizing the power drain of the voltage reference peripheral.

IADEE J-2.									
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	104
ADCON1	ADFM		VCFG1	VCFG0	_	_	_		105
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	41
ANSELH	—	—	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	49
ADRESH	A/D Resul	lt Register I	High Byte						106
ADRESL	A/D Resul	lt Register I	Low Byte						106
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	32
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	33
PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	35
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	40
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	49
PORTE	—	—	—	—	RE3	RE2	RE1	RE0	60
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	40
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	49
TRISE					TRISE3	TRISE2	TRISE1	TRISE0	60

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

10.1.4 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must write the Least and Most Significant address bits to the EEADR and EEADRH registers, set the EEPGD control bit of the EECON1 register, and then set control bit RD. Once the read control bit is set, the program memory Flash controller will use the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDAT and EEDATH registers; therefore, it can be read as two bytes in the following instructions.

EEDAT and EEDATH registers will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.
 - If the WR bit is set when EEPGD = 1, it will be immediately reset to '0' and no operation will take place.

EXAMPLE 10-3: FLASH PROGRAM READ

	BANKSEL	EEADR	;
	MOVLW	MS_PROG_EE_ADDR	;
	MOVWF	EEADRH	;MS Byte of Program Address to read
	MOVLW	LS_PROG_EE_ADDR	;
	MOVWF	EEADR	;LS Byte of Program Address to read
	BANKSEL	EECON1	;
	BSF	EECON1, EEPGD	;Point to PROGRAM memory
pa eo	BSF	EECON1, RD	;EE Read
Required Sequence	NOP		;First instruction after BSF EECON1,RD executes normally
	NOP		;Any instructions here are ignored as program
			;memory is read in second cycle after BSF EECON1,RD
;			
	BANKSEL		;
	MOVF	EEDAT, W	;W = LS Byte of Program Memory
	MOVWF	LOWPMBYTE	i
	MOVF	EEDATH, W	;W = MS Byte of Program EEDAT
	MOVWF	HIGHPMBYTE	;
	BCF	STATUS, RP1	;Bank 0

An example of the complete 8-word write sequence is shown in Example 10-4. The initial address is loaded into the EEADRH and EEADR register pair; the eight words of data are loaded using indirect addressing.

EXAMPLE 10-4: WRITING TO FLASH PROGRAM MEMORY

```
*****
       ; This write routine assumes the following:
           A valid starting address (the least significant bits = '000')
       ;
           is loaded in ADDRH:ADDRL
       ;
       ;
           ADDRH, ADDRL and DATADDR are all located in data memory
       ;
      BANKSEL EEADRH
      MOVF
              ADDRH,W
                        ; Load initial address
      MOVWF
              EEADRH
      MOVF
              ADDRL,W
      MOVWF
              EEADR
              DATAADDR,W ; Load initial data address
      MOVF
      MOVWF FSR
LOOP
      MOVF
             INDF,W
                       ; Load first data byte into lower
                       ;
      MOVWF EEDATA
                       ; Next byte
      INCE
              FSR,F
                       ; Load second data byte into upper
      MOVF
              INDF,W
      MOVWF
              EEDATH
      INCF
              FSR,F
      BANKSEL EECON1
              EECON1, EEPGD ; Point to program memory
      BSF
              EECON1,WREN ; Enable writes
      BSF
      BCF
              INTCON,GIE ; Disable interrupts (if using)
      BTFSC INTCON, GIE ; See AN576
      GOTO
              $-2
      Required Sequence
       ;
      MOVLW
              55h
                         ; Start of required write sequence:
              EECON2
      MOVWF
                        ; Write 55h
            0AAh
      MOVLW
                        ;
      MOVWF EECON2
                       ; Write OAAh
      BSF
              EECON1,WR ; Set WR bit to begin write
      NOP
                         ; Required to transfer data to the buffer
      NOP
                         ; registers
      BCF
              EECON1,WREN ; Disable writes
      BSF
              INTCON,GIE ; Enable interrupts (comment out if not using interrupts)
      BANKSEL EEADR
              EEADR, W
      MOVF
                        ; Increment address
      INCF
              EEADR, F
                        ; Indicates when sixteen words have been programmed
      ANDLW
              0x0F
      SUBLW
                        ; 0x0F = 16 words
              0x0F
                         ; 0x0B = 12 words (PIC16F884/883/882 only)
                        ; 0x07 = 8 words
                           0x03 = 4 \text{ words}(\text{PIC16F884}/883/882 \text{ only})
                        ;
      BTFSS
              STATUS,Z
                        ; Exit on a match,
      GOTO
              LOOP
                         ; Continue if more data needs to be written
```

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	122
—		DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	123
Capture/Compare/PWM Register 1 Low Byte (LSB)								124
Capture/Co	ompare/PW	/M Register	1 High Byte	e (MSB)				124
Capture/Compare/PWM Register 2 Low Byte (LSB)								124
Capture/Compare/PWM Register 2 High Byte (MSB)							124	
MC1OUT	MC2OUT	C1RSEL	C2RSEL	_	_	T1GSS	C2SYNC	92
GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	32
—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	33
OSFIE	C2IE	C1IE	EEIE	BCLIE	ULPWUIE	—	CCP2IE	34
—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	35
OSFIF	C2IF	C1IF	EEIF	BCLIF	ULPWUIF	—	CCP2IF	36
T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	81
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								78
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								78
TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	54
	P1M1 — apture/Co apture/Co apture/Co apture/Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co apture/Co Co AC1OUT GIE — OSFIE — OSFIF T1GINV lolding Re	P1M1 P1M0 — — — apture/Compare/PW apture/Compare/PW apture/Compare/PW apture/Compare/PW AC1OUT MC2OUT GIE PEIE — ADIE OSFIE C2IE — ADIF OSFIF C2IF TIGINV TMR1GE lolding Register for th	P1M1 P1M0 DC1B1 — — DC2B1 capture/Compare/PWM Register capture/Compare/PWM Register GIE PEIE T0IE — ADIE RCIE OSFIE C2IE C1IE — ADIF RCIF OSFIF C2IF C1IF T1GINV TMR1GE T1CKPS1 Iolding Register for the Least Sig colding Register for the Most Sig	P1M1 P1M0 DC1B1 DC1B0 — — DC2B1 DC2B0 capture/Compare/PWM Register 1 Low Byte capture/Compare/PWM Register 1 High Byte capture/Compare/PWM Register 2 Low Byte OSFIE C2IE C1RSEL C2RSEL OSFIE C2IE C1IE EEIE — ADIF RCIF TXIF OSFIF <td< td=""><td>P1M1 P1M0 DC1B1 DC1B0 CCP1M3 — — DC2B1 DC2B0 CCP2M3 capture/Compare/PWM Register 1 Low Byte (LSB) capture/Compare/PWM Register 1 High Byte (MSB) capture/Compare/PWM Register 2 Low Byte (LSB) capture/Compare/PWM Register 2 Low Byte (LSB) capture/Compare/PWM Register 2 High Byte (MSB) capture/Compare/PWM Register 2 High Byte (MSB) C1OUT MC2OUT C1RSEL C2RSEL GIE PEIE T0IE INTE GIE PEIE T0IE INTE OSFIE C2IE C1IE EEIE BOLIE C1IE MDIF RCIF TXIF SSPIF OSFIF C2IF C1IF EEIF BOLIF T10KPS0 T10SEN T10SCEN Iolding Register for the Least Significant Byte of the 16-bi</td><td>P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 — — DC2B1 DC2B0 CCP2M3 CCP2M2 capture/Compare/PWM Register 1 Low Byte (LSB) capture/Compare/PWM Register 2 High Byte (MSB) AC10UT MC2OUT C1RSEL C2RSEL — — — GIE PEIE T0IE INTE RBIE T0IF GIE PEIE T0IE INTE RBIE T0IF — ADIE RCIE TXIE SSPIE CCP1IE OSFIE C2IE C1IE EEIE BCLIE ULPWUIE — ADIF RCIF TXIF SSPIF CCP1IF OSFIF C2IF C1IF EEIF BCLIF ULPWUIF T1GINV TMR1GE T1CKPS1 T1OSCEN T1SYNC Iolding Register for the Least Significant Byte of the 16-bit TMR1 Register Iolding Register for the Most Significant Byte of the 16-bit TMR1 Register</td><td>P1M1P1M0DC1B1DC1B0CCP1M3CCP1M2CCP1M1——DC2B1DC2B0CCP2M3CCP2M2CCP2M1capture/Compare/PWM Register 1 Low Byte (LSB)capture/Compare/PWM Register 1 High Byte (MSB)capture/Compare/PWM Register 2 Low Byte (LSB)capture/Compare/PWM Register 2 Low Byte (LSB)capture/Compare/PWM Register 2 High Byte (MSB)Compare/PWM Register 2 Low Byte (LSB)Compare/PWM Register 2 Low Byte (LSB)Compare/PWM Register 2 Low Byte (MSB)MC10UTMC2OUTC1RSELC2RSEL———TIGSGIEPEIETOIEINTE—ADIERCIETXIESSPIECCP1IETMR2IEOSFIEC2IEC1IEEEIEBCLIEULPWUIF—TIGINVTMR1GETI</td><td>P1M1P1M0DC1B1DC1B0CCP1M3CCP1M2CCP1M1CCP1M0——DC2B1DC2B0CCP2M3CCP2M2CCP2M1CCP2M0capture/Compare/PWM Register 1 Low Byte (LSB)capture/Compare/PWM Register 1 High Byte (MSB)capture/Compare/PWM Register 1 High Byte (MSB)capture/Compare/PWM Register 2 Low Byte (LSB)capture/Compare/PWM Register 2 High Byte (MSB)Compare/PWM Register 2 High Byte (MSB)Compare/PWM Register 2 High Byte (MSB)COMPARET1GSSC2SYNCGIEPEIET0IEINTERBIET0IFINTFRBIF—ADIERCIETXIESSPIECCP1IETMR2IETMR1IEOSFIEC2IEC1IFEEIEBCLIEULPWUIE—CCP2IE—ADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IFOSFIFC2IFC1IFEEIFBCLIFULPWUIF—CCP2IFT1GINVTMR1GET1CKPS1T1CKPS0T1OSCENTISYNCTMR1CSTMR1ONlolding Register for the Least Significant Byte of the 16-bit TMR1 Register</td></td<>	P1M1 P1M0 DC1B1 DC1B0 CCP1M3 — — DC2B1 DC2B0 CCP2M3 capture/Compare/PWM Register 1 Low Byte (LSB) capture/Compare/PWM Register 1 High Byte (MSB) capture/Compare/PWM Register 2 Low Byte (LSB) capture/Compare/PWM Register 2 Low Byte (LSB) capture/Compare/PWM Register 2 High Byte (MSB) capture/Compare/PWM Register 2 High Byte (MSB) C1OUT MC2OUT C1RSEL C2RSEL GIE PEIE T0IE INTE GIE PEIE T0IE INTE OSFIE C2IE C1IE EEIE BOLIE C1IE MDIF RCIF TXIF SSPIF OSFIF C2IF C1IF EEIF BOLIF T10KPS0 T10SEN T10SCEN Iolding Register for the Least Significant Byte of the 16-bi	P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 — — DC2B1 DC2B0 CCP2M3 CCP2M2 capture/Compare/PWM Register 1 Low Byte (LSB) capture/Compare/PWM Register 2 High Byte (MSB) AC10UT MC2OUT C1RSEL C2RSEL — — — GIE PEIE T0IE INTE RBIE T0IF GIE PEIE T0IE INTE RBIE T0IF — ADIE RCIE TXIE SSPIE CCP1IE OSFIE C2IE C1IE EEIE BCLIE ULPWUIE — ADIF RCIF TXIF SSPIF CCP1IF OSFIF C2IF C1IF EEIF BCLIF ULPWUIF T1GINV TMR1GE T1CKPS1 T1OSCEN T1SYNC Iolding Register for the Least Significant Byte of the 16-bit TMR1 Register Iolding Register for the Most Significant Byte of the 16-bit TMR1 Register	P1M1P1M0DC1B1DC1B0CCP1M3CCP1M2CCP1M1——DC2B1DC2B0CCP2M3CCP2M2CCP2M1capture/Compare/PWM Register 1 Low Byte (LSB)capture/Compare/PWM Register 1 High Byte (MSB)capture/Compare/PWM Register 2 Low Byte (LSB)capture/Compare/PWM Register 2 Low Byte (LSB)capture/Compare/PWM Register 2 High Byte (MSB)Compare/PWM Register 2 Low Byte (LSB)Compare/PWM Register 2 Low Byte (LSB)Compare/PWM Register 2 Low Byte (MSB)MC10UTMC2OUTC1RSELC2RSEL———TIGSGIEPEIETOIEINTE—ADIERCIETXIESSPIECCP1IETMR2IEOSFIEC2IEC1IEEEIEBCLIEULPWUIF—TIGINVTMR1GETI	P1M1P1M0DC1B1DC1B0CCP1M3CCP1M2CCP1M1CCP1M0——DC2B1DC2B0CCP2M3CCP2M2CCP2M1CCP2M0capture/Compare/PWM Register 1 Low Byte (LSB)capture/Compare/PWM Register 1 High Byte (MSB)capture/Compare/PWM Register 1 High Byte (MSB)capture/Compare/PWM Register 2 Low Byte (LSB)capture/Compare/PWM Register 2 High Byte (MSB)Compare/PWM Register 2 High Byte (MSB)Compare/PWM Register 2 High Byte (MSB)COMPARET1GSSC2SYNCGIEPEIET0IEINTERBIET0IFINTFRBIF—ADIERCIETXIESSPIECCP1IETMR2IETMR1IEOSFIEC2IEC1IFEEIEBCLIEULPWUIE—CCP2IE—ADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IFOSFIFC2IFC1IFEEIFBCLIFULPWUIF—CCP2IFT1GINVTMR1GET1CKPS1T1CKPS0T1OSCENTISYNCTMR1CSTMR1ONlolding Register for the Least Significant Byte of the 16-bit TMR1 Register

TABLE 11-6: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Legend: – = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture and Compare.

TABLE 11-7: R	REGISTERS ASSOCIATED WITH PWM AND TIMER2
---------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	122
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	123
ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	140
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	32
PR2	Timer2 Period Register							83	
PSTRCON	—	—	_	STRSYNC	STRD	STRC	STRB	STRA	144
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	143
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	84
TMR2	Timer2 Mod	dule Registe	er						83
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	49
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	54
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	58

Legend: – = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate			Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_		_	_		_	_	—	_	_
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	_	_	_
57.6k	—	_	_	57.60k	0.00	7	57.60k	0.00	2	_	_	_
115.2k	—	—	—	_	—	—	_	—	—	—	—	—

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	—	—	—
9600	—	_	—	9600	0.00	5	—	_	_	—	_	_
10417	10417	0.00	5	—	_	_	10417	0.00	2	—	—	_
19.2k	—	_	_	19.20k	0.00	2	—	_	_	_	_	_
57.6k	—	—	—	57.60k	0.00	0	—	_	—	—	—	—
115.2k	—	_	_	_	_	—	_	_	_	—	_	—

		SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fosc = 20.000 MHz Fosc = 18.432 MI			2 MHz	Fosc	= 11.059	92 MHz	Fosc = 8.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual % Rate Error		SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—		_		_	_	_	—	_	_	—	—
1200	—	—	—	—		—	—	—	—	—	—	—
2400	—	_	_	—	_	_	—	_	_	2404	0.16	207
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	_	—	_

REGISTER 13-1: SSPSTAT: SSP STATUS REGISTER

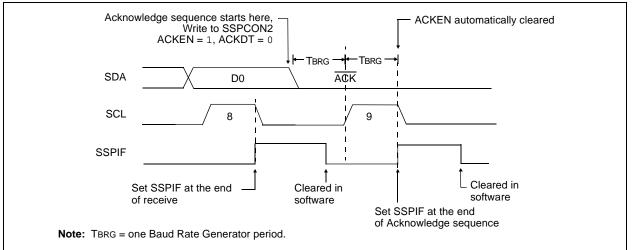
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE	D/A	Р	S	R/W	UA	BF				
bit 7						•	bit (
Legend: R = Readable	hit	W = Writable bit		II – Unimplomo	ented bit, read as	<u>ن</u> ٥'					
-n = Value at P				•	-						
	at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown										
bit 7	SMP: Sample	bit									
	SPI Master mo										
	•	sampled at end of sampled at middle	•								
	SPI Slave mod										
		cleared when SPI	is used in Slave	e mode							
	$\frac{\ln I^2 C \text{ Master } c}{1 = \text{Slew rate}}$	o <u>r Slave mode:</u> control disabled fo	r standard sne	ed mode (100 kH:	z and 1 MHz)						
		control enabled fo	•	,	- 4.14 - 11112)						
bit 6	CKE: SPI Cloc	k Edge Select bit									
	$\frac{CKP = 0}{1 Data transmiss}$	nitted on falling ed	las of SCK								
		nitted on rising ed									
	<u>CKP = 1:</u>										
	 Data transmitted on rising edge of SCK Data transmitted on falling edge of SCK 										
bit 5	D/A: Data/Address bit (I ² C mode only)										
	1 = Indicates th	nat the last byte re	ceived or trans								
	0 = Indicates that the last byte received or transmitted was address										
bit 4	P: Stop bit	This hit is cleared	d when the MS	SP modulo is disa	bled SSPEN is	cleared)					
(I ² C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset)						cicarcu.)					
	0 = Stop bit wa	s not detected las	t		,						
bit 3	S: Start bit										
		r. This bit is cleared nat a Start bit has l				cleared.)					
		is not detected las			on Resel)						
bit 2	R/W : Read/Wr	ite bit information	(I ² C mode only))							
	This bit holds the	s bit holds the R/ \overline{W} bit information following the last address match. This bit is only valid from the address match to									
		the next Start bit, Stop bit, or not ACK bit. <u>In I²C Slave mode:</u>									
	1 = Read	1 = Read									
		0 = Write In I ² C Master mode:									
	1 = Transmit	L = Transmit is in progress									
		is not in progress	SEN, PEN, RC	EN. or ACKEN w	ill indicate if the N	ISSP is in Idle mod	de.				
bit 1	-										
	1 = Indicates the	 JA: Update Address bit (10-bit I²C mode only) I = Indicates that the user needs to update the address in the SSPADD register 									
h it 0		bes not need to be	updated								
bit 0	BF: Buffer Full Receive (SPL a	Status bit ind I ² C modes):									
	1 = Receive co	mplete, SSPBUF									
		ot complete, SSPB	UF is empty								
	<u>1 ransmit (I²C r</u> 1 = Data transi	<u>Transmit (I²C mode only):</u> 1 = Data transmit in progress (does not include the \overline{ACK} and Stop bits), SSPBUF is full									
	0 = Data transi										

13.4.10 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2 register). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge Data bit (ACKDT) is presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 13-17).

13.4.10.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).


13.4.11 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2 register). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high, and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT register) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 13-18).

13.4.11.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 13-17: ACKNOWLEDGE SEQUENCE WAVEFORM

REGISTER 14-2: CONFIG2: CONFIGURATION WORD REGISTER 2

		F	T	Γ							
			_		WRT<	:1:0>	BOR4V				
		bit 13				_	bit 8				
_	—	_	_	_	_	—	_				
bit 7							bit 0				
]				
bit 13-11	Unimplemen	ted: Read as	1'								
bit 10-9	WRT<1:0>: F	lash Program	Memory Self V	Vrite Enable b	its						
	<u>PIC16F883/PIC16F884</u>										
00 = 0000h to 07FFh write protected, 0800h to 0FFFh may be modified by EEC											
			Fh write protected, 0400h to 0FFFh may be modified by EECON control Fh write protected, 0100h to 0FFFh may be modified by EECON control								
	10 = 0000h to 11 = Write pr		protected, 010	Oh to OFFFh n	hay be modified	by EECON con	itrol				
	PIC16F886/P										
			protected 100	0h to 1FFFh r	nav be modified	by FECON cor	otrol				
			0FFFh write protected, 1000h to 1FFFh may be modified by EECON control 07FFh write protected, 0800h to 1FFFh may be modified by EECON control								
					nay be modified						
	11 = Write pr	otection off									
	<u>PIC16F882</u>										
		00 = 0000h to 03FFh write protected, 0400h to 07FFh may be modified by EECON control 01 = 0000h to 00FFh write protected, 0100h to 07FFh may be modified by EECON control									
	11 = Write pr		protected, 010	UN TO UTEEN II	hay be modified i	by EECON con	itroi				
bit 8	BOR4V: Brow	vn-out Reset S	election bit								
	0 = Brown-ou	ut Reset set to	2.1V								
	1 = Brown-ou	ut Reset set to	4.0V								
bit 7-0	Unimplemented: Read as '1'										

15.2 Instruction Descriptions

ADDLW	Add literal and W					
Syntax:	[label] ADDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.					

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f						
Syntax:	[label] ADDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) + (f) \rightarrow (destination)						
Status Affected:	C, DC, Z						
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W			
Syntax:	[label] ANDLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W reg- ister.			

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

17.5 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended)

DC CHARACTERISTICS		- I		unless otherwise stated) $f \le TA \le +85^{\circ}C$ for industrial $f \le TA \le +125^{\circ}C$ for extended			
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O Port:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			Vss	—	0.15 Vdd	V	$2.0V \le VDD \le 4.5V$
D031		with Schmitt Trigger buf- fer	Vss	_	0.2 Vdd	V	$2.0V \leq V\text{dd} \leq 5.5V$
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	Vss	_	0.2 Vdd	V	
D033		OSC1 (XT and LP modes)	Vss	—	0.3	V	
D033A		OSC1 (HS mode)	Vss	_	0.3 Vdd	V	
	Vih	Input High Voltage					
_		I/O ports:					
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer		—	Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$
D042		MCLR	0.8 Vdd	_	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	
D043B		OSC1 (RC mode)	0.9 Vdd	—	Vdd	V	(Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μΑ	$VSS \leq VPIN \leq VDD$
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration
D070*	IPUR	PORTB Weak Pull-up Cur- rent	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁵⁾					
D080		I/O ports	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)
D090	Vон	Output High Voltage ⁽⁵⁾ I/O ports	Vdd – 0.7	_	_	V	Іон = -3.0 mA, VDD = 4.5V (Ind.)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

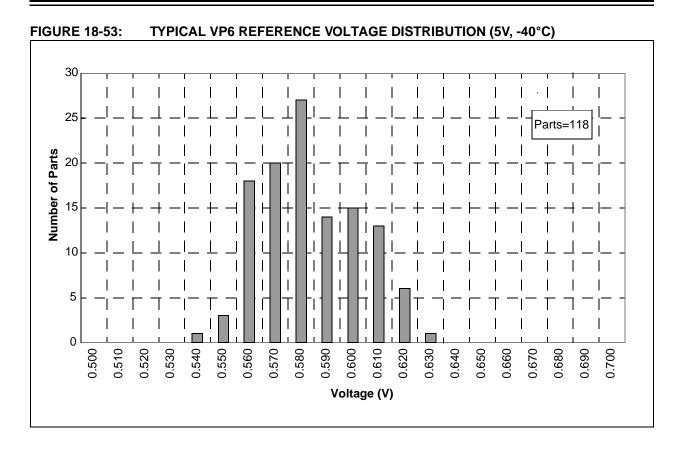
2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 10.3.1 "Using the Data EEPROM" for additional information.

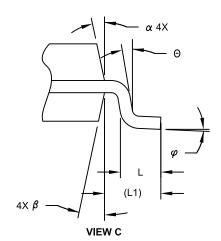
5: Including OSC2 in CLKOUT mode.

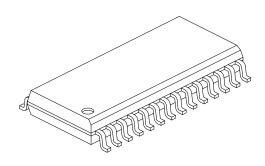
Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
101*	TLOW Clock low time		100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
90*	TSU:STA	Start condition	100 kHz mode	4.7	_	μS	Only relevant for
		setup time	400 kHz mode	0.6	_	μS	Repeated Start condition
91*	THD:STA	Start condition hold	100 kHz mode	4.0	_	μS	After this period the first
		time	400 kHz mode	0.6	—	μS	clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107*	TSU:DAT	Data input setup	100 kHz mode	250		ns	(Note 2)
		time	400 kHz mode	100	_	ns	
92*	Tsu:sto	Stop condition setup time	100 kHz mode	4.7		μS	-
			400 kHz mode	0.6	—	μS	
109* TAA	Output valid from	100 kHz mode	—	3500	ns	(Note 1)	
		clock	400 kHz mode		—	ns	
110* TBUF	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission can start
	Св	Bus capacitive loadir	—	400	pF		


TABLE 17-16: I²C[™] BUS DATA REQUIREMENTS

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.


2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.


*

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Number of Pins	И		28	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E		10.30 BSC	
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25 - 0.75		
Foot Length	L	0.40 - 1.27		
Footprint	L1	1.40 REF		
Lead Angle	O	0°	-	-
Foot Angle	φ	0° - 8°		
Lead Thickness	С	0.18 - 0.33		
Lead Width	b	0.31 - 0.51		
Mold Draft Angle Top	α	5° – 15°		
Mold Draft Angle Bottom	β	5° - 15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC16F88X Family of devices.

B.1 PIC16F87X to PIC16F88X

TABLE B-1: FE/	ATURE COMPARISON
----------------	------------------

Feature	PIC16F87X	PIC16F88X	
Max Operating Speed	20 MHz	20 MHz	
Max Program Memory (Words)	8192	8192	
SRAM (bytes)	368	368	
A/D Resolution	10-bit	10-bit	
Data EEPROM (Bytes)	256	256	
Timers (8/16-bit)	2/1	2/1	
Oscillator Modes	4	8	
Brown-out Reset	Y	Y (2.1V/4V)	
Software Control Option of WDT/BOR	Ν	Y	
Internal Pull-ups	RB<7:4>	RB<7:0>, MCLR	
Interrupt-on-change	RB<7:4>	RB<7:0>	
Comparator	2	2	
References	CVREF	CVREF and VP6	
ECCP/CCP	0/2	1/1	
Ultra Low-Power Wake-Up	Ν	Y	
Extended WDT	N	Y	
INTOSC Frequencies	N	32 kHz-8 MHz	
Clock Switching	N	Y	
MSSP	Standard	w/Slave Address Mask	
USART	AUSART	EUSART	
ADC Channels	8	14	

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.