Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 20MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 24 | | Program Memory Size | 7KB (4K x 14) | | Program Memory Type | FLASH | | EEPROM Size | 256 x 8 | | RAM Size | 256 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V | | Data Converters | A/D 11x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-VQFN Exposed Pad | | Supplier Device Package | 28-QFN (6x6) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16f883-e-ml | **FIGURE 3-10: BLOCK DIAGRAM OF RB<7:4>** Analog⁽¹⁾ Input Mode VDD Data Bus D Q Weak WR Q **WPUB** RBPU **CCP1OUT** Enable RD WPUB CCP1OUT D Q WR CK Q PORTB I/O Pin D Q WR Vss Q **TRISB** RD Analog⁽¹⁾ **TRISB** Input Mode RDPORTB D Q HCSP™(2) Q D WR Q IOCB ΕN -Q3 RD D IOCB ΕN Interrupt-on-Change **RD PORTB** To Timer1 T1G(3) To A/D Converter To ICSPCLK (RB6) and ICSPDAT (RB7) Available on PIC16F882/PIC16F883/PIC16F886 only. Note 1: ANSELH determines Analog Input mode. 2: Applies to RB<7:6> pins only). Applies to RB5 pin only. 3: TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 001111117 | 0 | 0.0 | 7.0000. | , | | - | | | |---|-----------|--------|--------|---------|-----------|--------|--------|--------|------------------| | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register on Page | | ANSELH | _ | _ | ANS13 | ANS12 | ANS11 | ANS10 | ANS9 | ANS8 | 49 | | CCP1CON | P1M1 | P1M0 | DC1B1 | DC1B0 | CCP1M3 | CCP1M2 | CCP1M1 | CCP1M0 | 122 | | CM2CON1 | MC1OUT | MC2OUT | C1RSEL | C2RSEL | _ | _ | T1GSS | C2SYNC | 92 | | IOCB | IOCB7 | IOCB6 | IOCB5 | IOCB4 | IOCB3 | IOCB2 | IOCB1 | IOCB0 | 50 | | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 32 | | OPTION_REG | RBPU | INTEDG | T0CS | T0SE | PSA | PS2 | PS1 | PS0 | 31 | | PORTB | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | 49 | | TRISB | TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 | 49 | | WPUB | WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 | 50 | **Legend:** x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTB. ## 4.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR) ### 4.1 Overview The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the oscillator module. Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include: - Selectable system clock source between external or internal via software. - Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution. - Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator. The oscillator module can be configured in one of eight clock modes. - 1. EC External clock with I/O on OSC2/CLKOUT. - 2. LP 32 kHz Low-Power Crystal mode. - XT Medium Gain Crystal or Ceramic Resonator Oscillator mode. - HS High Gain Crystal or Ceramic Resonator mode. - 5. RC External Resistor-Capacitor (RC) with Fosc/4 output on OSC2/CLKOUT. - RCIO External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT. - INTOSC Internal oscillator with Fosc/4 output on OSC2 and I/O on OSC1/CLKIN. - 8. INTOSCIO Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT. Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word Register 1 (CONFIG1). The internal clock can be generated from two internal oscillators. The HFINTOSC is a calibrated high-frequency oscillator. The LFINTOSC is an uncalibrated low-frequency oscillator. FIGURE 4-1: SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM ### 8.5 Operation During Sleep I agand The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in the Section 17.0 "Electrical Specifications". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register. A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE2 register and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine. ### 8.6 Effects of a Reset A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their Off states. ### **REGISTER DEFINITIONS: COMPARATOR C1** #### REGISTER 8-1: CM1CON0: COMPARATOR C1 CONTROL REGISTER 0 | R/W-0 | 0 R-0 R/W-0 R/W-0 | | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-------------------------|--|-------|-----|-------|-------|-------| | C1ON | C1ON C1OUT C1OE C1POL - | | _ | C1R | C1CH1 | C1CH0 | | | bit 7 | | | | | | | bit 0 | | Legena. | | | | | |---------------------|--------------------------|-----------------------|--------------------|--| | R = Readable bit | W = Writable bit | U = Unimplemented bit | , read as '0' | | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | | | | | | | | bit 7 C10N : | Comparator C1 Enable bit | | | | | bit 7 | C10N: Comparator C1 Enable bit | |----------------|---| | | 1 = Comparator C1 is enabled | | | 0 = Comparator C1 is disabled | | bit 6 | C10UT: Comparator C1 Output bit | | | If C1POL = 1 (inverted polarity): | | | C1OUT = 0 when C1VIN+ > C1VIN- | | | C1OUT = 1 when C1Vin+ < C1Vin- | | | If C1POL = 0 (non-inverted polarity):
C1OUT = 1 when C1VIN+ > C1VIN- | | | C1OUT = 0 when C1VIN+ < C1VIN- | | bit 5 | C10E: Comparator C1 Output Enable bit | | Dit 3 | 1 = C1OUT is present on the C1OUT pin ⁽¹⁾ | | | 0 = C1OUT is internal only | | bit 4 | C1POL: Comparator C1 Output Polarity Select bit | | DIL 4 | | | | 1 - C10LIT logic is inverted | | | 1 = C1OUT logic is inverted 0 = C1OUT logic is not inverted | | hit 3 | 0 = C1OUT logic is not inverted | | bit 3 | 0 = C1OUT logic is not inverted Unimplemented: Read as '0' | | bit 3
bit 2 | 0 = C1OUT logic is not inverted Unimplemented: Read as '0' C1R: Comparator C1 Reference Select bit (non-inverting input) | | | 0 = C1OUT logic is not inverted Unimplemented: Read as '0' C1R: Comparator C1 Reference Select bit (non-inverting input) 1 = C1VIN+ connects to C1VREF output | | bit 2 | 0 = C1OUT logic is not inverted Unimplemented: Read as '0' C1R: Comparator C1 Reference Select bit (non-inverting input) 1 = C1VIN+ connects to C1VREF output 0 = C1VIN+ connects to C1IN+ pin | | | 0 = C1OUT logic is not inverted Unimplemented: Read as '0' C1R: Comparator C1 Reference Select bit (non-inverting input) 1 = C1VIN+ connects to C1VREF output | | bit 2 | 0 = C1OUT logic is not inverted Unimplemented: Read as '0' C1R: Comparator C1 Reference Select bit (non-inverting input) 1 = C1VIN+ connects to C1VREF output 0 = C1VIN+ connects to C1IN+ pin C1CH<1:0>: Comparator C1 Channel Select bit 00 = C12IN0- pin of C1 connects to C1VIN- | | bit 2 | 0 = C1OUT logic is not inverted Unimplemented: Read as '0' C1R: Comparator C1 Reference Select bit (non-inverting input) 1 = C1VIN+ connects to C1VREF output 0 = C1VIN+ connects to C1IN+ pin C1CH<1:0>: Comparator C1 Channel Select bit 00 = C12IN0- pin of C1 connects to C1VIN- 01 = C12IN1- pin of C1 connects to C1VIN- | | bit 2 | 0 = C1OUT logic is not inverted Unimplemented: Read as '0' C1R: Comparator C1 Reference Select bit (non-inverting input) 1 = C1VIN+ connects to C1VREF output 0 = C1VIN+ connects to C1IN+ pin C1CH<1:0>: Comparator C1 Channel Select bit 00 = C12IN0- pin of C1 connects to C1VIN- | Note 1: Comparator output requires the following three conditions: C1OE = 1, C1ON = 1 and corresponding port TRIS bit = 0. ## 9.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH). The ADC voltage reference is software selectable to be either internally generated or externally supplied. The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep. Figure 9-1 shows the block diagram of the ADC. FIGURE 9-1: ADC BLOCK DIAGRAM ### REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1 | R/W-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | |-------|-----|-------|-------|-----|-----|-----|-------| | ADFM | _ | VCFG1 | VCFG0 | _ | _ | _ | _ | | bit 7 | | | | | | | bit 0 | Legend: bit 6 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 ADFM: A/D Conversion Result Format Select bit 1 = Right justified0 = Left justified Unimplemented: Read as '0' bit 5 VCFG1: Voltage Reference bit 1 = VREF- pin 0 = Vss bit 4 VCFG0: Voltage Reference bit 1 = VREF+ pin 0 = VDD bit 3-0 **Unimplemented:** Read as '0' ### 11.3 Capture Mode In Capture mode, the CCPRxH, CCPRxL register pair captures the 16-bit value of the TMR1 register when an event occurs on pin CCPx. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register: - · Every falling edge - · Every rising edge - · Every 4th rising edge - · Every 16th rising edge When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value (see Figure 11-1). #### 11.3.1 CCP PIN CONFIGURATION In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit. **Note:** If the CCPx pin is configured as an output, a write to the port can cause a capture condition. # FIGURE 11-1: CAPTURE MODE OPERATION BLOCK DIAGRAM ### 11.3.2 TIMER1 MODE SELECTION Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work. ### 11.3.3 SOFTWARE INTERRUPT When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode. #### 11.3.4 CCP PRESCALER There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter. Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler (see Example 11-1). ### EXAMPLE 11-1: CHANGING BETWEEN CAPTURE PRESCALERS | BANKSEI | CCP1CON | ;Set Bank bits to point | |---------|-------------|-------------------------| | | | ;to CCP1CON | | CLRF | CCP1CON | ;Turn CCP module off | | MOVLW | NEW_CAPT_PS | ;Load the W reg with | | | | ; the new prescaler | | | | ; move value and CCP ON | | MOVWF | CCP1CON | ;Load CCP1CON with this | | | | ; value | | | | | ### 11.4 Compare Mode In Compare mode, the 16-bit CCPRx register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCPx module may: - Toggle the CCPx output - · Set the CCPx output - · Clear the CCPx output - Generate a Special Event Trigger - Generate a Software Interrupt The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPx1CON register. All Compare modes can generate an interrupt. # FIGURE 11-2: COMPARE MODE OPERATION BLOCK DIAGRAM #### 11.4.1 CCP PIN CONFIGURATION The user must configure the CCPx pin as an output by clearing the associated TRIS bit. Note: Clearing the CCP1CON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch. #### 11.4.2 TIMER1 MODE SELECTION In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode. #### 11.4.3 SOFTWARE INTERRUPT MODE When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCP1CON register). #### 11.4.4 SPECIAL EVENT TRIGGER When Special Event Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following: - · Resets Timer1 - · Starts an ADC conversion if ADC is enabled The CCPx module does not assert control of the CCPx pin in this mode (see the CCPxCON register). The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1. - Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMRxIF of the PIR1 register. - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring. #### 11.6.3 START-UP CONSIDERATIONS When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. Note: When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the Off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s). The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits. The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins. ### REGISTER 11-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER | R/W-0 | V-0 R/W-0 R/W-0 | | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | |---------|------------------------------------|--|--------|--------|--------|--------|-------| | ECCPASE | CCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSS | | PSSAC1 | PSSAC0 | PSSBD1 | PSSBD0 | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating bit 6-4 ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits 000 = Auto-Shutdown is disabled 001 = Comparator C1 output high 010 = Comparator C2 output high⁽¹⁾ 011 = Either Comparators output is high 100 = VIL on INT pin 101 = VIL on INT pin or Comparator C1 output high 110 = VIL on INT pin or Comparator C2 output high 111 =VIL on INT pin or either Comparators output is high bit 3-2 PSSACn: Pins P1A and P1C Shutdown State Control bits 00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 1x = Pins P1A and P1C tri-state bit 1-0 PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 1x = Pins P1B and P1D tri-state Note 1: If C2SYNC is enabled, the shutdown will be delayed by Timer1. - Note 1: The auto-shutdown condition is a levelbased signal, not an edge-based signal. As long as the level is present, the autoshutdown will persist. - 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists. - 3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period. ### 12.1.2.8 Asynchronous Reception Setup: - Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)"). - Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation. - If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register. - 4. If 9-bit reception is desired, set the RX9 bit. - 5. Enable reception by setting the CREN bit. - The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set. - Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit. - Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. - If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit. ### 12.1.2.9 9-bit Address Detection Mode Setup This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable: - Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)"). - Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation. - 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register. - 4. Enable 9-bit reception by setting the RX9 bit. - Enable address detection by setting the ADDEN bit. - 6. Enable reception by setting the CREN bit. - The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set. - 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set. - Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address. - 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit. - 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts. ### FIGURE 12-5: ASYNCHRONOUS RECEPTION TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED) | | | | | | SYNC | C = 0, BRGH | l = 1, BRC | 316 = 0 | | | | | |--------|------------------|------------|-----------------------------|----------------|------------|-----------------------------|----------------|----------------|-----------------------------|------------------|------------|-----------------------------| | BAUD | Fosc = 4.000 MHz | | | Fosc | = 3.686 | 4 MHz | Fos | c = 2.000 |) MHz | Fosc = 1.000 MHz | | | | DATE | Actual
Rate | %
Error | SPBRG
value
(decimal) | | 300 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 300 | 0.16 | 207 | | 1200 | 1202 | 0.16 | 207 | 1200 | 0.00 | 191 | 1202 | 0.16 | 103 | 1202 | 0.16 | 51 | | 2400 | 2404 | 0.16 | 103 | 2400 | 0.00 | 95 | 2404 | 0.16 | 51 | 2404 | 0.16 | 25 | | 9600 | 9615 | 0.16 | 25 | 9600 | 0.00 | 23 | 9615 | 0.16 | 12 | _ | _ | _ | | 10417 | 10417 | 0.00 | 23 | 10473 | 0.53 | 21 | 10417 | 0.00 | 11 | 10417 | 0.00 | 5 | | 19.2k | 19.23k | 0.16 | 12 | 19.2k | 0.00 | 11 | _ | _ | _ | _ | | _ | | 57.6k | _ | _ | _ | 57.60k | 0.00 | 3 | _ | _ | _ | _ | _ | _ | | 115.2k | _ | _ | _ | 115.2k | 0.00 | 1 | _ | _ | _ | _ | _ | _ | | | | | | | SYNC | C = 0, BRGH | l = 0, BRG | 316 = 1 | | | | | |--------|-------------------|------------|-----------------------------|-------------------|------------|-----------------------------|--------------------|------------|-----------------------------|------------------|------------|-----------------------------| | BAUD | Fosc = 20.000 MHz | | | Fosc = 18.432 MHz | | | Fosc = 11.0592 MHz | | | Fosc = 8.000 MHz | | | | RATE | Actual
Rate | %
Error | SPBRG
value
(decimal) | | 300 | 300.0 | -0.01 | 4166 | 300.0 | 0.00 | 3839 | 300.0 | 0.00 | 2303 | 299.9 | -0.02 | 1666 | | 1200 | 1200 | -0.03 | 1041 | 1200 | 0.00 | 959 | 1200 | 0.00 | 575 | 1199 | -0.08 | 416 | | 2400 | 2399 | -0.03 | 520 | 2400 | 0.00 | 479 | 2400 | 0.00 | 287 | 2404 | 0.16 | 207 | | 9600 | 9615 | 0.16 | 129 | 9600 | 0.00 | 119 | 9600 | 0.00 | 71 | 9615 | 0.16 | 51 | | 10417 | 10417 | 0.00 | 119 | 10378 | -0.37 | 110 | 10473 | 0.53 | 65 | 10417 | 0.00 | 47 | | 19.2k | 19.23k | 0.16 | 64 | 19.20k | 0.00 | 59 | 19.20k | 0.00 | 35 | 19.23k | 0.16 | 25 | | 57.6k | 56.818 | -1.36 | 21 | 57.60k | 0.00 | 19 | 57.60k | 0.00 | 11 | 55556 | -3.55 | 8 | | 115.2k | 113.636 | -1.36 | 10 | 115.2k | 0.00 | 9 | 115.2k | 0.00 | 5 | _ | _ | _ | | | | SYNC = 0, BRGH = 0, BRG16 = 1 | | | | | | | | | | | | | | |---------|------------------|-------------------------------|-----------------------------|-------------------|------------|-----------------------------|------------------|------------|-----------------------------|------------------|------------|-----------------------------|--|--|--| | BAUD | Fosc = 4.000 MHz | | | Fosc = 3.6864 MHz | | | Fosc = 2.000 MHz | | | Fosc = 1.000 MHz | | | | | | | RATE AC | Actual
Rate | %
Error | SPBRG
value
(decimal) | | | | | 300 | 300.1 | 0.04 | 832 | 300.0 | 0.00 | 767 | 299.8 | -0.108 | 416 | 300.5 | 0.16 | 207 | | | | | 1200 | 1202 | 0.16 | 207 | 1200 | 0.00 | 191 | 1202 | 0.16 | 103 | 1202 | 0.16 | 51 | | | | | 2400 | 2404 | 0.16 | 103 | 2400 | 0.00 | 95 | 2404 | 0.16 | 51 | 2404 | 0.16 | 25 | | | | | 9600 | 9615 | 0.16 | 25 | 9600 | 0.00 | 23 | 9615 | 0.16 | 12 | _ | _ | _ | | | | | 10417 | 10417 | 0.00 | 23 | 10473 | 0.53 | 21 | 10417 | 0.00 | 11 | 10417 | 0.00 | 5 | | | | | 19.2k | 19.23k | 0.16 | 12 | 19.20k | 0.00 | 11 | _ | _ | _ | _ | _ | _ | | | | | 57.6k | _ | _ | _ | 57.60k | 0.00 | 3 | _ | _ | _ | _ | _ | _ | | | | | 115.2k | _ | _ | _ | 115.2k | 0.00 | 1 | _ | _ | _ | _ | _ | _ | | | | ### 13.4.16.3 Bus Collision During a Stop Condition Bus collision occurs during a Stop condition if: - After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out. - b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high. The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 13-26). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 13-27). FIGURE 13-26: BUS COLLISION DURING A STOP CONDITION (CASE 1) FIGURE 13-27: BUS COLLISION DURING A STOP CONDITION (CASE 2) ### **TABLE 17-7: COMPARATOR SPECIFICATIONS** | | Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C | | | | | | | | | | | | | |--------------|--|---|---------|-----|-------|-----------|----|---------------|--|--|--|--|--| | Param
No. | Sym. | Characteristics Min. Typ† Max. Units Commen | | | | | | | | | | | | | CM01 | Vos | Input Offset Voltage | | _ | ± 5.0 | ± 10 | mV | (VDD - 1.5)/2 | | | | | | | CM02 | Vсм | Input Common Mode Voltage | | 0 | _ | VDD - 1.5 | V | | | | | | | | CM03* | CMRR | Common Mode Rejection Ratio | | +55 | _ | _ | dB | | | | | | | | CM04* | TRT | Response Time | Falling | _ | 150 | 600 | ns | (Note 1) | | | | | | | | | | Rising | _ | 200 | 1000 | ns | | | | | | | | CM05* | TMC2COV | Comparator Mode Change to Output Valid | | _ | _ | 10 | μS | | | | | | | ^{*} These parameters are characterized but not tested. ### TABLE 17-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS | Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ | | | | | | | | |--|------|------------------------------|------|------------------|----------------|------------|---| | Param
No. | Sym. | Characteristics | Min. | Тур† | Max. | Units | Comments | | CV01* | CLSB | Step Size ⁽²⁾ | | VDD/24
VDD/32 | | V
V | Low Range (VRR = 1)
High Range (VRR = 0) | | CV02* | CACC | Absolute Accuracy | _ | | ± 1/2
± 1/2 | LSb
LSb | Low Range (VRR = 1)
High Range (VRR = 0) | | CV03* | CR | Unit Resistor Value (R) | _ | 2k | - | Ω | | | CV04* | Сѕт | Settling Time ⁽¹⁾ | _ | _ | 10 | μS | | ^{*} These parameters are characterized but not tested. Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'. 2: See Section 8.10 "Comparator Voltage Reference" for more information. ### TABLE 17-9: VOLTAGE (VR) REFERENCE SPECIFICATIONS | VR Voltage Reference Specifications | | | Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ | | | | | |-------------------------------------|---------|-------------------|--|------|------|-------|----------| | Param
No. | Symbol | Characteristics | Min. | Тур. | Max. | Units | Comments | | VR01 | VROUT | VR voltage output | 0.5 | 0.6 | 0.7 | V | | | VR02* | TSTABLE | Settling Time | _ | 10 | 100* | μS | | ^{*} These parameters are characterized but not tested. [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV. [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 18-1: TYPICAL IDD vs. Fosc OVER VDD (EC MODE) FIGURE 18-2: MAXIMUM IDD vs. Fosc OVER VDD (EC MODE) ### 40-Lead Plastic Dual In-Line (P) - 600 mil Body [PDIP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | INCHES | | | | |----------------------------|------------------|----------|-----|-------|--| | D | Dimension Limits | | NOM | MAX | | | Number of Pins | er of Pins N 40 | | | | | | Pitch | е | .100 BSC | | | | | Top to Seating Plane | A | - | _ | .250 | | | Molded Package Thickness | A2 | .125 | _ | .195 | | | Base to Seating Plane | A1 | .015 | _ | _ | | | Shoulder to Shoulder Width | E | .590 | _ | .625 | | | Molded Package Width | E1 | .485 | _ | .580 | | | Overall Length | D | 1.980 | _ | 2.095 | | | Tip to Seating Plane | L | .115 | _ | .200 | | | Lead Thickness | С | .008 | _ | .015 | | | Upper Lead Width | b1 | .030 | _ | .070 | | | Lower Lead Width | b | .014 | _ | .023 | | | Overall Row Spacing § | eB | - | _ | .700 | | ### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic. - 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-016B ### 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-103C Sheet 1 of 2 ### 44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-076C Sheet 1 of 2 ### 44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | | |--------------------------|-------------|-----------|------|------|--| | Dimension Limits | | MIN | NOM | MAX | | | Number of Leads | N | 44 | | | | | Lead Pitch | е | 0.80 BSC | | | | | Overall Height | Α | - | - | 1.20 | | | Standoff | A1 | 0.05 | 1 | 0.15 | | | Molded Package Thickness | A2 | 0.95 | 1.00 | 1.05 | | | Overall Width | Е | 12.00 BSC | | | | | Molded Package Width | E1 | 10.00 BSC | | | | | Overall Length | D | 12.00 BSC | | | | | Molded Package Length | D1 | 10.00 BSC | | | | | Lead Width | b | 0.30 | 0.37 | 0.45 | | | Lead Thickness | С | 0.09 | - | 0.20 | | | Lead Length | L | 0.45 | 0.60 | 0.75 | | | Footprint | L1 | 1.00 REF | | | | | Foot Angle | θ | 0° | 3.5° | 7° | | ### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Exact shape of each corner is optional. - 3. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-076C Sheet 2 of 2