

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f883-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	File		File		File		File
	Address		Address		Address		Addres
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	WDTCON	105h	SRCON	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	CM1CON0	107h	BAUDCTL	187h
PORTD ⁽²⁾	08h	TRISD ⁽²⁾	88h	CM2CON0	108h	ANSEL	188h
PORTE	09h	TRISE	89h	CM2CON1	109h	ANSELH	189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved	18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved	18Fh
T1CON	10h	OSCTUNE	90h		110h	- Hoborrou	190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		112h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h	VRCON	97h		117h		197h
RCSTA	18h	TXSTA	98h		118h		198h
TXREG	19h	SPBRG	99h		119h		199h
RCREG	1Ah	SPBRGH	9Ah		11Ah		19Ah
CCPR2L	1Bh	PWM1CON	9Bh		11Bh		19Bh
CCPR2H	1Ch	ECCPAS	9Ch		11Ch		19Ch
CCP2CON	1Dh	PSTRCON	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADICON1	9Eh		11Fh		19Eh
ADOONO	20h	ADOONT	A0h		120h		1A0h
General Purpose	2011	General Purpose Registers	71011	General Purpose Registers	12011		
Registers		80 Bytes		80 Bytes			
96 Bytes			EFh		16Fh		1EFh
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h 1FFh
Bank 0	ı	Bank 1		Bank 2		Bank 3	
	ed data me physical re	emory locations, re gister.	ead as '0'.				

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains:

- the arithmetic status of the ALU
- · the Reset status
- the bank select bits for data memory (GPR and SFR)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as `000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see Section 15.0 "Instruction Set Summary"

Note 1:	The C and DC bits operate as a Borrow
	and Digit Borrow out bit, respectively, in
	subtraction.

REGISTER DEFINITIONS: STATUS

REGISTER 2-1: STATUS: STATUS REGISTER

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) C = Bank 0, 4 (00h - 1FFh)
1.1.0.5	0 = Bank 0, 1 (00h-FFh)
bit 6-5	RP<1:0>: Register Bank Select bits (used for direct addressing)
	00 = Bank 0 (00h-7Fh) 01 = Bank 1 (80h-FFh)
	10 = Bank 2 (100h-17Fh)
	11 = Bank 3 (180h-1FFh)
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction
	0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1: For	Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of th
	erand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order l

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

3.2.3 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D Converter (ADC), refer to the appropriate section in this data sheet.

3.2.3.1 RA0/AN0/ULPWU/C12IN0-

Figure 3-1 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a negative analog input to Comparator C1 or C2
- an analog input for the Ultra Low-Power Wake-up

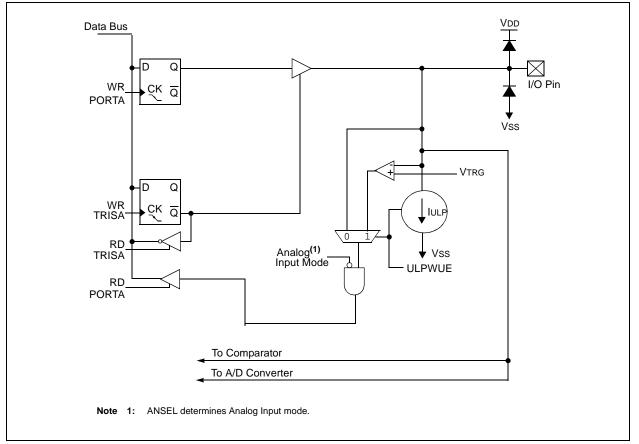
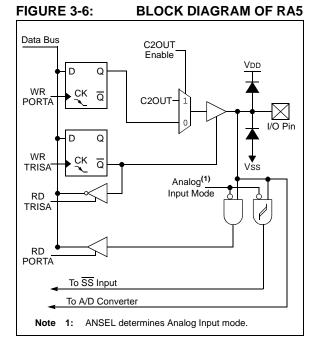
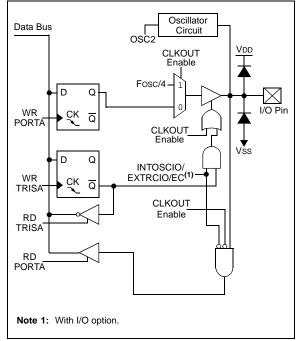



FIGURE 3-1: BLOCK DIAGRAM OF RA0

3.2.3.6 RA5/AN4/SS/C2OUT

Figure 3-6 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- · a slave select input
- a digital output from Comparator C2



3.2.3.7 RA6/OSC2/CLKOUT

Figure 3-7 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- a clock output

8.5 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in the **Section 17.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. Each comparator is turned off by clearing the CxON bit of the CMxCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE2 register

and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

8.6 Effects of a Reset

A device Reset forces the CMxCON0 and CM2CON1 registers to their Reset states. This forces both comparators and the voltage references to their Off states.

REGISTER DEFINITIONS: COMPARATOR C1

REGISTER 8-1: CM1CON0: COMPARATOR C1 CONTROL REGISTER 0

R/W-0	R-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C10N	C1OUT	C10E	C1POL	—	C1R	C1CH1	C1CH0
bit 7 bit 0							

Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	1 = Com	Comparator C1 Enable bit parator C1 is enabled parator C1 is disabled		
oit 6	<u>If C1POI</u> C1OUT : C1OUT : <u>If C1POI</u> C1OUT :	Comparator C1 Output bit <u>= 1 (inverted polarity):</u> = 0 when C1VIN+ > C1VIN- = 1 when C1VIN+ < C1VIN- <u>= 0 (non-inverted polarity):</u> = 1 when C1VIN+ > C1VIN- = 0 when C1VIN+ < C1VIN-		
oit 5	1 = C1O	Comparator C1 Output Enable UT is present on the C1OUT UT is internal only		
bit 4	1 = C1O	Comparator C1 Output Pola UT logic is inverted UT logic is not inverted	rity Select bit	
oit 3	Unimple	mented: Read as '0'		
bit 2	1 = C1V	mparator C1 Reference Sele N+ connects to C1VREF outp N+ connects to C1IN+ pin	· · · · ·	
bit 1-0	00 = C12 01 = C12 10 = C12	:0>: Comparator C1 Channe 2IN0- pin of C1 connects to C 2IN1- pin of C1 connects to C 2IN2- pin of C1 connects to C 2IN2- pin of C1 connects to C	C1 Vin- C1 Vin- C1 Vin-	

Note 1: Comparator output requires the following three conditions: C1OE = 1, C1ON = 1 and corresponding port TRIS bit = 0.

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
ADFM		VCFG1	VCFG0	—	—	—	—	
bit 7							bit 0	
r								
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	bit 7 ADFM: A/D Conversion Result Format Select bit 1 = Right justified 0 = Left justified							
bit 6	Unimplemen	ted: Read as '	0'					
bit 5	VCFG1: Volta	ge Reference	bit					
	1 = VREF- pin 0 = VSS							
bit 4	VCFG0: Volta	ge Reference	bit					
	1 = VREF+ pin 0 = VDD	1						
bit 3-0	Unimplemen	ted: Read as '	0'					

REGISTER 9-2: ADCON1: A/D CONTROL REGISTER 1

An example of the complete 8-word write sequence is shown in Example 10-4. The initial address is loaded into the EEADRH and EEADR register pair; the eight words of data are loaded using indirect addressing.

EXAMPLE 10-4: WRITING TO FLASH PROGRAM MEMORY

```
*****
       ; This write routine assumes the following:
           A valid starting address (the least significant bits = '000')
       ;
           is loaded in ADDRH:ADDRL
       ;
       ;
           ADDRH, ADDRL and DATADDR are all located in data memory
       ;
      BANKSEL EEADRH
      MOVF
              ADDRH,W
                        ; Load initial address
      MOVWF
              EEADRH
      MOVF
              ADDRL,W
      MOVWF
              EEADR
              DATAADDR,W ; Load initial data address
      MOVF
      MOVWF FSR
LOOP
      MOVF
             INDF,W
                       ; Load first data byte into lower
                       ;
      MOVWF EEDATA
                       ; Next byte
      INCE
              FSR,F
                       ; Load second data byte into upper
      MOVF
              INDF,W
      MOVWF
              EEDATH
      INCF
              FSR,F
      BANKSEL EECON1
              EECON1, EEPGD ; Point to program memory
      BSF
              EECON1,WREN ; Enable writes
      BSF
      BCF
              INTCON,GIE ; Disable interrupts (if using)
      BTFSC INTCON, GIE ; See AN576
      GOTO
              $-2
      Required Sequence
       ;
      MOVLW
              55h
                         ; Start of required write sequence:
              EECON2
      MOVWF
                        ; Write 55h
            0AAh
      MOVLW
                        ;
      MOVWF EECON2
                       ; Write OAAh
      BSF
              EECON1,WR ; Set WR bit to begin write
      NOP
                         ; Required to transfer data to the buffer
      NOP
                         ; registers
      BCF
              EECON1,WREN ; Disable writes
      BSF
              INTCON,GIE ; Enable interrupts (comment out if not using interrupts)
      BANKSEL EEADR
              EEADR, W
      MOVF
                        ; Increment address
      INCF
              EEADR, F
                        ; Indicates when sixteen words have been programmed
      ANDLW
              0x0F
      SUBLW
                        ; 0x0F = 16 words
              0x0F
                         ; 0x0B = 12 words (PIC16F884/883/882 only)
                        ; 0x07 = 8 words
                           0x03 = 4 \text{ words}(\text{PIC16F884}/883/882 \text{ only})
                        ;
      BTFSS
              STATUS,Z
                        ; Exit on a match,
      GOTO
              LOOP
                         ; Continue if more data needs to be written
```

11.6.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Table 11-5.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 11.6.4** "**Enhanced PWM Auto-Shutdown Mode**". An autoshutdown event will only affect pins that have PWM outputs enabled.

REGISTER DEFINITIONS: PULSE STEERING CONTROL

REGISTER 11-5: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	—	—	STRSYNC	STRD	STRC	STRB	STRA
bit 7 bit 0							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

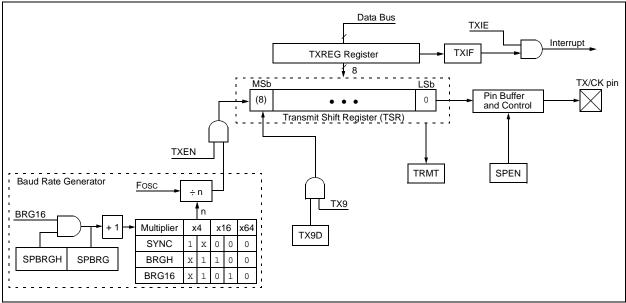
hit 7 E	Unimplemented, Dood op (0)
bit 7-5	Unimplemented: Read as '0'
bit 4	STRSYNC: Steering Sync bit
	1 = Output steering update occurs on next PWM period
	0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRD: Steering Enable bit D
	1 = P1D pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1D pin is assigned to port pin
bit 2	STRC: Steering Enable bit C
	1 = P1C pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1C pin is assigned to port pin
bit 1	STRB: Steering Enable bit B
	1 = P1B pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1B pin is assigned to port pin
bit 0	STRA: Steering Enable bit A
	1 = P1A pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1A pin is assigned to port pin
Note 1.	The DWM Steering mode is evoluble only when the CCD4CON register bits CCD4M (2:2) 11 and

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

Logondi

12.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.


The EUSART module includes the following capabilities:

- Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 12-1 and Figure 12-2.

FIGURE 12-1: EUSART TRANSMIT BLOCK DIAGRAM

12.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 12-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

12.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 12-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

12.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

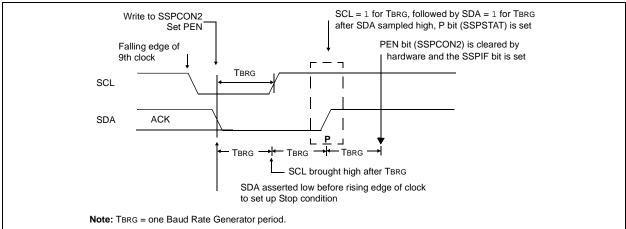
All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

- Note 1: When the SPEN bit is set the RX/DT I/O pin is automatically configured as an input, regardless of the state of the corresponding TRIS bit and whether or not the EUSART receiver is enabled. The RX/DT pin data can be read via a normal PORT read but PORT latch data output is precluded.
 - 2: The TXIF transmitter interrupt flag is set when the TXEN enable bit is set.

12.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.


12.1.1.3 Transmit Interrupt Flag

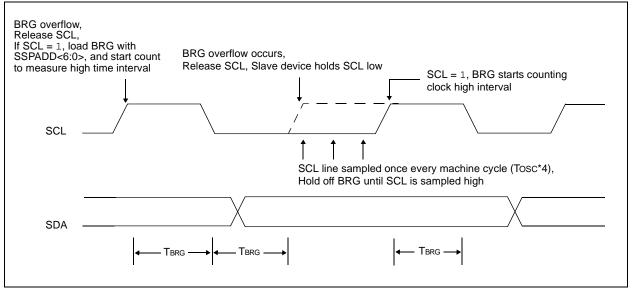
The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

13.4.12 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 13-19).


13.4.13 SLEEP OPERATION

While in Sleep mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

13.4.14 EFFECT OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

FIGURE 13-19: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

13.4.17 SSP MASK REGISTER

An SSP Mask (SSPMSK) register is available in I^2C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit in the SSPSR register a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

This register must be initiated prior to setting SSPM<3:0> bits to select the I^2C Slave mode (7-bit or 10-bit address).

This register can only be accessed when the appropriate mode is selected by bits (SSPM<3:0> of SSPCON).

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0 ⁽²⁾					
bit 7							bit 0					
Legend:												
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unkr	nown						
bit 7-1	MSK<7:1>: N	lask bits										
					<n> to detect I² address match</n>	C address mat	tch					
bit 0	MSK<0>: Ma:	sk bit for I ² C SI	ave mode, 10	0-bit Address ⁽²⁾)							
	I ² C Slave mode, 10-bit Address (SSPM<3:0> = 0111):											
	1 = The received address bit 0 is compared to SSPADD<0> to detect I ² C address match											
	0 = The rece	ived address bi	it 0 is not use	ed to detect I ² C	address match							

REGISTER 13-4: SSPMSK: SSP MASK REGISTER⁽¹⁾

Note 1: When SSPCON bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed through the SSPMSK register.

2: In all other SSP modes, this bit has no effect.

14.2.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in EC mode with <u>PWRTE</u> bit erased (PWRT disabled), there will be no time-out at all. Figures 14-4, 14-5 and 14-6 depict time-out sequences. The device can execute code from the INTOSC while OST is active by enabling Two-Speed Start-up or Fail-Safe Monitor (see Section 4.7.2 "Two-Speed Start-up Sequence" and Section 4.8 "Fail-Safe Clock Monitor").

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then, bringing MCLR high will begin execution immediately (see Figure 14-5). This is useful for testing purposes or to synchronize more than one PIC16F882/883/884/886/887 device operating in parallel.

Table 14-5 shows the Reset conditions for some special registers, while Table 14-4 shows the Reset conditions for all the registers.

14.2.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word Register 1).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 3.2.2 "Ultra Low-Power Wake-up" and Section 14.2.4 "Brown-out Reset (BOR)".

Occillator Configuration	Powe	er-up	Brown-o	ut Reset	Wake-up from
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	TPWRT + 1024 • Tosc	1024 • Tosc	TPWRT + 1024 • Tosc	1024 • Tosc	1024 • Tosc
LP, T1OSCIN = 1	TPWRT	—	TPWRT	_	—
RC, EC, INTOSC	TPWRT	—	TPWRT	_	—

TABLE 14-1: TIME-OUT IN VARIOUS SITUATIONS

TABLE 14-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition				
0	х	1	1	Power-on Reset				
u	0	1	1	Brown-out Reset				
u	u	0	u	WDT Reset				
u	u	0	0	WDT Wake-up				
u	u	u	u	MCLR Reset during normal operation				
u	u	1	0	MCLR Reset during Sleep				

Legend: u = unchanged, x = unknown

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PCON		_	ULPWUE	SBOREN	_	_	POR	BOR	37
STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	30

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

15.0 INSTRUCTION SET SUMMARY

The PIC16F882/883/884/886/887 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 15-1, while the various opcode fields are summarized in Table 15-1.

Table 15-2 lists the instructions recognized by the MPASMTM assembler.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

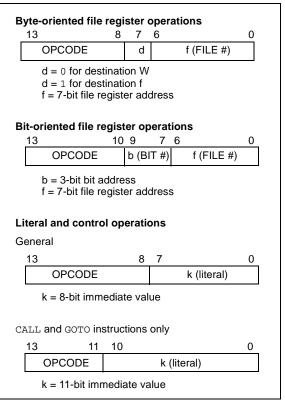
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

15.1 Read-Modify-Write Operations


Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the RAIF flag.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

17.1 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended)

DC CHA	ARACTER	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param Sym. Characteristic			Min. Typ† Max. Units Con				Conditions	
	Vdd	Supply Voltage	2.0	—	5.5	V	Fosc < = 8 MHz: HFINTOSC, EC	
D001			2.0	—	5.5	V	Fosc < = 4 MHz	
D001C			3.0	—	5.5	V	Fosc < = 10 MHz	
D001D			4.5	—	5.5	V	Fosc < = 20 MHz	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	—	V	Device in Sleep mode	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See Section 14.2.1 "Power-on Reset (POR)" for details.	
D004*			0.05		_	V/ms	See Section 14.2.1 "Power-on Reset (POR)" for details.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

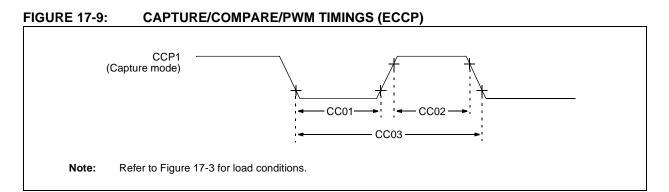
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

17.5 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended) (Continued)

DC CH	ARACTE	RISTICS	Standard Ope Operating tem	nditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D100	IULP	Ultra Low-Power Wake-Up Current	_	200	_	nA	See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)
		Capacitive Loading Specs on Output Pins					
D101*	COSC2	OSC2 pin	_	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A *	Сю	All I/O pins	_	—	50	pF	
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K	1M	_	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
D120A	ED	Byte Endurance	10K	100K	_	E/W	+85°C ≤ TA ≤ +125°C
D121	Vdrw	VDD for Read/Write	VMIN	-	5.5	V	Using EECON1 to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	_	5	6	ms	
D123	Tretd	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽⁴⁾	1M	10M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	—	E/W	$-40^{\circ}C \leq TA \leq +85^{\circ}C$
D130A	ED	Cell Endurance	1K	10K	_	E/W	+85°C \leq TA \leq +125°C
D131	Vpr	VDD for Read	Vmin	—	5.5	V	VMIN = Minimum operating voltage
D132	VPEW	VDD for Row Erase/Write	VMIN		5.5	V	
		VDD for Bulk Erase Opera- tions	4.5		5.5	V	
D133	TPEW	Erase/Write cycle time	—	2	2.5	ms	
D134	Tretd	Characteristic Retention	40	-	—	Year	Provided no other specifications are violated

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 10.3.1 "Using the Data EEPROM" for additional information.

5: Including OSC2 in CLKOUT mode.

TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Character	ristic	Min.	Тур†	Max.	Units	Conditions				
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5Tcy + 20	_	—	ns					
			With Prescaler	20		—	ns					
CC02*	TccH	CCP1 Input High Time	No Prescaler	0.5Tcy + 20		—	ns					
			With Prescaler	20		—	ns					
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 17-19: DC CHARACTERISTICS FOR IDD SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

Param	Device	Min.	Тур.	Max.	Units		Condition
No.	Characteristics		тур.		Units	Vdd	Note
D001	Vdd	2.1	_	5.5	V	_	Fosc \leq 8 MHz: HFINTOSC, EC
		2.1	_	5.5	V		$Fosc \le 4 MHz$

TABLE 17-20: DC CHARACTERISTICS FOR IPD SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

Param	Device			_			Condition
No.	Characteristics	Units	Min.	Тур.	Max.	Vdd	Note
D020E	Power Down Base	_	_	27		2.1	IPD Base: WDT, BOR,
	Current (IPD)	—		29	μA	3.0	Comparators, VREF and
		—	—	32		5.0	T1osc disabled
D021E		—		55		2.1	
		—		59	μA	3.0	WDT Current
		—	_	69		5.0	
D022E		_	_	75		3.0	BOR Current
		_	_	147	μA	5.0	BOR Current
D023E		_	_	73		2.1	
		_	_	117	μΑ	3.0	Comparator current, both comparators enabled
		_	_	235		5.0	
D024E		_	_	102		2.1	
		_	_	128	μA	3.0	CVREF current, high range
		—		170		5.0	
D024AE		—	—	133		2.1	
		—		167	μA	3.0	CVREF current, low range
		—		222		5.0	
D025E		—	_	36		2.1	
		—		41	μA	3.0	T1osc current, 32 kHz
		—		47		5.0	
D026E		—	—	22	۸	3.0	Analog-to-Digital current,
		_		24	μA	5.0	no conversion in progress
D027E		_		189		3.0	VP6 current (Fixed Voltage
		—	—	250	μA	5.0	Reference)

TABLE 17-21: LEAKAGE CURRENT SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

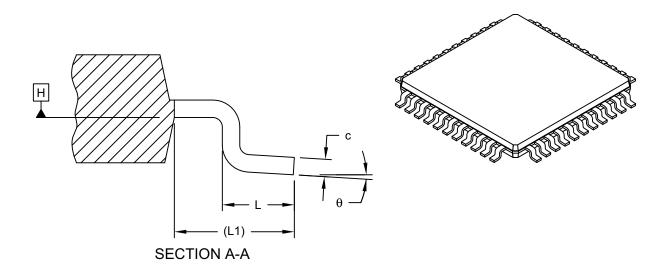
Param No.	Sym Characteristic		Min.	Тур.	Max.	Units	Conditions
D061	0061 IIL Input Leakage Current ⁽¹⁾ (RA3/MCLR)		_	±0.5	±5.0	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D062	lı∟	Input <u>Leaka</u> ge Current ⁽²⁾ (RA3/MCLR)	50	250	400	μA	VDD = 5.0V

Note 1: This specification applies when RA3/MCLR is configured as an input with the pull-up disabled. The leakage current for the RA3/MCLR pin is higher than for the standard I/O port pins.

2: This specification applies when RA3/MCLR is configured as the MCLR reset pin function with the weak pull-up enabled.

18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.


In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N	44		
Lead Pitch	е	0.80 BSC		
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Width	E	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Width	b	0.30	0.37	0.45
Lead Thickness	С	0.09	-	0.20
Lead Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0°	3.5°	7°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2