

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f883-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.4.5 RB4/AN11/P1D⁽¹⁾

Figure 3-10 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a PWM output⁽¹⁾

Note 1: P1D is available on PIC16F882/883/886 only.

3.4.4.6 RB5/AN13/T1G

Figure 3-10 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a Timer1 gate input

3.4.4.7 RB6/ICSPCLK

Figure 3-10 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- In-Circuit Serial Programming clock

3.4.4.8 RB7/ICSPDAT

Figure 3-10 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- In-Circuit Serial Programming data

FIGURE 3-10: BLOCK DIAGRAM OF RB<7:4>

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORT
--

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
—	—	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	49
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	122
MC1OUT	MC2OUT	C1RSEL	C2RSEL	—	—	T1GSS	C2SYNC	92
IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	50
GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	32
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	31
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	49
TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	49
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	50
	Bit 7	Bit 7 Bit 6	Bit 7Bit 6Bit 5ANS13P1M1P1M0DC1B1MC1OUTMC2OUTC1RSE1IOCB7IOCB6IOCB5GIEPEIETOIEGIEPEIETOIERBPUINTEDGTOCSRB7RB6RB5TRISB7TRISB6TRISB5WPUB7WPUB6WPUB7	Bit 7Bit 6Bit 5Bit 4ANS13ANS12P1M1P1M0DC1B1DC1B0MC1OUTMC2OUTC1RSE4C2RSE1IOCB7IOCB6IOCB5IOCB4IOCB7IOCB6IOCB5IOCB4GIEPEIETOIEINTERBPUINTEDGTOCSTOSERB7RB6RB5RB4TRISB7TRISB6TRISB5TRISB4WPUB7WPUB6WPUB5WPUB4	Bit 7Bit 6Bit 5Bit 4Bit 3ANS13ANS12ANS11P1M1P1M0DC1B1DC1B0CCP1M3MC10UTMC20UTC1RSELC2RSELIOCB7IOCB6IOCB5IOCB4IOCB3GIEPEIET0IEINTERBIERBPUINTEDGT0CST0SEPSARB7RB6RB5RB4RB3TRISB7TRISB6TRISB5TRISB4TRISB3WPUB7WPUB6WPUB5WPUB4WPUB3	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2ANS13ANS12ANS11ANS10P1M1P1M0DC1B1DC1B0CCP1M3CCP1M3MC10UTMC20UTC1RSELC2RSELIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2GIEPEIET0IEINTERBIET0IFRBPUINTEDGT0CST0SEPSAPS2RB7RB6RB5RB4RB3RB2TRISB7TRISB6TRISB5TRISB4TRISB3TRISB2WPUB7WPUB6WPUB5WPUB4WPUB3WPUB7	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1ANS13ANS12ANS11ANS10ANS99P1M1P1M0DC1B1DC1B0CCP1M3CCP1M2CCP1M1MC1OUTMC2OUTC1RSELC2RSELT1GSSIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2IOCB1GIEPEIET0IEINTERBIET0IFINTFRBPUINTEDGTOCST0SEPSAPS2PS1RB7RB6RB5RB4RB3RB2RB1TRISB7TRISB6TRISB5TRISB4TRISB3TRISB5WPUB5WPUB4	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0ANS13ANS12ANS11ANS10ANS9ANS8P1M1P1M0DC1B1DC1B0CCP1M3CCP1M2CCP1M1CCP1M0MC1OUTMC2OUTC1RSELC2RSELT1GSSC2SYNCIOCB7IOCB6IOCB5IOCB4IOCB3IOCB2IOCB1IOCB0GIEPEIET0IEINTERBIET0IFINTFRBIFRBPUINTEOGT0CST0SEPSAPS2PS1PS0RB7RB6RB5RB4RB3RB2RB1RB0TRISB7TRISB6TRISB5TRISB4TRISB5TRISB5TRISB5WPUB4WPUB3WPUB2WPUB1WPUB7WPUB6WPUB5WPUB4WPUB3WPUB2WPUB1WPUB3

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTB.

© 2006-2015 Microchip Technology Inc.

4.2 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 4-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Frequency Status bits (HTS, LTS)
- System clock control bits (OSTS, SCS)

REGISTER DEFINITIONS: OSCILLATOR CONTROL

REGISTER 4-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R/W-1	R/W-1	R/W-0	R-1	R-0	R-0	R/W-0
	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	IRCF<2:0>:	nternal Oscillat	or Frequency	Select bits			
	111 = 8 MHz						
	110 = 4 MHz	(default)					
	101 = 2 MHz						
	011 = 500 kH	17					
	010 = 250 kH	Iz					
	001 = 125 k ⊦	Ηz					
	000 = 31 kH z	z (LFINTOSC)					
bit 3	OSTS: Oscill	ator Start-up Ti	me-out Status	bit ⁽¹⁾			
	1 = Device is	s running from t	he clock defir	ed by FOSC<2	:0> of the CO	NFIG1 register	
	0 = Device is	s running from t	he internal os	cillator (HFINTC	OSC or LFINT	OSC)	
bit 2	HTS: HFINT(OSC Status bit	(High Frequer	ncy – 8 MHz to 1	125 kHz)		
	1 = HFINTOS	SC is stable					
1			, , _				
DIT		SC Stable bit (Low Frequence	cy – 31 kHz)			
	1 = LFINTOS 0 = LFINTOS	SC is stable					
bit 0	SCS: System	Clock Select h	nit				
bit 0	1 = Internal (oscillator is use	d for system o	lock			
	0 = Clock so	urce defined by	/ FOSC<2:0>	of the CONFIG	1 register		
Note 1:	Bit resets to '0' with mode is enabled.	th Two-Speed S	start-up and L	P, XT or HS sele	ected as the (Jscillator mode	or Fail-Sate

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM2CON1	MC1OUT	MC2OUT	C1RSEL	C2RSEL	—	—	T1GSS	C2SYNC	92
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	32
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	33
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	35
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								78
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	81

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

3: Q1 is held high during Sleep mode.

9.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

Note:	For ANSEL a	and ANSELH	registers,	see
	Register 3-3	and	Register	3-4,
	respectively.			

REGISTER DEFINITIONS: ADC CONTROL

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0						
ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	ADCS<1:0>: A/D Conversion Clock Select bits
	00 = Fosc/2
	01 = Fosc/8
	10 = Fosc/32
	11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max)
bit 5-2	CHS<3:0>: Analog Channel Select bits
	0000 = ANO
	0001 = AN1
	0010 = AN2
	0011 = AN3
	0100 = AN4
	0101 = AN5
	0110 = AN6
	0111 = AN7
	1000 = AN8
	1001 = AN9
	1010 = AN10
	1011 = AN11
	1100 = AN12
	1101 = AN13
	1110 = CVREF
	1111 = Fixed Ref (0.6V Fixed Voltage Reference)
bit 1	GO/DONE: A/D Conversion Status bit
	 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed
	0 = A/D conversion completed/not in progress
bit 0	ADON: ADC Enable bit
	1 = ADC is enabled
	0 = ADC is disabled and consumes no operating current

10.3 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM should be verified (see Example 10-5) to the desired value to be written.

EXAMPLE 10-5: WRITE VERIFY

BANKSEL	EEDAT	;
MOVF	EEDAT, W	;EEDAT not changed
		;from previous write
BANKSEL	EECON1	;
BSF	EECON1, RD	;YES, Read the
		;value written
BANKSEL	EEDAT	;
XORWF	EEDAT, W	;
BTFSS	STATUS, Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
:		;Yes, continue
BCF	STATUS, RP1	;Bank 0

10.3.1 USING THE DATA EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM (specification D124) without exceeding the total number of write cycles to a single byte (specifications D120 and D120A). If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

10.4 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- Power Glitch
- Software Malfunction

10.5 Data EEPROM Operation During Code-Protect

Data memory can be code-protected by programming the \overline{CPD} bit in the Configuration Word Register 1 (Register 14-1) to '0'.

When the data memory is code-protected, only the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from programming zeros over the existing code (which will execute as NOPs) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations in program memory to '0' will also help prevent data memory code protection from becoming breached.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	—	—	_	WRERR	WREN	WR	RD	112
EECON2 EEPROM Control Register 2 (not a physical register)								—	
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	111
EEADRH	—	—	—	EEADRH4 ⁽¹⁾	EEADRH3	EEADRH2	EEADRH1	EEADRH0	111
EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	111
EEDATH	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	111
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	32
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	ULPWUIE	_	CCP2IE	34
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	ULPWUIF		CCP2IF	36

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM module.

Note 1: PIC16F886/PIC16F887 only.

11.6.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/P1A pin, while the complementary PWM output signal is output on the P1B pin (see Figure 11-9). This mode can be used for Half-Bridge applications, as shown in Figure 11-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWM1CON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 11.6.6 "Programmable Dead-Band Delay Mode"** for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure P1A and P1B as outputs.

FIGURE 11-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

11.6.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the P1M1 bit in the CCP1CON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

A direction change is initiated in software by changing the P1M1 bit of the CCP1CON register. The following sequence occurs prior to the end of the current PWM period:

- The modulated outputs (P1B and P1D) are placed in their inactive state.
- The associated unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 11-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.

Figure 11-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output P1A and P1D become inactive, while output P1C becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 11-10) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

FIGURE 11-12: EXAMPLE OF PWM DIRECTION CHANGE

- **Note 1:** The direction bit P1M1 of the CCP1CON register is written any time during the PWM cycle.
 - 2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle. The modulated P1B and P1D signals are inactive at this time. The length of this time is (1/Fosc) TMR2 prescale value.

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_		_	_	_	_	_	_	_	_	
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103	
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51	
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12	
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11	
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	—	_	_	
57.6k	_	_	_	57.60k	0.00	7	57.60k	0.00	2	—	—	—	
115.2k	—	_	_	—	_	_	—	_	_	—	_	_	

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51	
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12	
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	—	—	—	
9600	—	—	_	9600	0.00	5	—	—	—	—	—	—	
10417	10417	0.00	5	—	—	_	10417	0.00	2	—	—	—	
19.2k	—	—	—	19.20k	0.00	2	—	—	—	—	—	—	
57.6k	—	—	—	57.60k	0.00	0	—	—	—	—	—	—	
115.2k	—	_	—	—	_	_	—	_	—	—	_	—	

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD RATE	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz			
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	—	_	_	_	_	_	_	_	—	—	
1200	—	—	—	—	_	—	—	—	—	—	—	—	
2400	—	—	—	—	—	—	_	_	_	2404	0.16	207	
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51	
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47	
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25	
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8	
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	_	_	

13.4.1.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the eight bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit BF is set.
- c) An ACK pulse is generated.
- MSSP interrupt flag bit, SSPIF of the PIR1 register, is set on the falling edge of the ninth SCL pulse (interrupt is generated, if enabled).

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSb) of the first address byte specify if this is a 10-bit address. The R/W bit (SSPSTAT register) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal `1111 0 A9 A8 0', where A9 and A8 are the two MSb's of the address.

The sequence of events for 10-bit addressing is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bit SSPIF of the PIR1 register and bits BF and UA of the SSPSTAT register are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

13.4.1.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT register) is set, or bit SSPOV (SSPCON register) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF of the PIR1 register must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

13.4.1.3 Transmission

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON register). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 13-8).

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. When the ACK is latched by the slave, the slave logic is reset and the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Pin RC3/SCK/SCL should be enabled by setting bit CKP.

13.4.3 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- · Repeated Start condition

13.4.4 I²C[™] MASTER MODE SUPPORT

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. Once Master mode is enabled, the user has the following six options:

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Generate a Stop condition on SDA and SCL.
- 5. Configure the I^2C port to receive data.
- 6. Generate an Acknowledge condition at the end of a received byte of data.

Note: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to imitate transmission, before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

FIGURE 13-10: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

13.4.15 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit (SSPSTAT register) is set, or the bus is idle with both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored for arbitration, to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

Arbitration can be lost in the following states:

- · Address transfer
- Data transfer
- · A Start condition
- A Repeated Start condition
- An Acknowledge condition

13.4.16 MULTI -MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag (BCLIF) and reset the I^2C port to its Idle state (Figure 13-20).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF bit is cleared, the SDA and SCL lines are de-asserted, and the SSPBUF can be written to. When the user services the bus collision interrupt service routine, and if the l^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop, or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision interrupt service routine, and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is idle and the S and P bits are cleared.

FIGURE 13-20: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

FIGURE 14-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)

14.7 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using $ICSP^{TM}$ for verification purposes.

Note:	The entire data EEPROM and Flash								
	program memory will be erased when the								
	code protection is switched from on to off.								
	See the "PIC16F88X Memory								
	Programming Specification" (DS41287) for								
	more information.								

14.8 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant seven bits of the ID locations are used.

14.9 In-Circuit Serial Programming™

The PIC16F882/883/884/886/887 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for:

- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RB6/ICSPCLK and RB7/ICSPDAT pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the "*PIC16F88X Memory Programming Specification*" (DS41287) for more information. RB7 becomes the programming data and RB6 becomes the programming clock. Both RB7 and RB6 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Program/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a Load or a Read. For complete details of serial programming, please refer to the "*PIC16F88X Memory Programming Specification*" (DS41287).

A typical In-Circuit Serial Programming connection is shown in Figure 14-11.

FIGURE 17-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standa Operati	rd Operating on ng Temperatur	Conditions (u re -40°C	Inless otherwis ≤ TA ≤ +125°C	e stated)					
Param No.	Sym.		Characterist	Min.	Тур†	Max.	Units	Conditions	
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns	
				With Prescaler	10	_	_	ns	
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 TCY + 20	_		ns	
		With Prescaler		10	_		ns		
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	_		ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous,	No Prescaler	0.5 TCY + 20	_	_	ns	
		Time	Synchronous, with Prescaler		15		_	ns	
			Asynchronous		30	—	—	ns	
46*	TT1L	T1CKI Low	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
		Time	Synchronous, with Prescaler		15		_	ns	
			Asynchronous		30	—	_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N		_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	—	ns	
48	FT1	Timer1 Oscill (oscillator en	er1 Oscillator Input Frequency Range illator enabled by setting bit T1OSCEN)			32.768	_	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	dge to Timer	2 Tosc	_	7 Tosc	_	Timers in Sync mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 17-10: PIC16F882/883/884/886/887 A/D CONVERTER (ADC) CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD01	NR	Resolution			10 bits	bit			
AD02	EIL	Integral Error			±1	LSb	VREF = 5.12V		
AD03	Edl	Differential Error			±1	LSb	No missing codes to 10 bits VREF = 5.12V		
AD04	EOFF	Offset Error	0	+1.5	+3.0	LSb	VREF = 5.12V		
AD07	Egn	Gain Error	_	_	±1	LSb	VREF = 5.12V		
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.7	_	 Vdd	V	Absolute minimum to ensure 1 LSb accuracy		
AD07	VAIN	Full-Scale Range	Vss	_	Vref	V			
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ			
AD09*	IREF	VREF Input Current ⁽³⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.		
			_	_	50	μA	During A/D conversion cycle.		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.

4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

FIGURE 17-15: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

© 2006-2015 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1		1.25 REF		
Lead Thickness	С	0.09	-	0.25	
Foot Angle	¢	0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B