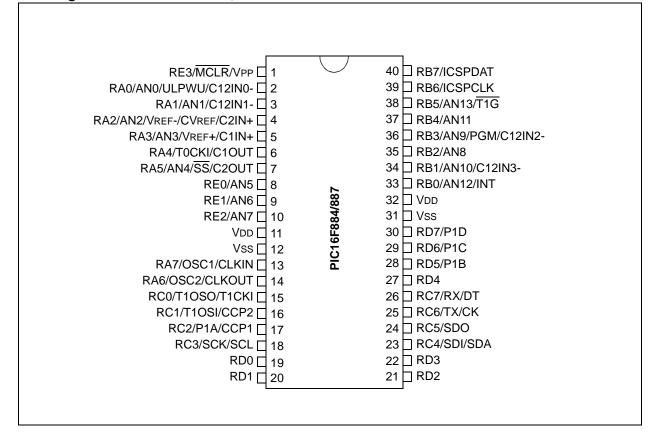


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

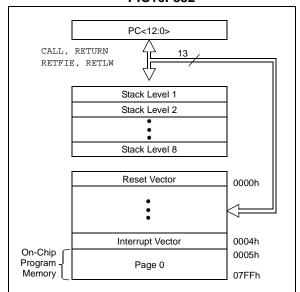

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f883t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams - PIC16F884/887, 40-Pin PDIP



2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

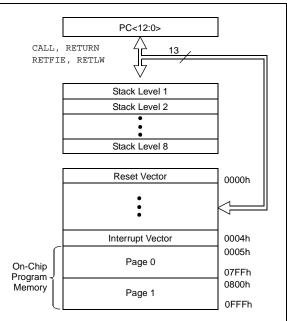
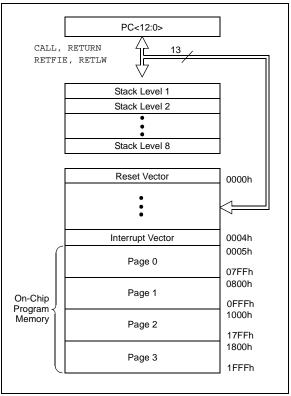

The PIC16F882/883/884/886/887 devices have a 13-bit program counter capable of addressing a $2K \times 14$ (0000h-07FFh) for the PIC16F882, $4K \times 14$ (0000h-0FFFh) for the PIC16F883/PIC16F884, and $8K \times 14$ (0000h-1FFFh) for the PIC16F886/PIC16F887 program memory space. Accessing a location above these boundaries will cause a wrap-around within the first $8K \times 14$ space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 2-2 and 2-3).

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16F882


FIGURE 2-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F883/PIC16F884

FIGURE 2-3:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F886/PIC16F887

3.0 I/O PORTS

There are as many as 35 general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

3.1 PORTA and the TRISA Registers

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 3-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 3-1 shows how to initialize PORTA.

Reading the PORTA register (Register 3-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

REGISTER 3-1: PORTA: PORTA REGISTER

The TRISA register (Register 3-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note:	The ANSEL register must be initialized to
	configure an analog channel as a digital
	input. Pins configured as analog inputs
	will read '0'.

EXAMPLE 3-1:	INITIALIZING PORTA
BANKSEL PORTA	;
	THE DODER

CLRF	PORTA	;Init PORTA
BANKSEL	ANSEL	;
CLRF	ANSEL	;digital I/O
BANKSEL	TRISA	;
MOVLW	0Ch	;Set RA<3:2> as inputs
MOVWF	TRISA	;and set RA<5:4,1:0>
		;as outputs

Lawawala							
bit 7							bit 0
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

Legend:	egend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	· 'O'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-0 RA<7:0>: PORTA I/O Pin bit

1 = Port pin is > VIH

0 = Port pin is < VIL

REGISTER 3-2: TRISA: PORTA TRI-STATE REGISTER

R/W-1 ⁽¹⁾	R/W-1 ⁽¹⁾	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
TRISA7	TRISA7 TRISA6 TRISA5		5 TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	
bit 7							bit 0	

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: TRISA<7:6> always reads '1' in XT, HS and LP Oscillator modes.

3.2 Additional Pin Functions

RA0 also has an Ultra Low-Power Wake-up option. The next three sections describe these functions.

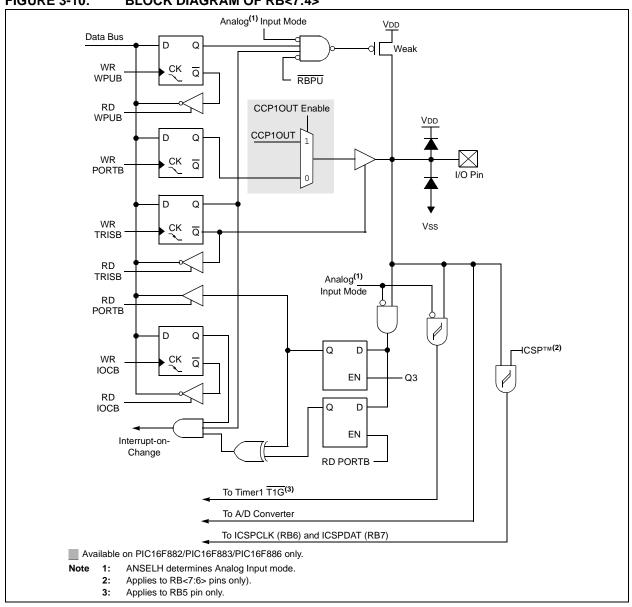
3.2.1 ANSEL REGISTER

The ANSEL register (Register 3-3) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

REGISTER 3-3: ANSEL: ANALOG SELECT REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANS7 ⁽²⁾	ANS6 ⁽²⁾	ANS5 ⁽²⁾	ANS4	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0


Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 ANS<7:0>: Analog Select bits

Analog select between analog or digital function on pins AN<7:0>, respectively.

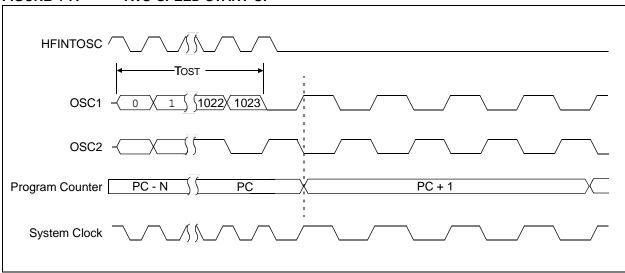
1 = Analog input. Pin is assigned as analog input⁽¹⁾.

- 0 = Digital I/O. Pin is assigned to port or special function.
- **Note 1:** Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: Not implemented on MemHigh.

FIGURE 3-10: BLOCK DIAGRAM OF RB<7:4>

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELH	—	—	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	49
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	122
CM2CON1	MC1OUT	MC2OUT	C1RSEL	C2RSEL	_	_	T1GSS	C2SYNC	92
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0	50
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	32
OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	31
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	49
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	49
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	50

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTB.


© 2006-2015 Microchip Technology Inc.

4.7.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<2:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

4.7.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word Register 1 (CONFIG1), or the internal oscillator.

FIGURE 4-7: TWO-SPEED START-UP

5.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a '0'.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module.

The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

5.1.3.1 Switching Prescaler Between Timer0 and WDT Modules

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 5-1, must be executed.

EXAMPLE 5-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BANKSEL	TMR0	;
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and
		;prescaler
BANKSEL	OPTION_REG	;
BSF	OPTION_REG, PSA	;Select WDT
CLRWDT		;
		;
MOVLW	b'11111000'	;Mask prescaler
ANDWF	OPTION_REG,W	;bits
IORLW	b'00000101'	;Set WDT prescaler
MOVWF	OPTION_REG	;to 1:32

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 5-2).

EXAMPLE 5-2:	CHANGING PRESCALER
	(WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and ;prescaler
BANKSEL MOVLW ANDWF IORLW	OPTION_REG b'11110000' OPTION_REG,W b'00000011'	; ;Mask TMR0 select and ;prescaler bits
MOVWF	OPTION_REG	;Set prescale to 1:16 ;

5.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

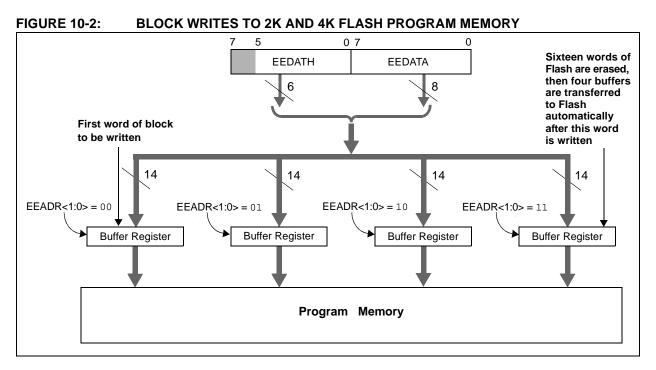
5.1.5 USING TIMER0 WITH AN EXTERNAL CLOCK

When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in the **Section 17.0 "Electrical Specifications"**.

6.12 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER DEFINITIONS: TIMER1 CONTROL

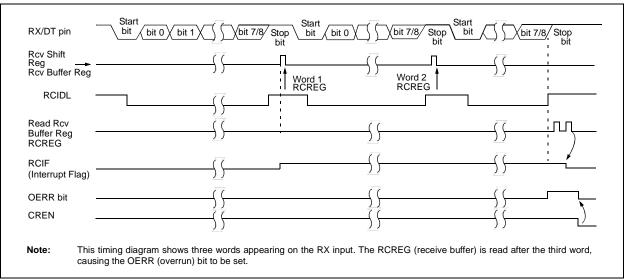

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
T1GINV ⁽¹⁾	T1GINV ⁽¹⁾ TMR1GE ⁽²⁾ T1CKPS1		T1CKPS0	T1CKPS0 T1OSCEN		TMR1CS	TMR10N			
bit 7										


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	T1GINV: Timer1 Gate Invert bit ⁽¹⁾
	 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)
bit 6	TMR1GE: Timer1 Gate Enable bit ⁽²⁾
	$\frac{\text{If TMR1ON} = 0}{1000}$
	This bit is ignored If TMR1ON = 1:
	1 = Timer1 counting is controlled by the Timer1 Gate function
	0 = Timer1 is always counting
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1:8 Prescale Value
	10 = 1:4 Prescale Value 01 = 1:2 Prescale Value
	00 = 1:1 Prescale Value
bit 3	T1OSCEN: LP Oscillator Enable Control bit
	1 = LP oscillator is enabled for Timer1 clock
	0 = LP oscillator is off
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	<u>TMR1CS = 1:</u> 1 = Do not synchronize external clock input
	0 = Synchronize external clock input
	$\underline{TMR1CS} = 0:$
1 1 4	This bit is ignored. Timer1 uses the internal clock
bit 1	TMR1CS: Timer1 Clock Source Select bit
	1 = External clock from T1CKI pin (on the rising edge) 0 = Internal clock (Fosc/4)
bit 0	TMR10N: Timer1 On bit
	1 = Enables Timer1
	0 = Stops Timer1
Note 1:	T1GINV bit inverts the Timer1 gate logic, regardless of source.
2.	TMR1GE bit must be set to use either $\overline{116}$ pip or C20UT as selected by the T1GSS bit of the CM2CON1

2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CM2CON1 register, as a Timer1 gate source.

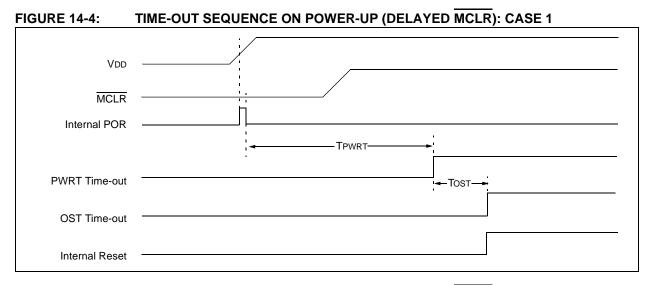

12.1.2.8 Asynchronous Reception Setup:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Enable reception by setting the CREN bit.
- 6. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 7. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 8. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 9. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

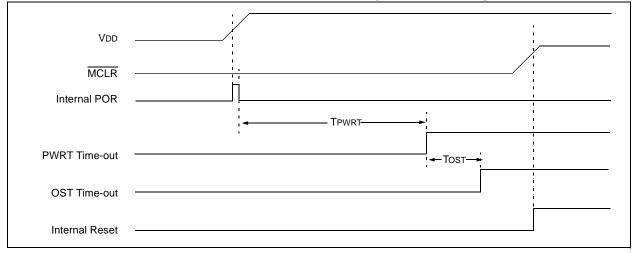
12.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. Enable 9-bit reception by setting the RX9 bit.
- 5. Enable address detection by setting the ADDEN bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.


FIGURE 12-5: ASYNCHRONOUS RECEPTION

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 20.000 MHz		Fosc	Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_		_	_		_	_	—	_	_	
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103	
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51	
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12	
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11	
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	_	_	_	
57.6k	—	_	_	57.60k	0.00	7	57.60k	0.00	2	_	_	_	
115.2k	—	—	—	_	—	—	_	—	—	—	—	—	


TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC = 0, BRGH = 0, BRG16 = 0									
BAUD	Fosc = 4.000 MHz		Fosc	Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51		
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12		
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	—	—	_		
9600	—	_	—	9600	0.00	5	_	_	_	—	_	_		
10417	10417	0.00	5	—	_	_	10417	0.00	2	—	—	_		
19.2k	—	_	_	19.20k	0.00	2	—	_	_	_	_	_		
57.6k	—	—	—	57.60k	0.00	0	—	_	—	—	—	—		
115.2k	—	_	_	_	_	—	_	_	_	—	_	—		

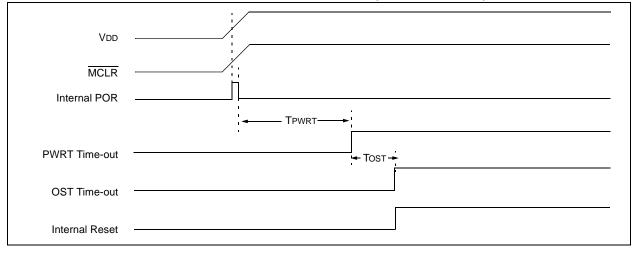

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 20.000 MHz		Fosc	Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—		_		_	_	_	—	_	_	—	—	
1200	—	—	—	—		—	—	—	—	—	—	—	
2400	—	_	_	—	_	_	—	_	_	2404	0.16	207	
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51	
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47	
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25	
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8	
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	_	—	_	

FIGURE 14-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)

17.2 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended)

DC CHA	ARACTERISTICS		ard Oper ing temp		-40°C ⊴	≤ TA ≤ +8	s otherwise stated) 35°C for industrial 125°C for extended
Param	Device Characteristics	Min.	Typ†	Max.	Units		Conditions
No.	Device onarableristics		.,,,,,	maxi	Onits	Vdd	Note
D010	Supply Current (IDD) ^(1, 2)	_	13	19	μA	2.0	Fosc = 32 kHz
			22	30	μΑ	3.0	LP Oscillator mode
			33	60	μΑ	5.0	
D011*		_	180	250	μΑ	2.0	Fosc = 1 MHz
			290	400	μΑ	3.0	XT Oscillator mode
			490	650	μΑ	5.0	
D012			280	380	μA	2.0	Fosc = 4 MHz
			480	670	μΑ	3.0	XT Oscillator mode
			0.9	1.4	mA	5.0	
D013*			170	295	μΑ	2.0	Fosc = 1 MHz
			280	480	μΑ	3.0	EC Oscillator mode
			470	690	μΑ	5.0	
D014			290	450	μΑ	2.0	Fosc = 4 MHz
		—	490	720	μΑ	3.0	EC Oscillator mode
		—	0.85	1.3	mA	5.0	
D015			8	20	μΑ	2.0	Fosc = 31 kHz
		—	16	40	μΑ	3.0	LFINTOSC mode
		—	31	65	μΑ	5.0	
D016*		_	416	520	μΑ	2.0	Fosc = 4 MHz
			640	840	μΑ	3.0	HFINTOSC mode
		—	1.13	1.6	mA	5.0	
D017			0.65	0.9	mA	2.0	Fosc = 8 MHz
			1.01	1.3	mA	3.0	HFINTOSC mode
		—	1.86	2.3	mA	5.0	
D018		_	340	580	μΑ	2.0	Fosc = 4 MHz
			550	900	μΑ	3.0	EXTRC mode ⁽³⁾
		—	0.92	1.4	mA	5.0	
D019			3.8	4.7	mA	4.5	Fosc = 20 MHz
		_	4.0	4.8	mA	5.0	HS Oscillator mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 17-7: COMPARATOR SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.Sym.CharacteristicsMin.Typ†Max.UnitsComment												
CM01	Vos	Input Offset Voltage		—	± 5.0	± 10	mV	(Vdd - 1.5)/2				
CM02	Vсм	Input Common Mode Voltage		0		Vdd - 1.5	V					
CM03*	CMRR	Common Mode Rejection Ratio		+55		_	dB					
CM04*	TRT	Response Time	Falling	_	150	600	ns	(Note 1)				
			Rising		200	1000	ns					
CM05*	Тмс2coV	Comparator Mode Change to Output Valid				10	μS					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

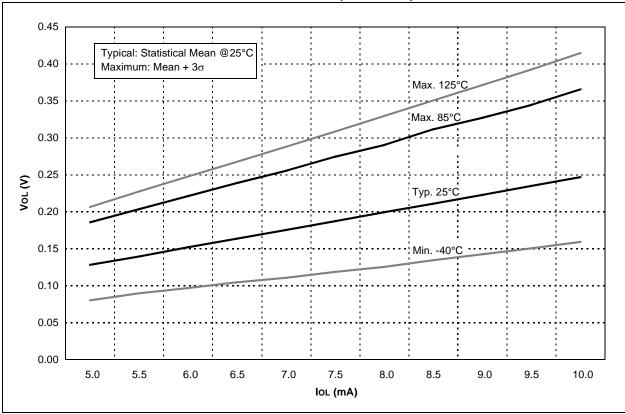
Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 17-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

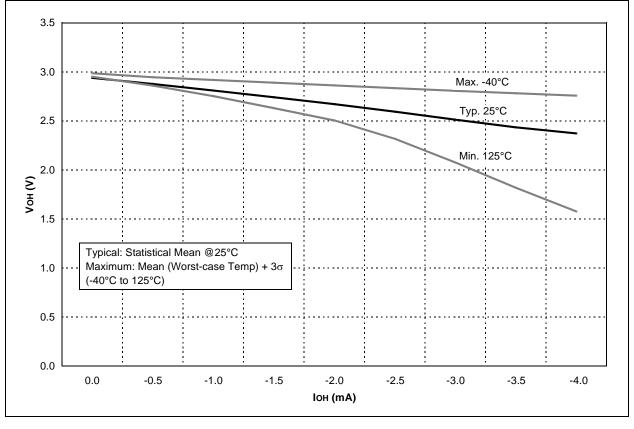
Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$

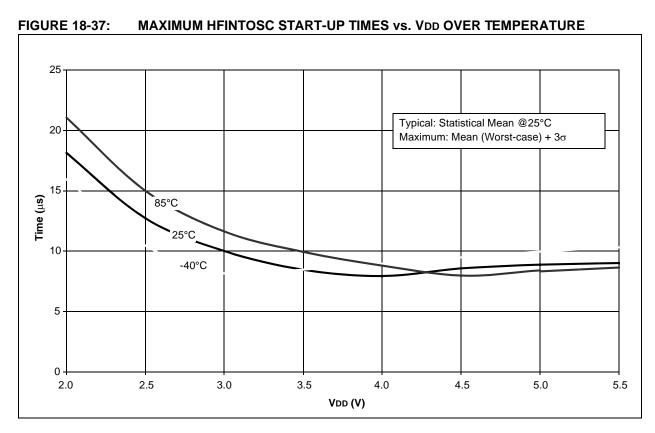
Param No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments
CV01*	Clsb	Step Size ⁽²⁾		VDD/24 VDD/32		V V	Low Range (VRR = 1) High Range (VRR = 0)
CV02*	CACC	Absolute Accuracy			± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
CV03*	CR	Unit Resistor Value (R)	—	2k	_	Ω	
CV04*	CST	Settling Time ⁽¹⁾	_	—	10	μS	

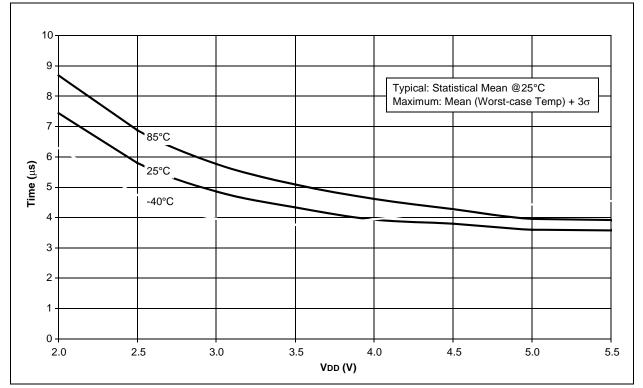

These parameters are characterized but not tested.

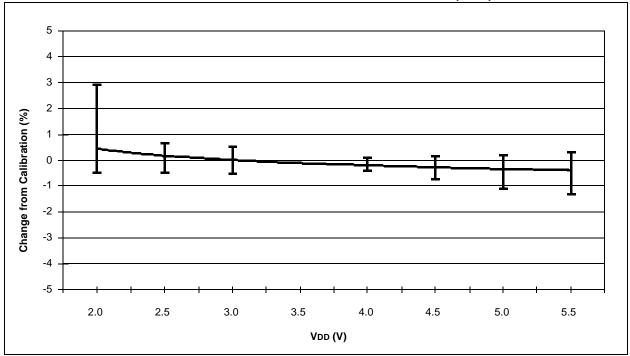
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.
 - 2: See Section 8.10 "Comparator Voltage Reference" for more information.

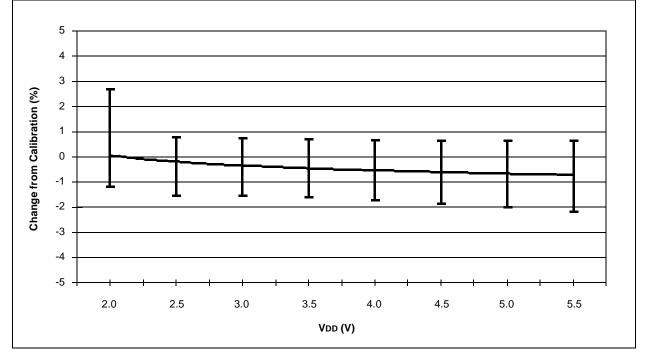
TABLE 17-9: VOLTAGE (VR) REFERENCE SPECIFICATIONS


VR Voltage Reference Specifications			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments	
VR01	VROUT	VR voltage output	0.5	0.6	0.7	V		
VR02*	TSTABLE	Settling Time	—	10	100*	μS		


These parameters are characterized but not tested.


FIGURE 18-27: Vol vs. IoL OVER TEMPERATURE (VDD = 5.0V)





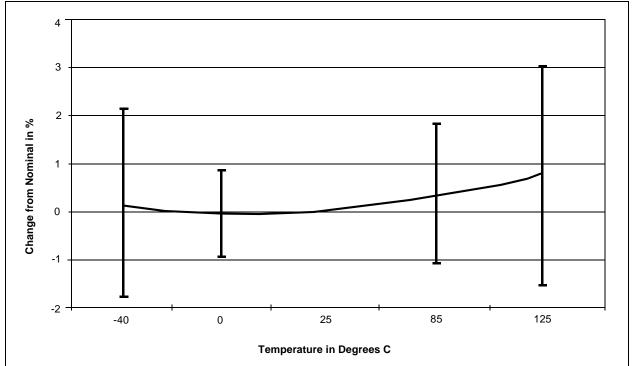
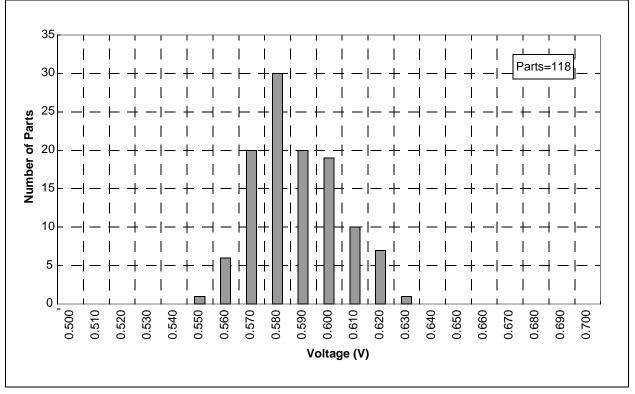
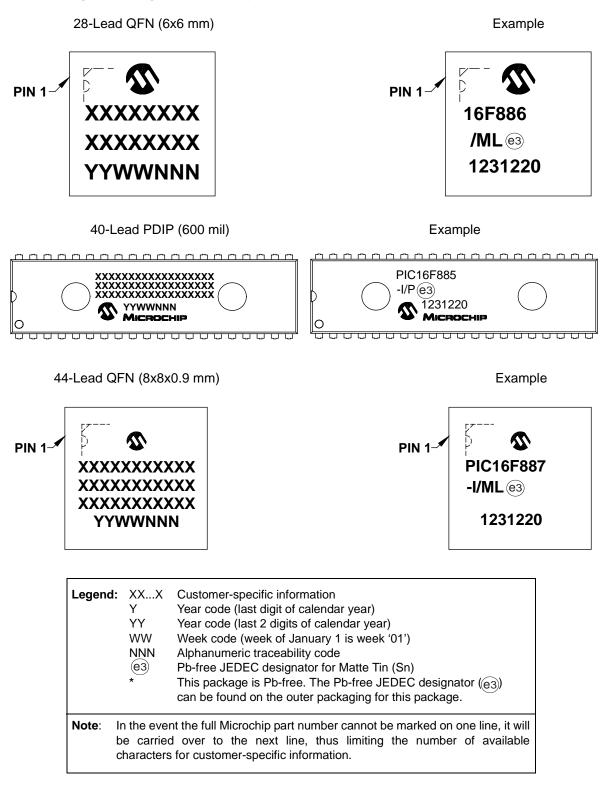
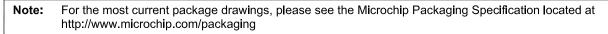
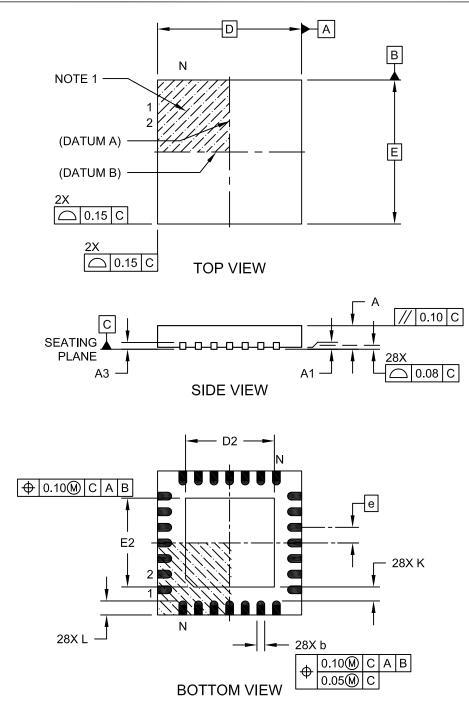


FIGURE 18-39: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)




FIGURE 18-45: VP6 DRIFT OVER TEMPERATURE NORMALIZED AT 25°C (VDD 3V)





19.1 Package Marking Information (Continued)

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2