

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f884-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F882/883/884/886/887

2.2 Data Memory Organization

The data memory (see Figures 2-2 and 2-3) is partitioned into four banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. The General Purpose Registers, implemented as static RAM, are located in the last 96 locations of each Bank. Register locations F0h-FFh in Bank 1, 170h-17Fh in Bank 2 and 1F0h-1FFh in Bank 3, point to addresses 70h-7Fh in Bank 0. The actual number of General Purpose Resisters (GPR) implemented in each Bank depends on the device. Details are shown in Figures 2-5 and 2-6. All other RAM is unimplemented and returns '0' when read. RP<1:0> of the STATUS register are the bank select bits:

<u>RP1</u> <u>RP0</u>

- 0 0 \rightarrow Bank 0 is selected
- 0 1 \rightarrow Bank 1 is selected
- 1 0 \rightarrow Bank 2 is selected
- 1 1 \rightarrow Bank 3 is selected

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 128 x 8 in the PIC16F882, 256 x 8 in the PIC16F883/PIC16F884, and 368 x 8 in the PIC16F886/PIC16F887. Each register is accessed, either directly or indirectly, through the File Select Register (FSR) (see Section 2.4 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

PIC16F882/883/884/886/887

FIGURE 2-4: PIC16F882 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	WDTCON	105h	SRCON	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	CM1CON0	107h	BAUDCTL	187h
	08h		88h	CM2CON0	108h	ANSEL	188h
PORTE	09h	TRISE	89h	CM2CON1	109h	ANSELH	189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved	18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved	18Fh
T1CON	10h	OSCTUNE	90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h	VRCON	97h		117h		197h
RCSTA	18h	TXSTA	98h		118h		198h
TXREG	19h	SPBRG	99h		119h		199h
RCREG	1Ah	SPBRGH	9Ah		11Ah		19Ah
CCPR2L	1Bh	PWM1CON	9Bh		11Bh		19Bh
CCPR2H	1Ch	ECCPAS	9Ch		11Ch		19Ch
CCP2CON	1Dh	PSTRCON	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h	General	A0h		120h		1A0h
		Registers					
General		-					
Purpose		32 Bytes	BFh				
Registers			C0h				
96 Bytes			FFh		16Fb		1FFh
		accesses	 F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
Unimplement	ed data me	emory locations, re	ad as '0'.				

Note 1: Not a physical register.

3.2.3 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D Converter (ADC), refer to the appropriate section in this data sheet.

3.2.3.1 RA0/AN0/ULPWU/C12IN0-

Figure 3-1 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a negative analog input to Comparator C1 or C2
- an analog input for the Ultra Low-Power Wake-up

FIGURE 3-1: BLOCK DIAGRAM OF RA0

PIC16F882/883/884/886/887

3.2.3.2 RA1/AN1/C12IN1-

Figure 3-2 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a negative analog input to Comparator C1 or C2

FIGURE 3-2: BLOCK DIAGRAM OF RA1

3.2.3.3 RA2/AN2/VREF-/CVREF/C2IN+

Figure 3-3 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the ADC
- a negative voltage reference input for the ADC and CVREF
- a comparator voltage reference output
- a positive analog input to Comparator C2

FIGURE 3-3: BLOCK DIAGRAM OF RA2

3.2.3.8 RA7/OSC1/CLKIN

Figure 3-8 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- · a clock input

TABLE 3-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	104
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	41
CM1CON0	C10N	C10UT	C10E	C1POL		C1R	C1CH1	C1CH0	89
CM2CON0	C2ON	C2OUT	C2OE	C2POL		C2R	C2CH1	C2CH0	90
CM2CON1	MC1OUT	MC2OUT	C1RSEL	C2RSEL		_	T1GSS	C2SYNC	92
PCON	_	_	ULPWUE	SBOREN		_	POR	BOR	37
OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	31
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	40
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	177
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	40

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

3.3 PORTB and TRISB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 3-6). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 3-3 shows how to initialize PORTB.

Reading the PORTB register (Register 3-5) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISB register (Register 3-6) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'. Example 3-3 shows how to initialize PORTB.

EXAMPLE 3-3: INITIALIZING PORTB

BANKSEL	PORTB	;
CLRF	PORTB	;Init PORTB
BANKSEL	TRISB	;
MOVLW	B`11110000'	;Set RB<7:4> as inputs
		;and RB<3:0> as outputs
MOVWF	TRISB	;

Note: The ANSELH register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read '0'.

3.4 Additional PORTB Pin Functions

PORTB pins RB<7:0> on the device family device have an interrupt-on-change option and a weak pull-up option. The following three sections describe these PORTB pin functions.

Every PORTB pin on this device family has an interrupt-on-change option and a weak pull-up option.

3.4.1 ANSELH REGISTER

The ANSELH register (Register 3-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELH bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELH bits has no affect on digital output functions. A pin with TRIS clear and ANSELH set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

3.4.2 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 3-7). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the RBPU bit of the OPTION register.

3.4.3 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. Refer to Register 3-8. The interrupt-on-change feature is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the present value is compared with the old value latched on the last read of PORTB to determine which bits have changed or mismatched the old value. The 'mismatch' outputs of the last read are OR'd together to set the PORTB Change Interrupt flag bit (RBIF) in the INTCON register.

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear the flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading or writing PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After these Resets, the RBIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set. Furthermore, since a read or write on a port affects all bits of that port, care must be taken when using multiple pins in Interrupt-on-Change mode. Changes on one pin may not be seen while servicing changes on another pin.

10.1.4 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must write the Least and Most Significant address bits to the EEADR and EEADRH registers, set the EEPGD control bit of the EECON1 register, and then set control bit RD. Once the read control bit is set, the program memory Flash controller will use the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDAT and EEDATH registers; therefore, it can be read as two bytes in the following instructions.

EEDAT and EEDATH registers will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.
 - If the WR bit is set when EEPGD = 1, it will be immediately reset to '0' and no operation will take place.

EXAMPLE 10-3: FLASH PROGRAM READ

	BANKSEL	EEADR	i
	MOVLW	MS_PROG_EE_ADDR	i
	MOVWF	EEADRH	;MS Byte of Program Address to read
	MOVLW	LS_PROG_EE_ADDR	i
	MOVWF	EEADR	;LS Byte of Program Address to read
	BANKSEL	EECON1	i
	BSF	EECON1, EEPGD	;Point to PROGRAM memory
- 0	BSF	EECON1, RD	;EE Read
liked			
nbe			;First instruction after BSF EECON1,RD executes normally
8. N	NOP		
	NOP		;Any instructions here are ignored as program
			;memory is read in second cycle after BSF EECON1,RD
;			
	BANKSEL	EEDAT	i
	MOVF	EEDAT, W	;W = LS Byte of Program Memory
	MOVWF	LOWPMBYTE	;
	MOVF	EEDATH, W	;W = MS Byte of Program EEDAT
	MOVWF	HIGHPMBYTE	;
	BCF	STATUS, RP1	;Bank 0

11.5.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.5.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

11.5.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.5.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Disable the PWM pin (CCPx) output drivers as an input by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Set the PWM duty cycle by loading the CCPRxL register and DCxB<1:0> bits of the CCPxCON register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	c = 2.00	0 MHz	Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	_	_		_	_	_	300	0.16	207	
1200	1202	0.16	207	1200	0.00	191	1202	0.16	103	1202	0.16	51	
2400	2404	0.16	103	2400	0.00	95	2404	0.16	51	2404	0.16	25	
9600	9615	0.16	25	9600	0.00	23	9615	0.16	12	—	—	—	
10417	10417	0.00	23	10473	0.53	21	10417	0.00	11	10417	0.00	5	
19.2k	19.23k	0.16	12	19.2k	0.00	11	—	_	—	_	—	—	
57.6k	—	—	—	57.60k	0.00	3	—	—	—	—	—	—	
115.2k	—	_	—	115.2k	0.00	1	—	—	—	—	_		

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	299.9	-0.02	1666		
1200	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	1199	-0.08	416		
2400	2399	-0.03	520	2400	0.00	479	2400	0.00	287	2404	0.16	207		
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51		
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47		
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19.23k	0.16	25		
57.6k	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8		
115.2k	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	—	_		

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.1	0.04	832	300.0	0.00	767	299.8	-0.108	416	300.5	0.16	207
1200	1202	0.16	207	1200	0.00	191	1202	0.16	103	1202	0.16	51
2400	2404	0.16	103	2400	0.00	95	2404	0.16	51	2404	0.16	25
9600	9615	0.16	25	9600	0.00	23	9615	0.16	12	—	—	—
10417	10417	0.00	23	10473	0.53	21	10417	0.00	11	10417	0.00	5
19.2k	19.23k	0.16	12	19.20k	0.00	11	_	_	_	—	_	_
57.6k	—	_	_	57.60k	0.00	3	_	_	_	—	_	_
115.2k	—	_	_	115.2k	0.00	1	—	_	_	—	_	_

13.4.12 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count, in the event that the clock is held low by an external device (Figure 13-19).

13.4.13 SLEEP OPERATION

While in Sleep mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

13.4.14 EFFECT OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

FIGURE 13-19: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

Configuration Bits 14.1

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device configurations as shown in Register 14-1. These bits are mapped in program memory location 2007h and 2008h, respectively.

Address 2007h and 2008h are beyond the Note: user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See "PIC16F88X Memory Programming Specification" (DS41287) for more information.

REGISTER DEFINITIONS: CONFIGURATION WORDS

REGISTER 14-1: CONFIG1: CONFIGURATION WORD REGISTER 1

DEBUG	LVP	FCMEN	IESO	BOREN<1:0>
bit 13				bit 8

CPD	CP	MCLRE	PWRTE	WDTE	FOSC<2:0>					
bit 7						bit 0				
bit 13	DEBUG: In-Circui 1 = In-Circuit Deb 0 = In-Circuit Deb	it Debugger Mode ugger disabled, R ugger enabled, R	e bit 86/ICSPCLK and F 86/ICSPCLK and F	RB7/ICSPDAT are RB7/ICSPDAT are	general purpose I/O pins dedicated to the debugger					
bit 12	LVP: Low Voltage 1 = RB3/PGM p 0 = RB3 pin is d	Programming Er in has PGM funct ligital I/O, HV on N	nable bit tion, low voltage pro MCLR must be used	gramming enable d for programming	d					
bit 11	FCMEN: Fail-Safe 1 = Fail-Safe Cloc 0 = Fail-Safe Cloc	CMEN: Fail-Safe Clock Monitor Enabled bit = Fail-Safe Clock Monitor is enabled = Fail-Safe Clock Monitor is disabled								
bit 10	IESO: Internal Ext 1 = Internal/Extern 0 = Internal/Extern	ternal Switchover nal Switchover mo nal Switchover mo	bit ode is enabled ode is disabled							
bit 9-8	BOREN<1:0>: Br 11 = BOR enable 10 = BOR enable 01 = BOR control 00 = BOR disable	own-out Reset Se d d during operatior led by SBOREN b d	election bits ⁽¹⁾ n and disabled in Sl bit of the PCON reg	eep ister						
bit 7	CPD: Data Code 1 = Data memory 0 = Data memory	Protection bit ⁽²⁾ code protection is code protection is	s disabled s enabled							
bit 6	CP : Code Protect 1 = Program mem 0 = Program mem	ion bit ⁽³⁾ nory code protecti nory code protecti	on is disabled on is enabled							
bit 5	MCLRE: <u>RE3/MC</u> 1 = RE3/ <u>MCLR</u> pi 0 = RE3/MCLR pi	ER pin function son n function is MCL n function is digita	elect bit ⁽⁴⁾ R al input, MCLR inter	nally tied to VDD						
bit 4	PWRTE: Power-u 1 = PWRT disable 0 = PWRT enable	ip Timer Enable b ed ed	it							
bit 3	WDTE: Watchdog 1 = WDT enabled 0 = WDT disabled	Timer Enable bit and can be enat	bled by SWDTEN b	t of the WDTCON	register					
bit 2-0	FOSC<2:0>: Osci 111 = RC oscillat 110 = RCIO osci 101 = INTOSC oc 100 = INTOSCIC 011 = EC: I/O fur 010 = HS oscillat 001 = XT oscillat 000 = LP oscillat	illator Selection bi tor: CLKOUT function scillator: I/O function scillator: CLKOUT o oscillator: I/O fur notion on RA6/OS tor: High-speed cr or: Crystal/resona or: Low-power cry	its on RA6/OSC2/CLI function on RA6/OS nction on RA6/OS ccion on RA6/OSC C2/CLKOUT pin, C ystal/resonator on I tor on RA6/OSC2/ /stal on RA6/OSC2/	CLKOUT pin, RC (OUT pin, RC on IC2/CLKOUT pin, 2/CLKOUT pin, I/(LKIN on RA7/OSC RA6/OSC2/CLKOI CLKOUT and RA7 (CLKOUT and RA7	on RA7/OSC1/CLKIN RA7/OSC1/CLKIN //O function on RA7/OSC1/CLKIN D function on RA7/OSC1/CLKIN C1/CLKIN UT and RA7/OSC1/CLKIN /OSC1/CLKIN 7/OSC1/CLKIN					
Note 1: 2:	Enabling Brown-out Res	et does not auton M will be erased v	natically enable Pow	wer-up Timer. ection is turned off						

- 3:
- The entire program memory will be erased when the code protection is turned off. When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled. 4:

Register	Address	Power-on Reset	MCLR Reset WDT Reset (Continued) Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out (Continued)
CM2CON1	109h	0000 00	0000 00	uuuu uu
EEDAT	10Ch	0000 0000	0000 0000	uuuu uuuu
EEADR	10Dh	0000 0000	0000 0000	uuuu uuuu
EEDATH	10Eh	00 0000	00 0000	uu uuuu
EEADRH	10Fh	0 0000	0 0000	u uuuu
SRCON	185h	0000 00-0	0000 00-0	uuuu uu-u
BAUDCTL	187h	01-0 0-00	01-0 0-00	uu-u u-uu
ANSEL	188h	1111 1111	1111 1111	uuuu uuuu
ANSELH	189h	1111 1111	1111 1111	uuuu uuuu
EECON1	18Ch	x000	q000	uuuu
EECON2	18Dh			

TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER (CONTINUED)

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

- Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.
 - 2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).
 - **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
 - 4: See Table 14-5 for Reset value for specific condition.
 - **5:** If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.
 - 6: Accessible only when SSPCON register bits SSPM<3:0> = 1001.

TABLE 14-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	010x
MCLR Reset during normal operation	000h	000u uuuu	0uuu
MCLR Reset during Sleep	000h	0001 Ouuu	0uuu
WDT Reset	000h	0000 uuuu	0uuu
WDT Wake-up	PC + 1	uuu0 Ouuu	uuuu
Brown-out Reset	000h	0001 luuu	01u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

14.3 Interrupts

The PIC16F882/883/884/886/887 devices have multiple interrupt sources:

- External Interrupt RB0/INT
- Timer0 Overflow Interrupt
- PORTB Change Interrupts
- 2 Comparator Interrupts
- A/D Interrupt
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt
- EEPROM Data Write Interrupt
- Fail-Safe Clock Monitor Interrupt
- Enhanced CCP Interrupt
- EUSART Receive and Transmit Interrupts
- Ultra Low-Power Wake-up Interrupt
- MSSP Interrupt

The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits.

A Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON, PIE1 and PIE2 registers, respectively. GIE is cleared on Reset.

The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts.

The following interrupt flags are contained in the INTCON register:

- INT Pin Interrupt
- PORTB Change Interrupts
- Timer0 Overflow Interrupt

The peripheral interrupt flags are contained in the PIR1 and PIR2 registers. The corresponding interrupt enable bits are contained in PIE1 and PIE2 registers.

The following interrupt flags are contained in the PIR1 register:

- A/D Interrupt
- EUSART Receive and Transmit Interrupts
- Timer1 Overflow Interrupt
- Synchronous Serial Port (SSP) Interrupt
- Enhanced CCP1 Interrupt
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt

The following interrupt flags are contained in the PIR2 register:

- Fail-Safe Clock Monitor Interrupt
- 2 Comparator Interrupts
- EEPROM Data Write Interrupt
- Ultra Low-Power Wake-up Interrupt
- CCP2 Interrupt

When an interrupt is serviced:

- The GIE is cleared to disable any further interrupt.
- The return address is pushed onto the stack.
- The PC is loaded with 0004h.

For external interrupt events, such as the INT pin, PORTB change interrupts, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 14-8). The latency is the same for one or two-cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

- Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again.

For additional information on Timer1, Timer2, comparators, A/D, data EEPROM, EUSART, MSSP or Enhanced CCP modules, refer to the respective peripheral section.

14.3.1 RB0/INT INTERRUPT

External interrupt on RB0/INT pin is edge-triggered; either rising if the INTEDG bit (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up (0004h). See Section 14.6 "Power-Down Mode (Sleep)" for details on Sleep and Figure 14-10 for timing of wake-up from Sleep through RB0/INT interrupt.

PIC16F882/883/884/886/887

FIGURE 17-1: PIC16F882/883/884/886/887 VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA \leq +125°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

17.2 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended)

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param	Device Characteristics	Min			Units	Conditions		
No.	Device Characteristics	MIN.	турт	max.		Vdd	Note	
D010	Supply Current (IDD) ^(1, 2)	—	13	19	μA	2.0	Fosc = 32 kHz	
		—	22	30	μA	3.0	LP Oscillator mode	
		—	33	60	μA	5.0		
D011*		_	180	250	μA	2.0	Fosc = 1 MHz	
		—	290	400	μA	3.0	XT Oscillator mode	
		_	490	650	μA	5.0		
D012		_	280	380	μA	2.0	Fosc = 4 MHz	
		—	480	670	μA	3.0	XT Oscillator mode	
		—	0.9	1.4	mA	5.0		
D013*			170	295	μA	2.0	Fosc = 1 MHz	
		—	280	480	μA	3.0	EC Oscillator mode	
		—	470	690	μA	5.0		
D014			290	450	μA	2.0	Fosc = 4 MHz	
		—	490	720	μA	3.0	EC Oscillator mode	
		—	0.85	1.3	mA	5.0		
D015		_	8	20	μA	2.0	Fosc = 31 kHz	
		—	16	40	μA	3.0	LFINTOSC mode	
		—	31	65	μA	5.0		
D016*		_	416	520	μA	2.0	Fosc = 4 MHz	
		—	640	840	μA	3.0	HFINTOSC mode	
		—	1.13	1.6	mA	5.0		
D017		_	0.65	0.9	mA	2.0	Fosc = 8 MHz	
		—	1.01	1.3	mA	3.0	HFINTOSC mode	
		—	1.86	2.3	mA	5.0		
D018		_	340	580	μA	2.0	Fosc = 4 MHz	
			550	900	μΑ	3.0	EXTRC mode ⁽³⁾	
		—	0.92	1.4	mA	5.0		
D019			3.8	4.7	mA	4.5	Fosc = 20 MHz	
		—	4.0	4.8	mA	5.0	HS Oscillator mode	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

17.8 AC Characteristics: PIC16F882/883/884/886/887 (Industrial, Extended)

FIGURE 17-4: CLOCK TIMING

TABLE 17-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Oscillator mode
			DC		4	MHz	XT Oscillator mode
			DC		20	MHz	HS Oscillator mode
			DC		20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	—	32.768		kHz	LP Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			1	_	20	MHz	HS Oscillator mode
			DC		4	MHz	RC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	٠	μS	LP Oscillator mode
			250	_	•	ns	XT Oscillator mode
			50	_	•	ns	HS Oscillator mode
			50		•	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	_	30.5	_	μS	LP Oscillator mode
			250	_	10,000	ns	XT Oscillator mode
			50		1,000	ns	HS Oscillator mode
			250	_	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC
OS04*	TosH,	External CLKIN High,	2	_	_	μS	LP oscillator
	TosL	External CLKIN Low	100		—	ns	XT oscillator
			20	_	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0		•	ns	LP oscillator
	TosF	External CLKIN Fall	0		•	ns	XT oscillator
			0		•	ns	HS oscillator

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and

Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for

all devices.

are not tested.

†

Note 1:

TABLE 17-7: COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristics		Min.	Тур†	Max.	Units	Comments		
CM01	Vos	Input Offset Voltage		—	± 5.0	± 10	mV	(Vdd - 1.5)/2		
CM02	Vcm	Input Common Mode Voltage		0	_	Vdd - 1.5	V			
CM03*	CMRR	Common Mode Rejection Ratio		+55		_	dB			
CM04*	Trt	Response Time	Falling	_	150	600	ns	(Note 1)		
			Rising	_	200	1000	ns			
CM05*	Тмс2coV	Comparator Mode Change to Output Valid			_	10	μS			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 17-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$

Param No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments			
CV01*	CLSB	Step Size ⁽²⁾	—	VDD/24 VDD/32		V V	Low Range (VRR = 1) High Range (VRR = 0)			
CV02*	CACC	Absolute Accuracy	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)			
CV03*	CR	Unit Resistor Value (R)	_	2k	_	Ω				
CV04*	CST	Settling Time ⁽¹⁾	—	_	10	μS				

These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.
 - 2: See Section 8.10 "Comparator Voltage Reference" for more information.

TABLE 17-9: VOLTAGE (VR) REFERENCE SPECIFICATIONS

VR Voltage Reference Specifications			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Param No. Symbol Characteristics		Min.	Тур.	Max.	Units	Comments	
VR01	Vrout	VR voltage output	0.5	0.6	0.7	V		
VR02*	TSTABLE	Settling Time	—	10	100*	μS		

These parameters are characterized but not tested.

17.9 High Temperature Operation

This section outlines the specifications for the following devices operating in the high temperature range between -40° C and 150° C.⁽⁴⁾

- PIC16F886
- PIC16F887

When the value of any parameter is identical for both the 125°C Extended and the 150°C High Temp. temperature ranges, then that value will be found in the standard specification tables shown earlier in this chapter, under the fields listed for the 125°C Extended temperature range. If the value of any parameter is unique to the 150°C High Temp. temperature range, then it will be listed here, in this section of the data sheet.

If a Silicon Errata exists for the product and it lists a modification to the 125°C Extended temperature range value, one that is also shared at the 150°C high temp. temperature range, then that modified value will apply to both temperature ranges.

- Note 1: Writes are <u>not allowed</u> for Flash program memory above 125°C.
 - The temperature range indicator in the catalog part number and device marking is "H" for -40°C to 150°C.

Example: PIC16F887T-H/PT indicates the device is shipped in a Tape and reel configuration, in the TQFP package, and is rated for operation from -40°C to 150°C.

- The +150°C version of the PIC16F886 and PIC16F887 will not be offered in PDIP. It will only be offered in SSOP, SOIC, QFN and TQFP.
- 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.

Parameter	Source/Sink	Value	Units
Max. Current: VDD	Source	20	mA
Max. Current: Vss	Sink	50	mA
Max. Current: Pin	Source	5	mA
Max. Current: Pin	Sink	10	mA
Max. Pin Current: at VOH	Source	3	mA
Max. Pin Current: at VoL	Sink	8.5	mA
Max. Port Current: A, B, and C combined	Source	20	mA
Max. Port Current: A, B, and C combined	Sink	50	mA
Max. Junction Temperature		155	°C

TABLE 17-17: ABSOLUTE MAXIMUM RATINGS

Note: Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS							
Dimension	Limits	MIN	NOM	MAX				
Number of Pins	Ν	28						
Pitch	e		1.27 BSC					
Overall Height	А	-						
Molded Package Thickness	A2	2.05	I	-				
Standoff §	A1	0.10	-	0.30				
Overall Width	E		10.30 BSC					
Molded Package Width	E1	7.50 BSC						
Overall Length	D	17.90 BSC						
Chamfer (Optional)	h	0.25	I	0.75				
Foot Length	L	0.40	-	1.27				
Footprint	L1	1.40 REF						
Lead Angle	Θ	0°	-	-				
Foot Angle	φ	0°	-	8°				
Lead Thickness	С	0.18	-	0.33				
Lead Width	b	0.31	-	0.51				
Mold Draft Angle Top	α	5°	_	15°				
Mold Draft Angle Bottom	β	5°	-	15°				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2