

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f886-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Davias	Program Memory	Data N	Data Memory		10-bit A/D	ECCP/	EUSART	MSSP	Commonatorio	Timers	
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	I/O	(ch)	ССР	EUSARI	MOOP	Comparators	8/16-bit	
PIC16F882	2048	128	128	24	11	1/1	1	1	2	2/1	
PIC16F883	4096	256	256	24	11	1/1	1	1	2	2/1	
PIC16F884	4096	256	256	35	14	1/1	1	1	2	2/1	
PIC16F886	8192	368	256	24	11	1/1	1	1	2	2/1	
PIC16F887	8192	368	256	35	14	1/1	1	1	2	2/1	

PIC16F882/883/884/886/887 Family Types

TABL	E 5:	5: 44-PIN TQFP ALLOCATION TABLE (PIC16F884/887)								
0/1	44-Pin TQFP	Analog	Comparators	Timers	ECCP	EUSART	MSSP	Interrupt	Pull-up	Basic
RA0	19	AN0/ULPWU	C12IN0-	—	—		—	—	_	—
RA1	20	AN1	C12IN1-	—	—	_	—	—	_	_
RA2	21	AN2	C2IN+	—	—	_	—	—	—	VREF-/CVREF
RA3	22	AN3	C1IN+	—	—	_	—	—	_	VREF+
RA4	23	—	C1OUT	TOCKI	—		—	_		—
RA5	24	AN4	C2OUT	—	—		SS	—	_	—
RA6	31	—	—	—	—		—	—		OSC2/CLKOUT
RA7	30	—	—	—	—		—	—	_	OSC1/CLKIN
RB0	8	AN12	—	—	—	_	_	IOC/INT	Y	—
RB1	9	AN10	C12IN3-	—	—	-	—	IOC	Y	—
RB2	10	AN8	—	—	—		—	IOC	Y	—
RB3	11	AN9	C12IN2-	—	—	-	—	IOC	Y	PGM
RB4	14	AN11	—	—	_	_	_	IOC	Y	—
RB5	15	AN13	_	T1G	—	_	_	IOC	Y	_
RB6	16	—	—	—	_	_	_	IOC	Y	ICSPCLK
RB7	17	—	_	—	_	_	_	IOC	Y	ICSPDAT
RC0	32	—	_	T1OSO/T1CKI	_	_	_	_		_
RC1	35	—		T1OSI	CCP2	_	_	_	_	_
RC2	36		—	_	CCP1/P1A	_	_	—	_	_
RC3	37				_		SCK/SCL	_		
RC4	42		—	_	—	_	SDI/SDA	—	_	_
RC5	43				_		SDO	_		
RC6	44	_	_	_	—	TX/CK	_	—	—	_
RC7	1		_	_	_	RX/DT	_	—		_
RD0	38		_		_	_	_	—		
RD1	39		_		_		_	_		_
RD2	40		_		_	_	_	—		
RD3	41				_		_	_		
RD4	2	_	_	_	—	_	_	—	—	_
RD5	3				P1B		_	_		_
RD6	4		—	_	P1C	_	_	—	_	_
RD7	5		_	_	P1D		_	—		_
RE0	25	AN5	_	_	_	_	_	_		_
RE1	26	AN6	_	_	_		_	—		_
RE2	27	AN7		—	—	_	—		_	_
RE3	18	_	_	_	_	_	_	_	Y(1)	MCLR/VPP
	7			—			_		_	Vdd
_	28	_	_	_	_	_	_	_	_	Vdd
_	6		_	_	_	_	_	_		Vss
	13	_	_		_	_	_	—	_	NC (no connect)
	29	_	_		_	_	_	_		Vss
	34	_	_	_	_	_	_	_	_	NC (no connect)
	33	_	_	_	—		_	_		NC (no connect)
_	12	_	_	_	_	_	_	_	_	NC (no connect)
L		L			1	1	1	I		, -7

Note 1: Pull-up activated only with external MCLR configuration.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2	2										
100h	INDF	Addressing	g this locatio	n uses conte	ents of FSR to a	address data	memory (not	t a physical r	egister)	XXXX XXXX	xxxx xxxx
101h	TMR0	Timer0 Mo	dule Registe	er						XXXX XXXX	uuuu uuuu
102h	PCL	Program C	ounter's (PC	C) Least Sigr	nificant Byte					0000 0000	0000 0000
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu (3)
104h	FSR	Indirect Da	ta Memory A	Address Poir	nter					xxxx xxxx	uuuu uuuu
105h	WDTCON	—	—	—	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	0 1000
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	0000 0000
107h	CM1CON0	C10N	C1OUT	C1OE	C1POL	_	C1R	C1CH1	C1CH0	0000 -000	0000 0-00
108h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2R	C2CH1	C2CH0	0000 -000	0000 0-00
109h	CM2CON1	MC1OUT	MC2OUT	C1RSEL	C2RSEL	_	_	T1GSS	C2SYNC	000010	0000 00
10Ah	PCLATH	_	_	_	Write Buff	er for the up	per 5 bits of t	he Program	Counter	0 0000	0 0000
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF ⁽¹⁾	0000 000x	0000 000u
10Ch	EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	0000 0000
10Dh	EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	0000 0000
10Eh	EEDATH	—	—	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	00 0000
10Fh	EEADRH	_	_	_	EEADRH4 ⁽²⁾	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0000	0 0000

TABLE 2-3: PIC16F882/883/884/886/887 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented **Note 1:** MCLR and WDT Reset does not affect the previous value data latch. The RBIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F886/PIC16F887 only.

3: See Table 14-5 for Reset value for specific condition.

TABLE 2-4:	PIC16F882/883/884/886/887 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	ank 3										
180h	INDF	Addressing	this location	n uses conte	ents of FSR	to address of	data memory	/ (not a phys	ical register)	xxxx xxxx	xxxx xxxx
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h	PCL	Program C	ounter's (PC	C) Least Sigr	nificant Byte	9				0000 0000	0000 0000
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu (3)
184h	FSR	Indirect Da	ta Memory A	Address Poir	nter					xxxx xxxx	uuuu uuuu
185h	SRCON	SR1	SR0	C1SEN	C2REN	PULSS	PULSR	—	FVREN	0000 00-0	0000 00-0
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
187h	BAUDCTL	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	01-0 0-00	01-0 0-00
188h	ANSEL	ANS7 ⁽²⁾	ANS6 ⁽²⁾	ANS5 ⁽²⁾	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
189h	ANSELH		_	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	11 1111	1111 1111
18Ah	PCLATH		_		Write Buffe	er for the up	per 5 bits of	the Program	Counter	0 0000	0 0000
18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF ⁽¹⁾	0000 000x	0000 000u
18Ch	EECON1	EEPGD	_	-		WRERR	WREN	WR	RD	x x000	q000
18Dh	EECON2	EEPROM	EPROM Control Register 2 (not a physical register)								

Legend:-= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplementedNote1:MCLR and WDT Reset does not affect the previous value data latch. The RBIF bit will be cleared upon Reset but will set again if the mismatch exists.

2: PIC16F884/PIC16F887 only.

3: See Table 14-5 for Reset value for specific condition.

4.4.4 EXTERNAL RC MODES

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO.

In RC mode, the RC circuit connects to OSC1. OSC2/ CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 4-5 shows the external RC mode connections.

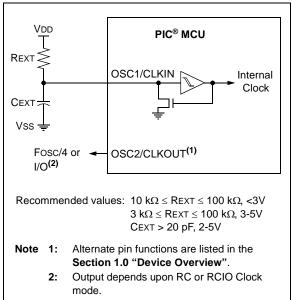


FIGURE 4-5: EXTERNAL RC MODES

In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

4.5 Internal Clock Modes

The oscillator module has two independent, internal oscillators that can be configured or selected as the system clock source.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 8 MHz. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 4-2).
- 2. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register.

The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS) bit of the OSCCON register. See **Section 4.6** "**Clock Switching**" for more information.

4.5.1 INTOSC AND INTOSCIO MODES

The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the Configuration Word Register 1 (CONFIG1).

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements.

In **INTOSCIO** mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O.

4.5.2 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 8 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 4-2).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 4-1). One of seven frequencies can be selected via software using the IRCF<2:0> bits of the OSCCON register. See **Section 4.5.4 "Frequency Select Bits (IRCF)"** for more information.

The HFINTOSC is enabled by selecting any frequency between 8 MHz and 125 kHz by setting the IRCF<2:0> bits of the OSCCON register \neq 000. Then, set the System Clock Source (SCS) bit of the OSCCON register to '1' or enable Two-Speed Start-up by setting the IESO bit in the Configuration Word Register 1 (CONFIG1) to '1'.

The HF Internal Oscillator (HTS) bit of the OSCCON register indicates whether the HFINTOSC is stable or not.

8.8 Additional Comparator Features

There are three additional comparator features:

- Timer1 count enable (gate)
- Synchronizing output with Timer1
- Simultaneous read of comparator outputs

8.8.1 COMPARATOR C2 GATING TIMER1

This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CM2CON1 register will enable Timer1 to increment based on the output of Comparator C2. This requires that Timer1 is on and gating is enabled. See **Section 6.0 "Timer1 Module with Gate Control"** for details.

It is recommended to synchronize the comparator with Timer1 by setting the C2SYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment.

8.8.2 SYNCHRONIZING COMPARATOR C2 OUTPUT TO TIMER1

The Comparator C2 output can be synchronized with Timer1 by setting the C2SYNC bit of the CM2CON1 register. When enabled, the C2 output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figures 8-2 and 8-3) and the Timer1 Block Diagram (Figure 6-1) for more information.

8.8.3 SIMULTANEOUS COMPARATOR OUTPUT READ

The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

Note 1: Obtaining the status of C1OUT or C2OUT by reading CM2CON1 does not affect the comparator interrupt mismatch registers.

REGISTER 8-3: CM2CON1: COMPARATOR C2 CONTROL REGISTER 1

R-0	R-0	R/W-0	R/W-0	U-0	U-0	R/W-1	R/W-0
MC1OUT	MC2OUT	C1RSEL	C2RSEL	—		T1GSS	C2SYNC
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	MC10UT: Mirror Copy of C10UT bit
bit 6	MC2OUT: Mirror Copy of C2OUT bit
bit 5	C1RSEL: Comparator C1 Reference Select bit
	1 = CVREF routed to C1VREF input of Comparator C1
	 0 = Absolute voltage reference (0.6) routed to C1VREF input of Comparator C1 (or 1.2V precision reference on parts so equipped)
bit 4	C2RSEL: Comparator C2 Reference Select bit
	1 = CVREF routed to C2VREF input of Comparator C2
	0 = Absolute voltage reference (0.6) routed to C2VREF input of Comparator C2 (or 1.2V precision
	reference on parts so equipped)
bit 3-2	Unimplemented: Read as '0'
bit 1	T1GSS: Timer1 Gate Source Select bit
	1 = Timer1 gate source is $\overline{T1G}$
	0 = Timer1 gate source is SYNCC2OUT.
bit 0	C2SYNC: Comparator C2 Output Synchronization bit
	1 = Output is synchronous to falling edge of Timer1 clock
	0 = Output is asynchronous

10.1.4 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must write the Least and Most Significant address bits to the EEADR and EEADRH registers, set the EEPGD control bit of the EECON1 register, and then set control bit RD. Once the read control bit is set, the program memory Flash controller will use the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDAT and EEDATH registers; therefore, it can be read as two bytes in the following instructions.

EEDAT and EEDATH registers will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set.
 - If the WR bit is set when EEPGD = 1, it will be immediately reset to '0' and no operation will take place.

EXAMPLE 10-3: FLASH PROGRAM READ

	BANKSEL	EEADR	;
	MOVLW	MS_PROG_EE_ADDR	;
	MOVWF	EEADRH	;MS Byte of Program Address to read
	MOVLW	LS_PROG_EE_ADDR	;
	MOVWF	EEADR	;LS Byte of Program Address to read
	BANKSEL	EECON1	;
	BSF	EECON1, EEPGD	;Point to PROGRAM memory
pa eo	BSF	EECON1, RD	;EE Read
Required Sequence	NOP		;First instruction after BSF EECON1,RD executes normally
	NOP		;Any instructions here are ignored as program
			;memory is read in second cycle after BSF EECON1,RD
;			
	BANKSEL		;
	MOVF	EEDAT, W	;W = LS Byte of Program Memory
	MOVWF	LOWPMBYTE	i
	MOVF	EEDATH, W	;W = MS Byte of Program EEDAT
	MOVWF	HIGHPMBYTE	;
	BCF	STATUS, RP1	;Bank 0

11.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 11-2 is used to calculate the PWM pulse width.

Equation 11-3 is used to calculate the PWM duty cycle ratio.

EQUATION 11-2: PULSE WIDTH

Pulse Width = (CCPRxL:CCPxCON<5:4>) • Tosc • (TMR2 Prescale Value)

EQUATION 11-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 11-3).

11.5.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

11.5.5 CHANGES IN SYSTEM CLOCK FREQUENCY

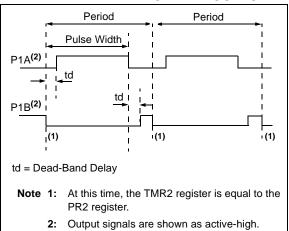
The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

11.5.6 EFFECTS OF RESET

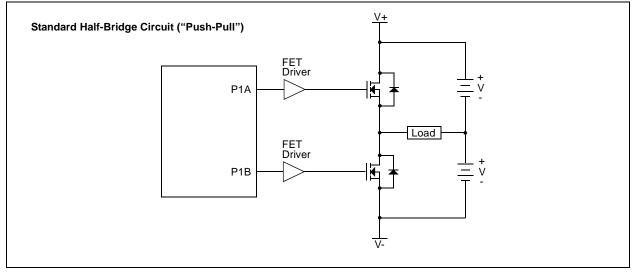
Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

11.5.7 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:


- 1. Disable the PWM pin (CCPx) output drivers as an input by setting the associated TRIS bit.
- 2. Set the PWM period by loading the PR2 register.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Set the PWM duty cycle by loading the CCPRxL register and DCxB<1:0> bits of the CCPxCON register.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register.
 - Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output after a new PWM cycle has started:
 - Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set).
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.

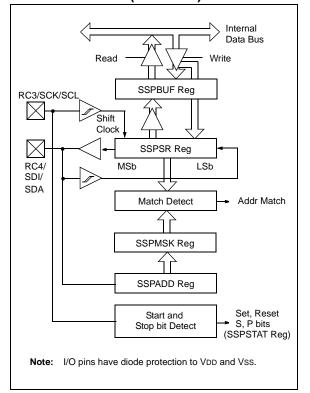
11.6.6 PROGRAMMABLE DEAD-BAND DELAY MODE


In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-17 for illustration. The lower seven bits of the associated PWM1CON register (Register 11-4) sets the delay period in terms of microcontroller instruction cycles (Tcy or 4 Tosc).

FIGURE 11-17: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-18: EXAMPLE OF HALF-BRIDGE APPLICATIONS


13.4 MSSP I²C Operation

The MSSP module in I²C mode, fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware, to determine a free bus (Multi-Master mode). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The MSSP module functions are enabled by setting MSSP Enable bit SSPEN of the SSPCON register.

FIGURE 13-6: MSSP BLOCK DIAGRAM (I²C MODE)

The MSSP module has these six registers for I^2C operation:

- MSSP Control Register 1 (SSPCON)
- MSSP Control Register 2 (SSPCON2)
- MSSP STATUS register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address register (SSPADD)
- MSSP Mask register (SSPMSK)

The SSPCON register allows control of the I^2C operation. The SSPM<3:0> mode selection bits (SSPCON register) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock = OSC/4 (SSPADD +1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address), with Start and Stop bit interrupts enabled
- I²C firmware controlled master operation, slave is idle

Selection of any I^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed to be inputs by setting the appropriate TRISC bits.

13.4.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

If either or both of the following <u>conditions</u> are true, the MSSP module will not give this ACK pulse:

- a) The buffer full bit BF (SSPCON register) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON register) was set before the transfer was received.

In this event, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF of the PIR1 register is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

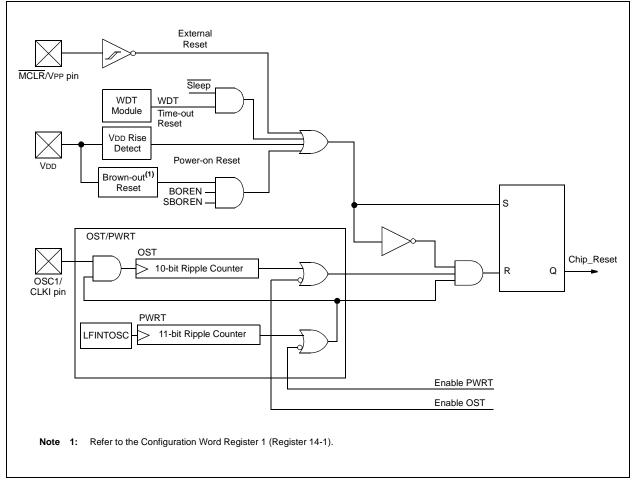
The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter #100 and parameter #101.

14.2 Reset

The PIC16F882/883/884/886/887 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:


- Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

They are not affected by a WDT Wake-up since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 14-2. These bits are used in software to determine the nature of the Reset. See Table 14-5 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 14-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 17.0** "**Electrical Specifications**" for pulse-width specifications.

FIGURE 14-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVW OPTION F
	Before Instruction
	OPTION = 0xFF
	W = 0x4F
	After Instruction
	OPTION = 0x4F
	W = 0x4F

MOVLW	Move literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.						
Words:	1						
Cycles:	1						
Example:	MOVLW 0x5A						
	After Instruction W = 0x5A						

NOP	No Operation				
Syntax:	[label] NOP				
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Description:	No operation.				
Words:	1				
Cycles:	1				
Example:	NOP				

16.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

16.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

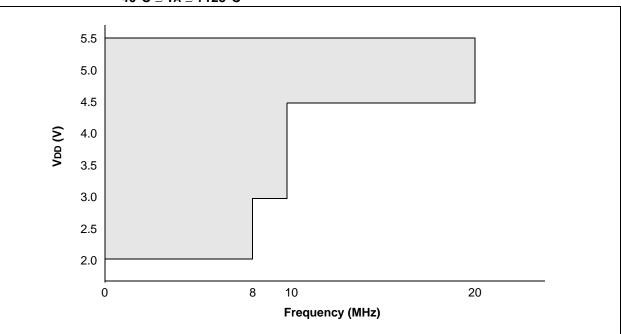
The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

16.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.


16.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).


16.10 MPLAB PM3 Device Programmer

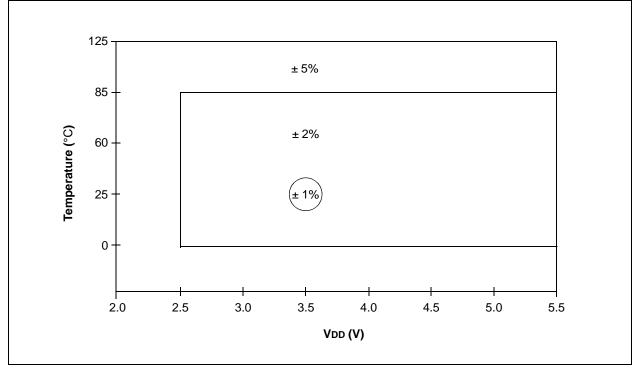

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

FIGURE 17-1: PIC16F882/883/884/886/887 VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA \leq +125°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

17.5 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended)

DC CHARACTERISTICS					(unless otherwise stated) $C \le TA \le +85^{\circ}C$ for industrial $C \le TA \le +125^{\circ}C$ for extended		
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O Port:					
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			Vss	—	0.15 Vdd	V	$2.0V \le VDD \le 4.5V$
D031		with Schmitt Trigger buf- fer	Vss	_	0.2 Vdd	V	$2.0V \leq V\text{dd} \leq 5.5V$
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	Vss	_	0.2 Vdd	V	
D033		OSC1 (XT and LP modes)	Vss	—	0.3	V	
D033A		OSC1 (HS mode)	Vss	_	0.3 Vdd	V	
	Vih	Input High Voltage					
_		I/O ports:		—			
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25 VDD + 0.8	—	Vdd	V	$2.0V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer		—	Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$
D042		MCLR	0.8 Vdd	—	Vdd	V	
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	
D043A		OSC1 (HS mode)	0.7 Vdd	—	Vdd	V	
D043B		OSC1 (RC mode)	0.9 Vdd	—	Vdd	V	(Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O ports	—	± 0.1	± 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μΑ	$VSS \leq VPIN \leq VDD$
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP oscillator configuration
D070*	IPUR	PORTB Weak Pull-up Cur- rent	50	250	400	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁵⁾					
D080		I/O ports	_	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)
D090	Vон	Output High Voltage ⁽⁵⁾ I/O ports	Vdd - 0.7	_	_	V	Іон = -3.0 mA, Vdd = 4.5V (Ind.)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: See Section 10.3.1 "Using the Data EEPROM" for additional information.

5: Including OSC2 in CLKOUT mode.

17.5 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended) (Continued)

DC CHARACTERISTICS		Standard Operating Co Operating temperature		nditions (unless otherwise stated) -40°C ≤ TA ≤ +85°C for industrial -40°C ≤ TA ≤ +125°C for extended			
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D100	IULP	Ultra Low-Power Wake-Up Current	_	200	_	nA	See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)
		Capacitive Loading Specs on Output Pins					
D101*	COSC2	OSC2 pin	_	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A *	Сю	All I/O pins	_	—	50	pF	
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K	1M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
D120A	ED	Byte Endurance	10K	100K	_	E/W	$+85^{\circ}C \leq TA \leq +125^{\circ}C$
D121	Vdrw	VDD for Read/Write	Vmin	-	5.5	V	Using EECON1 to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	_	5	6	ms	
D123	Tretd	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽⁴⁾	1M	10M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$
D130A	ED	Cell Endurance	1K	10K	—	E/W	$+85^{\circ}C \leq TA \leq +125^{\circ}C$
D131	Vpr	VDD for Read	Vmin	—	5.5	V	VMIN = Minimum operating voltage
D132	VPEW	VDD for Row Erase/Write	VMIN		5.5	V	
		VDD for Bulk Erase Opera- tions	4.5	-	5.5	V	
D133	TPEW	Erase/Write cycle time	—	2	2.5	ms	
D134	Tretd	Characteristic Retention	40	-	—	Year	Provided no other specifications are violated

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

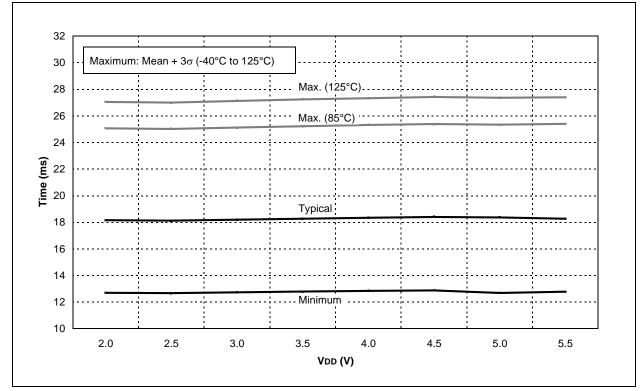
4: See Section 10.3.1 "Using the Data EEPROM" for additional information.

5: Including OSC2 in CLKOUT mode.

TABLE 17-10: PIC16F882/883/884/886/887 A/D CONVERTER (ADC) CHARACTERISTICS

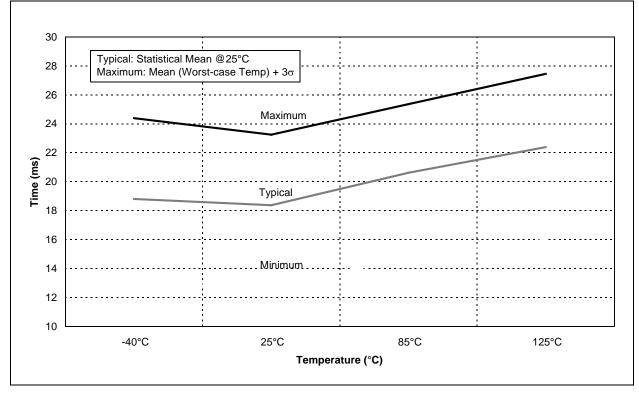
Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD01	NR	Resolution	—	_	10 bits	bit	
AD02	EIL	Integral Error		—	±1	LSb	VREF = 5.12V
AD03	Edl	Differential Error		_	±1	LSb	No missing codes to 10 bits VREF = 5.12V
AD04	EOFF	Offset Error	0	+1.5	+3.0	LSb	VREF = 5.12V
AD07	Egn	Gain Error	_	_	±1	LSb	VREF = 5.12V
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.7		— Vdd	V	Absolute minimum to ensure 1 LSb accuracy
AD07	VAIN	Full-Scale Range	Vss	_	Vref	V	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	
AD09*	IREF	VREF Input Current ⁽³⁾	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.
			_	_	50	μA	During A/D conversion cycle.

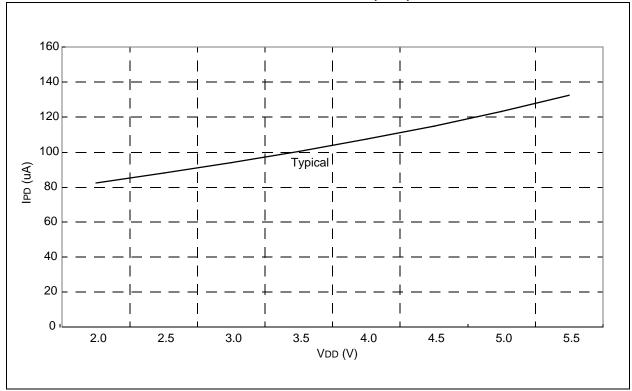
* These parameters are characterized but not tested.

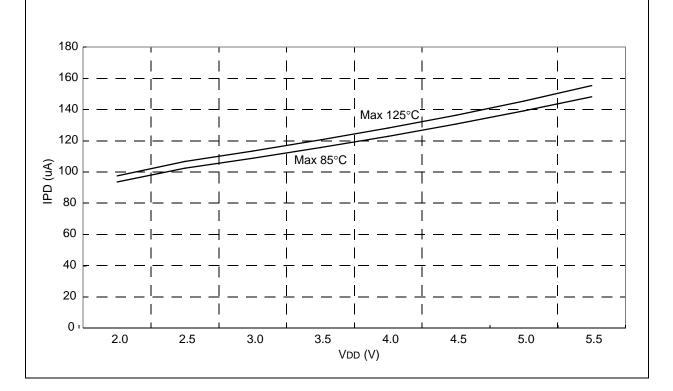

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

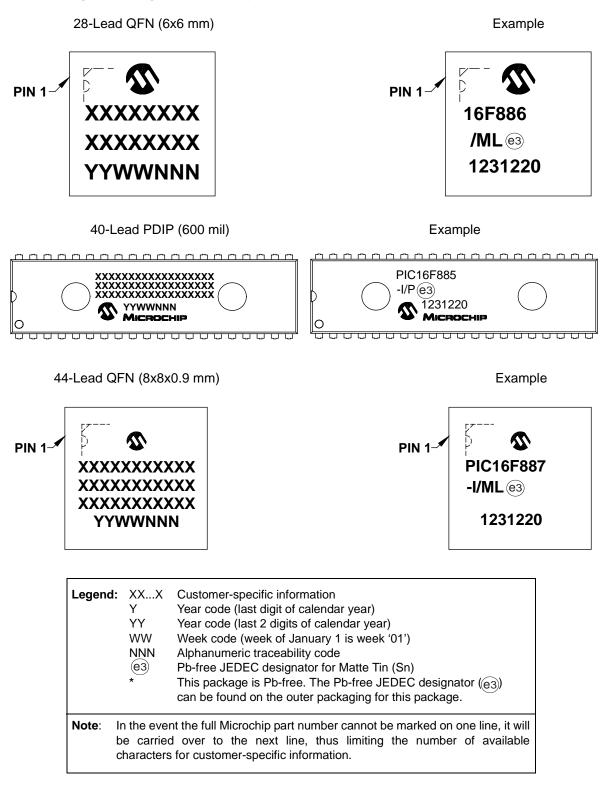
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.


3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.


4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.





19.1 Package Marking Information (Continued)

