

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f886-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/AN0/ULPWU/C12IN0-	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	—	A/D Channel 0 input.
	ULPWU	AN	—	Ultra Low-Power Wake-up input.
	C12IN0-	AN	—	Comparator C1 or C2 negative input.
RA1/AN1/C12IN1-	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	—	A/D Channel 1 input.
	C12IN1-	AN	—	Comparator C1 or C2 negative input.
RA2/AN2/VREF-/CVREF/C2IN+	RA2	TTL	CMOS	General purpose I/O.
	AN2	AN	—	A/D Channel 2.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	CVREF	—	AN	Comparator Voltage Reference output.
	C2IN+	AN	—	Comparator C2 positive input.
RA3/AN3/VREF+/C1IN+	RA3	TTL	CMOS	General purpose I/O.
	AN3	AN	_	A/D Channel 3.
	Vref+	AN	—	A/D Positive Voltage Reference input.
	C1IN+	AN	_	Comparator C1 positive input.
RA4/T0CKI/C1OUT	RA4	TTL	CMOS	General purpose I/O.
	TOCKI	ST	—	Timer0 clock input.
	C10UT	—	CMOS	Comparator C1 output.
RA5/AN4/SS/C2OUT	RA5	TTL	CMOS	General purpose I/O.
	AN4	AN	—	A/D Channel 4.
	SS	ST	_	Slave Select input.
	C2OUT	—	CMOS	Comparator C2 output.
RA6/OSC2/CLKOUT	RA6	TTL	CMOS	General purpose I/O.
	OSC2	_	XTAL	Crystal/Resonator.
	CLKOUT	_	CMOS	Fosc/4 output.
RA7/OSC1/CLKIN	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL	—	Crystal/Resonator.
	CLKIN	ST	—	External clock input/RC oscillator connection.
RB0/AN12/INT	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN12	AN	—	A/D Channel 12.
	INT	ST	—	External interrupt.
RB1/AN10/C12IN3-	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN10	AN	—	A/D Channel 10.
	C12IN3-	AN	—	Comparator C1 or C2 negative input.
RB2/AN8	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN8	AN	_	A/D Channel 8.
RB3/AN9/PGM/C12IN2-	RB3	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
AN9		AN	—	A/D Channel 9.
	PGM ST			Low-voltage ICSP™ Programming enable pin.
	C12IN2-	AN	—	Comparator C1 or C2 negative input.
Legend: AN = Analog input TTL = TTL compati HV = High Voltage	or output ble input	CMOS ST XTAL	= CMO = Schm = Cryst	S compatible input or output OD = Open-Drain itt Trigger input with CMOS levels al

TABLE 1-2: PIC16F884/887 PINOUT DESCRIPTION

4.5.2.1 OSCTUNE Register

The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 4-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

REGISTER 4-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	TUN4	TUN3	TUN2	TUN1	TUN0	
bit 7			•	•	·		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TUN<4:0>: Frequency Tuning bits
	01111 = Maximum frequency
	01110 =
	•
	•
	•
	00001 = 00000 = Oscillator module is running at the factory-calibrated frequency.
	11111 =
	•
	•
	•
	10000 = Minimum frequency

4.7.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<2:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

4.7.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word Register 1 (CONFIG1), or the internal oscillator.

FIGURE 4-7: TWO-SPEED START-UP

6.12 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER DEFINITIONS: TIMER1 CONTROL

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T1GINV ⁽¹⁾	TMR1GE ⁽²⁾	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	T1GINV: Timer1 Gate Invert bit ⁽¹⁾
	 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)
bit 6	TMR1GE: Timer1 Gate Enable bit ⁽²⁾
	<u>If TMR1ON = 0:</u> This bit is ignored <u>If TMR1ON = 1:</u> 1 = Timer1 counting is controlled by the Timer1 Gate function 0 = Timer1 is always counting
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1:8 Prescale Value 10 = 1:4 Prescale Value 01 = 1:2 Prescale Value 00 = 1:1 Prescale Value
bit 3	T1OSCEN: LP Oscillator Enable Control bit
	 1 = LP oscillator is enabled for Timer1 clock 0 = LP oscillator is off
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit
	<u>TMR1CS = 1:</u> 1 = Do not synchronize external clock input 0 = Synchronize external clock input <u>TMR1CS = 0:</u> This bit is ignored. Timer1 uses the internal clock
bit 1	TMR1CS: Timer1 Clock Source Select bit
	1 = External clock from T1CKI pin (on the rising edge)0 = Internal clock (Fosc/4)
bit 0	TMR1ON: Timer1 On bit
	1 = Enables Timer10 = Stops Timer1
Note 1:	T1GINV bit inverts the Timer1 gate logic, regardless of source.

2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CM2CON1 register, as a Timer1 gate source.

8.2 Comparator Control

Each comparator has a separate control and Configuration register: CM1CON0 for Comparator C1 and CM2CON0 for Comparator C2. In addition, Comparator C2 has a second control register, CM2CON1, for controlling the interaction with Timer1 and simultaneous reading of both comparator outputs.

The CM1CON0 and CM2CON0 registers (see Registers 8-1 and 8-2, respectively) contain the control and Status bits for the following:

- Enable
- Input selection
- Reference selection
- Output selection
- Output polarity

8.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

8.2.2 COMPARATOR INPUT SELECTION

The CxCH<1:0> bits of the CMxCON0 register direct one of four analog input pins to the comparator inverting input.

Note:	To use C <u>x</u> IN+ and C <u>x</u> IN- pins as analog
	inputs, the appropriate bits must be set in
	the ANSEL and ANSELH registers and
	the corresponding TRIS bits must also be
	set to disable the output drivers.

8.2.3 COMPARATOR REFERENCE SELECTION

Setting the CxR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 8.10 "Comparator Voltage Reference"** for more information on the internal voltage reference module.

8.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CM2CON1 register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

Note 1: The CxOE bit overrides the PORT data latch. Setting the CxON has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

8.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 8-1 shows the output state versus input conditions, including polarity control.

TABLE 8-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVIN - > CxVIN +	0	0
CxVIN- < CxVIN+	0	1
CxVIN - > CxVIN +	1	1
CxVIN- < CxVIN+	1	0

8.3 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference specifications in **Section 17.0 "Electrical Specifications"** for more details. An example of the complete 8-word write sequence is shown in Example 10-4. The initial address is loaded into the EEADRH and EEADR register pair; the eight words of data are loaded using indirect addressing.

EXAMPLE 10-4: WRITING TO FLASH PROGRAM MEMORY

```
*****
       ; This write routine assumes the following:
           A valid starting address (the least significant bits = '000')
       ;
           is loaded in ADDRH:ADDRL
       ;
       ;
           ADDRH, ADDRL and DATADDR are all located in data memory
       ;
      BANKSEL EEADRH
      MOVF
              ADDRH,W
                        ; Load initial address
      MOVWF
              EEADRH
      MOVF
              ADDRL,W
      MOVWF
              EEADR
              DATAADDR,W ; Load initial data address
      MOVF
      MOVWF FSR
LOOP
      MOVF
             INDF,W
                       ; Load first data byte into lower
                       ;
      MOVWF EEDATA
                       ; Next byte
      INCE
              FSR,F
                       ; Load second data byte into upper
      MOVF
              INDF,W
      MOVWF
              EEDATH
      INCF
              FSR,F
      BANKSEL EECON1
              EECON1, EEPGD ; Point to program memory
      BSF
              EECON1,WREN ; Enable writes
      BSF
      BCF
              INTCON,GIE ; Disable interrupts (if using)
      BTFSC INTCON, GIE ; See AN576
      GOTO
              $-2
      Required Sequence
       ;
      MOVLW
              55h
                         ; Start of required write sequence:
              EECON2
      MOVWF
                        ; Write 55h
            0AAh
      MOVLW
                        ;
      MOVWF EECON2
                       ; Write OAAh
      BSF
              EECON1,WR ; Set WR bit to begin write
      NOP
                         ; Required to transfer data to the buffer
      NOP
                         ; registers
      BCF
              EECON1,WREN ; Disable writes
      BSF
              INTCON,GIE ; Enable interrupts (comment out if not using interrupts)
      BANKSEL EEADR
              EEADR, W
      MOVF
                        ; Increment address
      INCF
              EEADR, F
                        ; Indicates when sixteen words have been programmed
      ANDLW
              0x0F
      SUBLW
                        ; 0x0F = 16 words
              0x0F
                         ; 0x0B = 12 words (PIC16F884/883/882 only)
                        ; 0x07 = 8 words
                           0x03 = 4 \text{ words}(\text{PIC16F884}/883/882 \text{ only})
                        ;
      BTFSS
              STATUS,Z
                        ; Exit on a match,
      GOTO
              LOOP
                         ; Continue if more data needs to be written
```

11.2 Capture/Compare/PWM (CCP2)

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle.

The timer resources used by the module are shown in Table 11-2.

Additional information on CCP modules is available in the Application Note AN594, *"Using the CCP Modules"* (DS00594).

TABLE 11-2: CCP MODE – TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource				
Capture	Timer1				
Compare	Timer1				
PWM	Timer2				

REGISTER 11-2: CCP2CON: CCP2 CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7-6 bit 5-4	Unimplement DC2B<1:0>: I Capture mode Unused. Compare mod Unused. PWM mode: These bits are	ted: Read as ' PWM Duty Cyc <u>a:</u> de: e the two LSbs	^{0'} cle Least Signi of the PWM d	ficant bits uty cycle. The	eight MSbs are	found in CCP	R2L.	
bit 3-0	 CCP2M<3:0>: CCP2 Mode Select bits 0000 = Capture/Compare/PWM off (resets CCP2 module) 0011 = Unused (reserved) 0010 = Unused (reserved) 0011 = Unused (reserved) 0100 = Capture mode, every falling edge 0101 = Capture mode, every falling edge 0110 = Capture mode, every 16th rising edge 0101 = Compare mode, set output on match (CCP2IF bit is set) 1001 = Compare mode, generate software interrupt on match (CCP2IF bit is set, CCP2 pin is unaffected) 1011 = Compare mode, trigger special event (CCP2IF bit is set, TMR1 is reset and A/D conversion is started if the ADC module is enabled. CCP2 pin is unaffected.) 11xx = PWM mode. 							

11.6.5 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register.

If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume.

FIGURE 11-16: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 20.000 MHz		Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fos	Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_		_	_	_	_	_	_	_	_
1200	1221	1.73	255	1200	0.00	239	1200	0.00	143	1202	0.16	103
2400	2404	0.16	129	2400	0.00	119	2400	0.00	71	2404	0.16	51
9600	9470	-1.36	32	9600	0.00	29	9600	0.00	17	9615	0.16	12
10417	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	10417	0.00	11
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	—	_	_
57.6k	_	_	_	57.60k	0.00	7	57.60k	0.00	2	—	—	—
115.2k	—	_	_	—	_	_	—	_	_	—	_	_

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300	0.16	207	300	0.00	191	300	0.16	103	300	0.16	51	
1200	1202	0.16	51	1200	0.00	47	1202	0.16	25	1202	0.16	12	
2400	2404	0.16	25	2400	0.00	23	2404	0.16	12	—	—	—	
9600	—	—	_	9600	0.00	5	—	—	—	—	—	—	
10417	10417	0.00	5	—	—	_	10417	0.00	2	—	—	—	
19.2k	—	—	—	19.20k	0.00	2	—	—	—	—	—	—	
57.6k	—	—	—	57.60k	0.00	0	—	—	—	—	—	—	
115.2k	—	_	—	—	_	_	—	_	—	—	_	—	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	_	_		_	_	_	_	_	—	—	
1200	—	—	—	—	—	—	—	—	—	—	—	—	
2400	—	—	—	—	—	—	—	_	_	2404	0.16	207	
9600	9615	0.16	129	9600	0.00	119	9600	0.00	71	9615	0.16	51	
10417	10417	0.00	119	10378	-0.37	110	10473	0.53	65	10417	0.00	47	
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	19231	0.16	25	
57.6k	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	55556	-3.55	8	
115.2k	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	—	_	_	

13.3 SPI Mode

The SPI mode allows eight bits of data to be synchronously transmitted and received, simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally, a fourth pin may be used when in any Slave mode of operation:

Slave Select (SS) – RA5/SS/AN4

13.3.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits SSPCON<5:0> and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock rate (Master mode only)
- · Slave Select mode (Slave mode only)

Figure 13-1 shows the block diagram of the MSSP module, when in SPI mode.

FIGURE 13-1:

MSSP BLOCK DIAGRAM (SPI MODE)

Note: I/O pins have diode protection to VDD and VSS.

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the buffer full-detect bit BF of the SSPSTAT register and the interrupt flag bit SSPIF of the PIR1 register are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL of the SSPCON register will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

14.3.2 TIMER0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. See **Section 5.0 "Timer0 Module"** for operation of the Timer0 module.

14.3.3 PORTB INTERRUPT

An input change on PORTB change sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<3>) bit. Plus, individual pins can be configured through the IOCB register.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set. See Section 3.4.3 "Interrupt-on-Change" for more information.

11-0	11-0	11-0	R/M-0	₽ / //_1	P/M/_0	R/M_0	P/M_0
0-0	0-0	0-0					
			WDIP53	WDIP52	WDIP51	WDIP50	SWDIEN,
DIT 7							DIT U
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-1	WDTPS<3:0>	-: Watchdog Ti	mer Period Se	elect bits			
	Bit Value = P	rescale Rate					
	0000 = 1:32						
	0001 = 1:64						
	0010 = 1:12	8					
	0011 = 1:25	6					
	0100 = 1:51	2 (Reset value)				
	0101 = 1:102	24					
	0110 = 1:204	48					
	0111 = 1:40	96					
	1000 = 1.01	92 291					
	1001 = 1.10	304 768					
	1010 = 1:65	536					
	1100 = reset	rved					
	1101 = rese	rved					
	1110 = rese	rved					
	1111 = rese	rved					
bit 0	SWDTEN: So	oftware Enable	or Disable the	Watchdog Tir	mer ⁽¹⁾		
	1 = WDT is tu	irned on					
	0 = WDT is tu	irned off (Rese	t value)				
Note 1: If	f WDTE Configu Configuration bit =	ration bit = 1, = 0, then it is p	then WDT is ossible to turn	always enable WDT on/off w	ed, irrespective	e of this contro bit.	I bit. If WDTE

REGISTER 14-3: WDTCON: WATCHDOG TIMER CONTROL REGISTER

 TABLE 14-8:
 SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	31
WDTCON	—	_	—	WDTPS3	WDTPS2	WSTPS1	WDTPS0	SWDTEN	221

Legend: Shaded cells are not used by the Watchdog Timer.

TABLE 14-9: SUMMARY OF CONFIGURATION WORD ASSOCIATED WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1 ⁽¹⁾	13:8	—	—	DEBUG	LVP	FCMEN	IESO	BOREN 1	BOREN0	206
	7:0	CPD	CP	MCLRE	PWRTE	WDTE	FOSC 2	FOSC 1	FOSC 0	

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by the Watchdog Timer.

Note 1: See Configuration Word Register 1 (Register 14-1) for operation of all register bits.

15.2 Instruction Descriptions

ADDLW	Add literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ADDWF	Add W and f					
Syntax:	[label] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W reg- ister.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

FIGURE 17-1: PIC16F882/883/884/886/887 VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA \leq +125°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

TABLE 17-3: CLKOUT AND I/O TIMING PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	—	70	ns	VDD = 5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	—	72	ns	VDD = 5.0V
OS13	TCKL2IOV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	20	ns	
OS14	ТюV2скН	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	—	_	ns	
OS15*	TosH2IoV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70	ns	VDD = 5.0V
OS16	TosH2IOI	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	_	ns	VDD = 5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20			ns	
OS18	TIOR	Port output rise time ⁽²⁾		15 40	72 32	ns	VDD = 2.0V VDD = 5.0V
OS19	TIOF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 5.0V
OS20*	Tinp	INT pin input high or low time	25	—	_	ns	
OS21*	TRAP	PORTA interrupt-on-change new input level time	Тсү	—		ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.

FIGURE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-7: COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristics		Min.	Тур†	Max.	Units	Comments
CM01	Vos	Input Offset Voltage		—	± 5.0	± 10	mV	(Vdd - 1.5)/2
CM02	Vcm	Input Common Mode Voltage		0	_	Vdd - 1.5	V	
CM03*	CMRR	Common Mode Rejection Ratio		+55		_	dB	
CM04*	Trt	Response Time	Falling	_	150	600	ns	(Note 1)
			Rising	_	200	1000	ns	
CM05*	Тмc2coV	Comparator Mode Change to Output Valid			_	10	μS	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 17-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$

Param No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments
CV01*	CLSB	Step Size ⁽²⁾	—	VDD/24 VDD/32		V V	Low Range (VRR = 1) High Range (VRR = 0)
CV02*	CACC	Absolute Accuracy	_		± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)
CV03*	CR	Unit Resistor Value (R)	_	2k	_	Ω	
CV04*	CST	Settling Time ⁽¹⁾	—	_	10	μS	

These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.
 - 2: See Section 8.10 "Comparator Voltage Reference" for more information.

TABLE 17-9: VOLTAGE (VR) REFERENCE SPECIFICATIONS

VR Voltage Reference Specifications			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
VR01	Vrout	VR voltage output	0.5	0.6	0.7	V	
VR02*	TSTABLE	Settling Time	—	10	100*	μS	

These parameters are characterized but not tested.

18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - X <u>/XX XXX</u> T Tape and Reel Temperature Package Pattern Option Range	 Examples: a) PIC16F883-E/P 301 = Extended Temp., PDIP package, 20 MHz, QTP pattern #301 b) PIC16F883-I/SO = Industrial Temp., SOIC package 20 MHz
Device:	PIC16F883, PIC16F883T ⁽¹⁾ , PIC16F884, PIC16F884T ⁽¹⁾ , PIC16F886, PIC16F886T ⁽¹⁾ , PIC16F887, PIC16F887T ⁽¹⁾ , VDD range 2.0V to 5.5V	pasiago, 20 m.2
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package: ⁽²⁾	ML=Quad Flat No Leads (QFN)P=Plastic DIPPT=Plastic Thin-Quad Flatpack (TQFP)SO=Plastic Small Outline (SOIC) (7.50 mm)SP=Skinny Plastic DIPSS=Plastic Shrink Small Outline	 Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. 2: For other small form-factor package
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.