

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f886t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.5 PIE2 Register

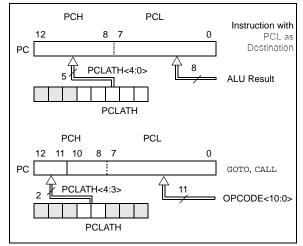
The PIE2 register contains the interrupt enable bits, as shown in Register 2-5.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER DEFINITIONS: PIE2

REGISTER 2-5: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
OSFIE	C2IE	C1IE	EEIE	BCLIE	ULPWUIE		CCP2IE
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSFIE: Oscillator Fail Interrupt Enable bit
	1 = Enables oscillator fail interrupt0 = Disables oscillator fail interrupt
bit 6	C2IE: Comparator C2 Interrupt Enable bit
	1 = Enables Comparator C2 interrupt0 = Disables Comparator C2 interrupt
bit 5	C1IE: Comparator C1 Interrupt Enable bit
	1 = Enables Comparator C1 interrupt0 = Disables Comparator C1 interrupt
bit 4	EEIE: EEPROM Write Operation Interrupt Enable bit
	 1 = Enables EEPROM write operation interrupt 0 = Disables EEPROM write operation interrupt
bit 3	BCLIE: Bus Collision Interrupt Enable bit
	1 = Enables Bus Collision interrupt0 = Disables Bus Collision interrupt
bit 2	ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit
	 1 = Enables Ultra Low-Power Wake-up interrupt 0 = Disables Ultra Low-Power Wake-up interrupt
bit 1	Unimplemented: Read as '0'
bit 0	CCP2IE: CCP2 Interrupt Enable bit
	1 = Enables CCP2 interrupt0 = Disables CCP2 interrupt

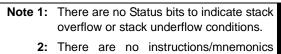
2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-7 shows the two situations for the loading of the PC. The upper example in Figure 2-7 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-7 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-7: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper five bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register.


A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower eight bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note AN556, "*Implementing a Table Read*" (DS00556).

2.3.2 STACK

The PIC16F882/883/884/886/887 devices have an 8-level x 13-bit wide hardware stack (see Figures 2-2 and 2-3). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

2: There are no instructions minemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-8.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1:	INDIRECT ADDRESSING
--------------	---------------------

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			;yes continue

4.2 Oscillator Control

The Oscillator Control (OSCCON) register (Figure 4-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits:

- Frequency selection bits (IRCF)
- Frequency Status bits (HTS, LTS)
- System clock control bits (OSTS, SCS)

REGISTER DEFINITIONS: OSCILLATOR CONTROL

REGISTER 4-1: OSCCON: OSCILLATOR CONTROL REGISTER

_	IDOED			R-1	R-0	R-0	R/W-0
	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
oit 7		·					bit C
_egend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'	
n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
oit 7	Unimpleme	nted: Read as '	0'				
oit 6-4		Internal Oscillat	or Frequency	Select bits			
	111 = 8 MHz						
	110 = 4 MHz 101 = 2 MHz	· /					
	101 = 2 MHz 100 = 1 MHz						
	011 = 500 k	_					
	010 = 250 k						
	001 = 125 kHz						
		z (LFINTOSC)					
oit 3		lator Start-up Ti					
	 1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG1 register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC) 						
		-		-		OSC)	
oit 2			(High Frequer	ncy – 8 MHz to 1	25 kHz)		
	1 = HFINTC	SC is stable					
				04 (4) (-)			
bit 1	LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz) 1 = LFINTOSC is stable						
		SC is stable					
oit O		n Clock Select b					
	-	oscillator is use		clock			
			•	of the CONFIG1	1 register		
Note 1: E	Bit resets to '0' w	ith Two-Speed 9	Start-up and L	P XT or HS cold	acted as the C	Scillator modo	or Fail-Safa
	node is enabled.	•	Start-up and L				UI Fall-Sale

8.10 Comparator Voltage Reference

The comparator voltage reference module provides an internally generated voltage reference for the comparators. The following features are available:

- Independent from Comparator operation
- Two 16-level voltage ranges
- Output clamped to Vss
- Ratiometric with VDD
- Fixed Reference (0.6V)

The VRCON register (Register 8-5) controls the voltage reference module shown in Figure 8-8.

The voltage source is selectable through both ends of the 16 connection resistor ladder network. Bit VRSS of the VRCON register selects either the internal or external voltage source.

The PIC16F882/883/884/886/887 allows the CVREF signal to be output to the RA2 pin of PORTA under certain configurations only. For more details, see Figure 8-9.

8.10.1 INDEPENDENT OPERATION

The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference.

8.10.2 OUTPUT VOLTAGE SELECTION

The CVREF voltage reference has two ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register.

The CVREF output voltage is determined by the following equations:

EQUATION 8-1: CVREF OUTPUT VOLTAGE

VRR = 1 (low range): CVREF = (VR<3:0>/24) × VLADDER VRR = 0 (high range): CVREF = (VLADDER/4) + (VR<3:0> × VLADDER/32) VLADDER = VDD or ([VREF+] - [VREF-]) or VREF+

The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 8-8.

8.10.3 OUTPUT CLAMPED TO Vss

The CVREF output voltage can be set to Vss with no power consumption by clearing the FVREN bit of the VRCON register.

This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current.

Note: Depending on the application, additional components may be required for a zero cross circuit. Reference TB3013, *"Using the ESD Parasitic Diodes on Mixed Signal Microcontrollers"* (DS93013), for more information.

8.10.4 OUTPUT RATIOMETRIC TO VDD

The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 17.0 "Electrical Specifications"**.

8.10.5 FIXED VOLTAGE REFERENCE

The Fixed Voltage Reference is independent of VDD, with a nominal output voltage of 0.6V. This reference can be enabled by setting the FVREN bit of the SRCON register to '1'. This reference is always enabled when the HFINTOSC oscillator is active.

8.10.6 FIXED VOLTAGE REFERENCE STABILIZATION PERIOD

When the Fixed Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. See **Section 17.0 "Electrical Specifications"** for the minimum delay requirement.

8.10.7 VOLTAGE REFERENCE SELECTION

Multiplexers on the output of the voltage reference module enable selection of either the CVREF or Fixed Voltage Reference for use by the comparators.

Setting the C1RSEL bit of the CM2CON1 register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C1. Clearing the C1RSEL bit selects the fixed voltage for use by C1.

Setting the C2RSEL bit of the CM2CON1 register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C2. Clearing the C2RSEL bit selects the fixed voltage for use by C2.

When both the C1RSEL and C2RSEL bits are cleared, current flow in the CVREF voltage divider is disabled minimizing the power drain of the voltage reference peripheral.

IADLE	0-2.						_	-	
RA3	RA2	Comp. Reference (+)	Comp. Reference (-)	ADC Reference (+)	ADC Reference (-)	CFG1	CFG0	VRSS	VROE
I/O	I/O	AVdd	AVss	AVdd	AVss	0	0	0	0
I/O	CVREF	AVdd	AVss	AVdd	AVss	0	0	0	1
VREF+	VREF-	Vref+	VREF-	AVdd	AVss	0	0	1	0
VREF+	CVREF	Vref+	AVss	AVdd	AVss	0	0	1	1
VREF+	I/O	AVdd	AVss	Vref+	AVss	0	1	0	0
VREF+	CVREF	AVdd	AVss	Vref+	AVss	0	1	0	1
VREF+	VREF-	Vref+	VREF-	Vref+	AVss	0	1	1	0
VREF+	CVREF	Vref+	AVss	Vref+	AVss	0	1	1	1
I/O	Vref-	AVdd	AVss	AVDD	Vref-	1	0	0	0
I/O	VREF-	AVdd	AVss	AVdd	Vref-	1	0	0	1
VREF+	Vref-	Vref+	VREF-	AVDD	Vref-	1	0	1	0
VREF+	VREF-	Vref+	VREF-	AVdd	VREF-	1	0	1	1
VREF+	VREF-	AVdd	AVss	Vref+	Vref-	1	1	0	0
VREF+	VREF-	AVdd	AVss	Vref+	VREF-	1	1	0	1
VREF+	VREF-	Vref+	VREF-	Vref+	VREF-	1	1	1	0
VREF+	VREF-	VREF+	Vref-	Vref+	VREF-	1	1	1	1

TABLE 8-2: COMPARATOR AND ADC VOLTAGE REFERENCE PRIORITY

TABLE 9-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V)

ADC Clock	Period (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCS<1:0>	20 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	00	100 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/8	01	400 ns ⁽²⁾	1.0 μs (2)	2.0 μs	8.0 μs (3)		
Fosc/32	10	1.6 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
FRC	11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)		

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 4 μ s for VDD > 3.0V.

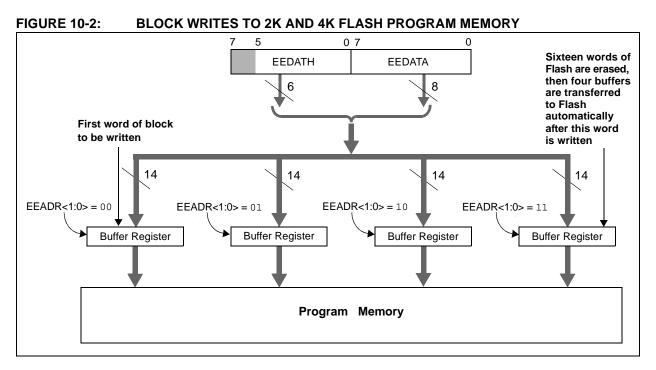
2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

FIGURE 9-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

TCY to TAD TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	TAD9	TAD10	TAD11	
$\uparrow \uparrow \uparrow$	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
Conver	sion St	arts									
Holding Capa	acitor is	s Disco	nnecte	d from	Analog	g Input	(typica	lly 100	ns)		
 Set GO/DONE	bit					GO bi ADIF	it is cle bit is s	ared, et,		•	l are loaded, analog input


9.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.


Note: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.

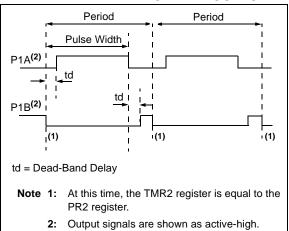
This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the Interrupt Service Routine.

Please see **Section 14.3 "Interrupts"** for more information.

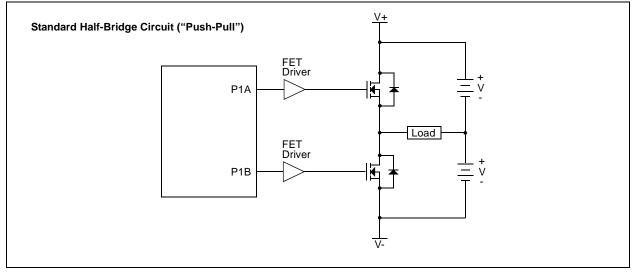
REGISTER 11-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ECCPASE		ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	
bit 7				bit 0				
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating							
bit 6-4	ECCPAS<2:0	>: ECCP Auto	-shutdown Sou	arce Select bits	6			
	000 = Auto-Shutdown is disabled 001 = Comparator C1 output high 010 = Comparator C2 output high ⁽¹⁾ 011 = Either Comparators output is high 100 = VIL on INT pin 101 = VIL on INT pin or Comparator C1 output high 110 = VIL on INT pin or Comparator C2 output high 111 =VIL on INT pin or either Comparators output is high							
bit 3-2	PSSACn: Pins P1A and P1C Shutdown State Control bits 00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 1x = Pins P1A and P1C tri-state							
bit 1-0	PSSBDn: Pins P1B and P1D Shutdown State Control bits 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 1x = Pins P1B and P1D tri-state							
Note 1: If	C2SYNC is enal	bled, the shutd	own will be del	ayed by Timer	1.			

Note 1:	The auto-shutdown condition is a level-
	based signal, not an edge-based signal.
	As long as the level is present, the auto-
	shutdown will persist.


- 2: Writing to the ECCPASE bit is disabled while an auto-shutdown condition persists.
- **3:** Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart) the PWM signal will always restart at the beginning of the next PWM period.

11.6.6 PROGRAMMABLE DEAD-BAND DELAY MODE


In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

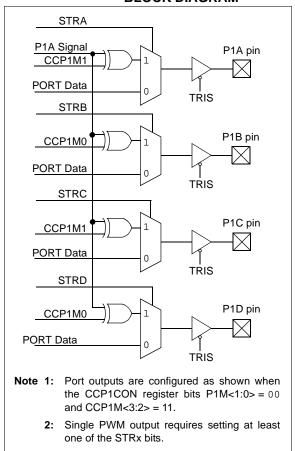

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 11-17 for illustration. The lower seven bits of the associated PWM1CON register (Register 11-4) sets the delay period in terms of microcontroller instruction cycles (Tcy or 4 Tosc).

FIGURE 11-17: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 11-18: EXAMPLE OF HALF-BRIDGE APPLICATIONS

FIGURE 11-19: SIMPLIFIED STEERING BLOCK DIAGRAM

12.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

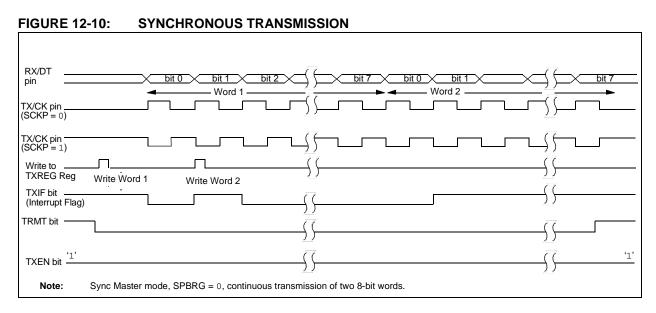
The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive								
	FIFO have framing errors, repeated reads								
	of the RCREG will not clear the FERR bit.								

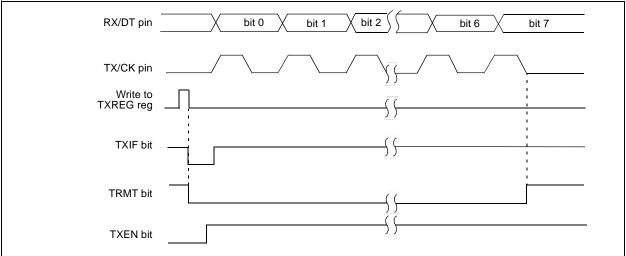
12.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated If a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

12.1.2.6 Receiving 9-Bit Characters


The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

12.1.2.7 Address Detection


A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

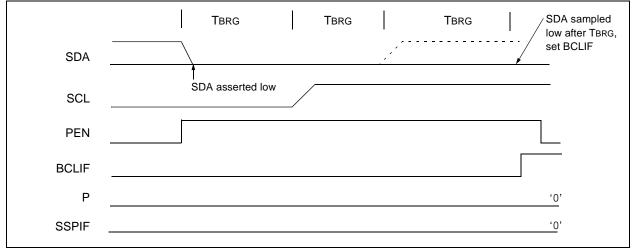
Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

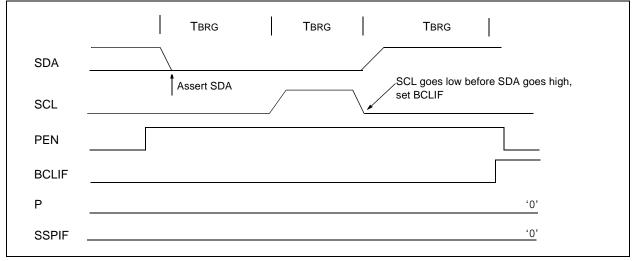
TABLE 12-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDCTL	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	159	
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	32	
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	33	
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	35	
RCREG	EUSART Rece	eive Data Re	egister						155	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	158	
SPBRG	BRG7	BRG6	BRG5	BRG4	BRG3	BRG2	BRG1	BRG0	160	
SPBRGH	BRG15	BRG14	BRG13	BRG12	BRG11	BRG10	BRG9	BRG8	160	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	54	
TXREG	TXREG EUSART Transmit Data Register									
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	157	

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Transmission.

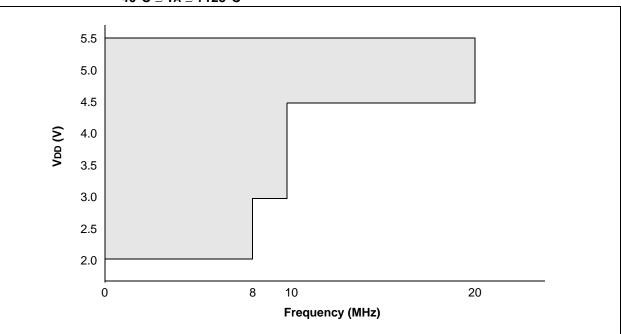

13.4.16.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 13-26). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 13-27).

FIGURE 13-26: BUS COLLISION DURING A STOP CONDITION (CASE 1)


MOVF	Move f						
Syntax:	[label] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$(f) \rightarrow (dest)$						
Status Affected:	Z						
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register 'f' itself. $d = 1$ is useful to test a file register since status flag Z is affected.						
Words:	1						
Cycles:	1						
Example:	MOVF FSR, 0						
	After Instruction W = value in FSR register Z = 1						

MOVWF	Move W to f						
Syntax:	[label] MOVWF f						
Operands:	$0 \leq f \leq 127$						
Operation:	$(W) \rightarrow (f)$						
Status Affected:	None						
Description:	Move data from W register to register 'f'.						
Words:	1						
Cycles:	1						
Example:	MOVW OPTION F						
	Before Instruction						
	OPTION = 0xFF						
	W = 0x4F						
	After Instruction						
	OPTION = 0x4F						
	W = 0x4F						


MOVLW	Move literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.						
Words:	1						
Cycles:	1						
Example:	MOVLW 0x5A						
	After Instruction W = 0x5A						

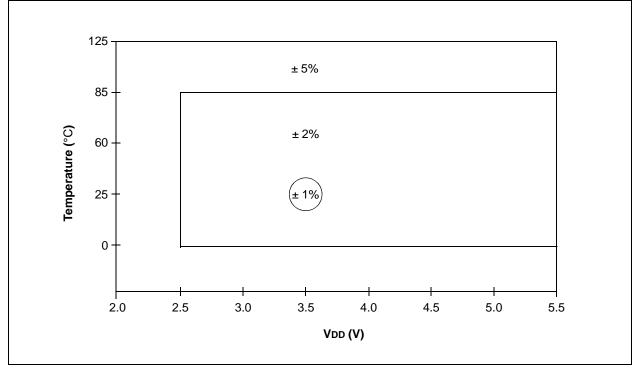

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

FIGURE 17-1: PIC16F882/883/884/886/887 VOLTAGE-FREQUENCY GRAPH, -40°C \leq TA \leq +125°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
30	ТмсL	MCLR Pulse Width (low)	2 5			μs μs	VDD = 5V, -40°C to +85°C VDD = 5V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	16 16	29 31	ms ms	VDD = 5V, -40°C to +85°C VDD = 5V		
32	Tost	Oscillation Start-up Timer Period ^(1, 2)	-	1024	—	Tosc	(Note 3)		
33*	TPWRT	Power-up Timer Period	40	65	140	ms			
34*	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.0	μS			
35	VBOR	Brown-out Reset Voltage	2.0		2.2	V	BOR4V bit = 0 (Note 4)		
			3.6	4.0	4.4	V	BOR4V bit = 1, -40°C to +85°C (Note 4)		
			3.6	4.0	4.5	V	BOR4V bit = 1, -40°C to +125°C (Note 4)		
36*	VHYST	Brown-out Reset Hysteresis	—	50	_	mV			
37*	TBOR	Brown-out Reset Minimum Detection Period	100	—	—	μs	$VDD \leq VBOR$		

^t These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: By design.
 - 3: Period of the slower clock.

4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
90*	TSU:STA	Start condition	100 kHz mode	4.7	_	μS	Only relevant for
		setup time	400 kHz mode	0.6	_	μS	Repeated Start condition
91*	THD:STA	Start condition hold	100 kHz mode	4.0	_	μS	After this period the first
		time	400 kHz mode	0.6	—	μS	clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107*	TSU:DAT	Data input setup	100 kHz mode	250		ns	(Note 2)
		time	400 kHz mode	100	_	ns	
92*	Tsu:sto	Stop condition	100 kHz mode	4.7		μS	-
		setup time	400 kHz mode	0.6	—	μS	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission can start
	Св	Bus capacitive loadir	ng	—	400	pF	

TABLE 17-16: I²C[™] BUS DATA REQUIREMENTS

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

*

TABLE 17-22: DATA EEPROM MEMORY ENDURANCE SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
D120A	ED	Byte Endurance	5K	50K		E/W	$126^\circ C \le T \texttt{A} \le 150^\circ C$

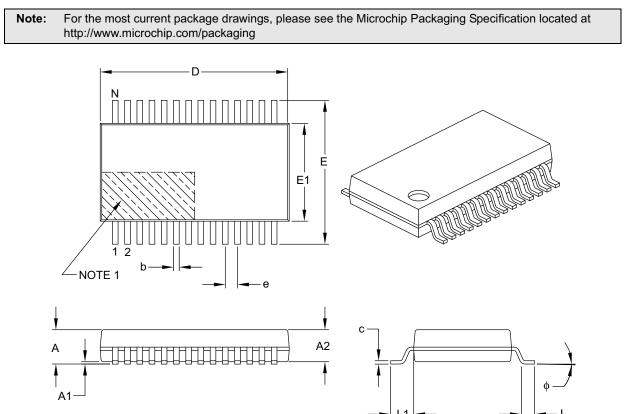
TABLE 17-23: OSCILLATOR PARAMETERS FOR PIC16F886/7-H (High Temp.)

Param No.	Sym.	Characteristic	Frequency Tolerance	Min.	Тур.	Max.	Units	Conditions
OS08	INTosc	Int. Calibrated INTOSC Freq. ⁽¹⁾	±7.5%	7.4	8.0	8.6		$2.1V \le VDD \le 5.5V$ -40°C $\le TA \le 150°C$

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

TABLE 17-24: WATCHDOG TIMER SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10	20	70	ms	150°C Temperature


TABLE 17-25: COMPARATOR SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

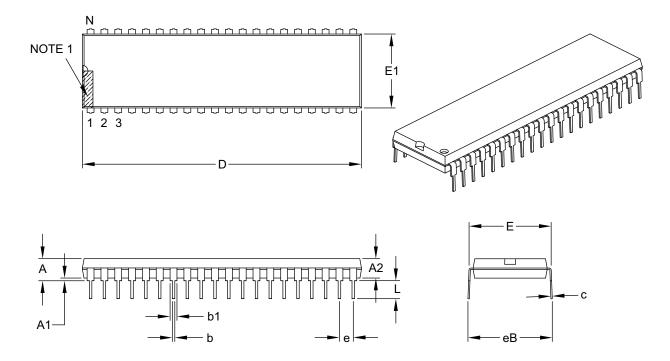
Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
CM01	Vos	Input Offset Voltage		±5	±20	mV	(Vdd - 1.5)/2

TABLE 17-26: ADC SPECIFICATIONS FOR PIC16F886/7-H (High Temp.)

Param No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
AD02	Eı∟	Integral Error		_	±1.5	LSb	VDD = 5.12V
AD07	Egn	Gain Error		—	±1.5	LSb	VDD = 5.12V

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units		MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N	28				
Pitch	е	0.65 BSC				
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	_		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle		0°	4°	8°		
Lead Width	b	0.22	-	0.38		


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES		
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N					
Pitch	е	.100 BSC				
Top to Seating Plane	A	-	-	.250		
Molded Package Thickness	A2	.125	-	.195		
Base to Seating Plane	A1	.015	-	_		
Shoulder to Shoulder Width	E	.590	-	.625		
Molded Package Width	E1	.485	-	.580		
Overall Length	D	1.980	-	2.095		
Tip to Seating Plane	L	.115	-	.200		
Lead Thickness	С	.008	-	.015		
Upper Lead Width	b1	.030	-	.070		
Lower Lead Width		.014	-	.023		
Overall Row Spacing §	eB	_	-	.700		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B