

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f887-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	14
2.0	Memory Organization	22
3.0	I/O Ports	40
4.0	Oscillator Module (With Fail-Safe Clock Monitor)	63
5.0	Timer0 Module	75
6.0	Timer1 Module with Gate Control	78
7.0	Timer2 Module	83
8.0	Comparator Module	85
9.0	Analog-to-Digital Converter (ADC) Module	99
10.0	Data EEPROM and Flash Program Memory Control	. 110
11.0	Capture/Compare/PWM Modules (CCP1 and CCP2)	. 121
12.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	. 148
13.0	Master Synchronous Serial Port (MSSP) Module	. 175
14.0	Special Features of the CPU	. 205
15.0	Instruction Set Summary	. 226
16.0	Development Support	. 235
17.0	Electrical Specifications	. 239
18.0	DC and AC Characteristics Graphs and Tables	. 270
19.0	Packaging Information	. 298

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

HFINTOSC LFINTOSC Reading HFINTOSC Reading Reading LFINTOSC #0 =0 System Clock	GURE 4-6:	INTERNAL OSCILLATOR SWITCH TIMING
HFINTOSC		
HFINTOSC Indiana Time Degrés Bare Recenting LFINTOSC #0 =0 System Clock	389NGO9C	LFINTORC (FROM and WDT disabled)
LifintOSC	HFINTOSC	
IRCF <2:0> ≠ 0 = 0 System Clock	LFINTOSC	
System Clock	IRCF <2:0>	$\neq 0$ $\chi = 0$
HFINTOSC	System Clock	
HFINTOSC	99307CCC	LFWFTOSC (ENHer FSCM of WOT enabled)
LFINTOSC = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	HFINTOSC	
IRCF <2:0> ≠ 0	LEINTOSC	
IRCF <2:0> # 0 = 0 System Clock		
System Clock	IRCF <2:0>	$ \rightarrow 0 \qquad \lambda = 0 $
LERVICESC REINTOSC LERVICESC LEAVE OF UNHAL WOY OF FSOM & enabled LERVICESC	System Clock	
CLEMENCOO Image: Imag	LEBIOSC	EFINTOSC LENGUOC turns of unique WCF or FSCM is enabled
MFscTosc	19 - 19 A 19 (19 (19 (19 (19 (19 (19 (19 (19 (19	Barray Bine (Stayle Sono) Revenue
89CF-32:0- System City	HFS(TOSO	
	810F <216>	÷
	System Crock	

8.8 Additional Comparator Features

There are three additional comparator features:

- Timer1 count enable (gate)
- Synchronizing output with Timer1
- Simultaneous read of comparator outputs

8.8.1 COMPARATOR C2 GATING TIMER1

This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CM2CON1 register will enable Timer1 to increment based on the output of Comparator C2. This requires that Timer1 is on and gating is enabled. See **Section 6.0 "Timer1 Module with Gate Control"** for details.

It is recommended to synchronize the comparator with Timer1 by setting the C2SYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment.

8.8.2 SYNCHRONIZING COMPARATOR C2 OUTPUT TO TIMER1

The Comparator C2 output can be synchronized with Timer1 by setting the C2SYNC bit of the CM2CON1 register. When enabled, the C2 output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figures 8-2 and 8-3) and the Timer1 Block Diagram (Figure 6-1) for more information.

8.8.3 SIMULTANEOUS COMPARATOR OUTPUT READ

The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

Note 1: Obtaining the status of C1OUT or C2OUT by reading CM2CON1 does not affect the comparator interrupt mismatch registers.

REGISTER 8-3: CM2CON1: COMPARATOR C2 CONTROL REGISTER 1

R-0	R-0	R/W-0	R/W-0	U-0	U-0	R/W-1	R/W-0
MC1OUT	MC2OUT	C1RSEL	C2RSEL	—	—	T1GSS	C2SYNC
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	MC10UT: Mirror Copy of C10UT bit
bit 6	MC2OUT: Mirror Copy of C2OUT bit
bit 5	C1RSEL: Comparator C1 Reference Select bit 1 = CVREF routed to C1VREF input of Comparator C1 0 = Absolute voltage reference (0.6) routed to C1VREF input of Comparator C1 (or 1.2V precision reference on parts so equipped)
bit 4	<pre>C2RSEL: Comparator C2 Reference Select bit 1 = CVREF routed to C2VREF input of Comparator C2 0 = Absolute voltage reference (0.6) routed to C2VREF input of Comparator C2 (or 1.2V precision reference on parts so equipped)</pre>
bit 3-2	Unimplemented: Read as '0'
bit 1	T1GSS: Timer1 Gate Source Select bit 1 = Timer1 gate source is T1G 0 = Timer1 gate source is SYNCC2OUT.
bit 0	C2SYNC: Comparator C2 Output Synchronization bit 1 = Output is synchronous to falling edge of Timer1 clock 0 = Output is asynchronous

8.10 Comparator Voltage Reference

The comparator voltage reference module provides an internally generated voltage reference for the comparators. The following features are available:

- Independent from Comparator operation
- Two 16-level voltage ranges
- Output clamped to Vss
- Ratiometric with VDD
- Fixed Reference (0.6V)

The VRCON register (Register 8-5) controls the voltage reference module shown in Figure 8-8.

The voltage source is selectable through both ends of the 16 connection resistor ladder network. Bit VRSS of the VRCON register selects either the internal or external voltage source.

The PIC16F882/883/884/886/887 allows the CVREF signal to be output to the RA2 pin of PORTA under certain configurations only. For more details, see Figure 8-9.

8.10.1 INDEPENDENT OPERATION

The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference.

8.10.2 OUTPUT VOLTAGE SELECTION

The CVREF voltage reference has two ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register.

The CVREF output voltage is determined by the following equations:

EQUATION 8-1: CVREF OUTPUT VOLTAGE

VRR = 1 (low range): CVREF = (VR<3:0>/24) × VLADDER VRR = 0 (high range): CVREF = (VLADDER/4) + (VR<3:0> × VLADDER/32) VLADDER = VDD or ([VREF+] - [VREF-]) or VREF+

The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 8-8.

8.10.3 OUTPUT CLAMPED TO Vss

The CVREF output voltage can be set to Vss with no power consumption by clearing the FVREN bit of the VRCON register.

This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current.

Note: Depending on the application, additional components may be required for a zero cross circuit. Reference TB3013, *"Using the ESD Parasitic Diodes on Mixed Signal Microcontrollers"* (DS93013), for more information.

8.10.4 OUTPUT RATIOMETRIC TO VDD

The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in **Section 17.0 "Electrical Specifications"**.

8.10.5 FIXED VOLTAGE REFERENCE

The Fixed Voltage Reference is independent of VDD, with a nominal output voltage of 0.6V. This reference can be enabled by setting the FVREN bit of the SRCON register to '1'. This reference is always enabled when the HFINTOSC oscillator is active.

8.10.6 FIXED VOLTAGE REFERENCE STABILIZATION PERIOD

When the Fixed Voltage Reference module is enabled, it will require some time for the reference and its amplifier circuits to stabilize. The user program must include a small delay routine to allow the module to settle. See **Section 17.0 "Electrical Specifications"** for the minimum delay requirement.

8.10.7 VOLTAGE REFERENCE SELECTION

Multiplexers on the output of the voltage reference module enable selection of either the CVREF or Fixed Voltage Reference for use by the comparators.

Setting the C1RSEL bit of the CM2CON1 register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C1. Clearing the C1RSEL bit selects the fixed voltage for use by C1.

Setting the C2RSEL bit of the CM2CON1 register enables current to flow in the CVREF voltage divider and selects the CVREF voltage for use by C2. Clearing the C2RSEL bit selects the fixed voltage for use by C2.

When both the C1RSEL and C2RSEL bits are cleared, current flow in the CVREF voltage divider is disabled minimizing the power drain of the voltage reference peripheral.

9.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (See TRIS register)
 - Configure pin as analog
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - · Select result format
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: See Section 9.3 "A/D Acquisition Requirements".

EXAMPLE 9-1: A/D CONVERSION ;This code block configures the ADC ; for polling, Vdd and Vss as reference, Frc clock and AN0 input. ;Conversion start & polling for completion ; are included. ; BANKSEL ADCON1 MOVLW B'10000000' ; right justify ;Vdd and Vss as Vref MOVWF ADCON1 BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ANSEL,0 BSF ;Set RA0 to analog BANKSEL ADCON0 ; B'11000001' ;ADC Frc clock, MOVLW MOVWF ADCON0 ;AN0, On CALL SampleTime ;Acquisiton delay BSF ADCON0,GO ;Start conversion ADCON0,GO ;Is conversion done? BTFSC GOTO \$-1 ;No, test again BANKSEL ADRESH ; MOVF ADRESH,W ;Read upper 2 bits MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; MOVF ADRESL,W ;Read lower 8 bits MOVWF RESULTLO ;Store in GPR space

REGISTER DEFINITIONS: DATA EEPROM CONTROL

REGISTER 10-1: EEDAT: EEPROM DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

EEDAT<7:0>: Eight Least Significant Address bits to Write to or Read from data EEPROM or Read from program memory

REGISTER 10-2: EEADR: EEPROM ADDRESS REGISTER

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEADR7 | EEADR6 | EEADR5 | EEADR4 | EEADR3 | EEADR2 | EEADR1 | EEADR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EEADR<7:0>: Eight Least Significant Address bits for EEPROM Read/Write Operation⁽¹⁾ or Read from program bit 7-0 memory

REGISTER 10-3: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

hit 7 6	Unimplemented: Read as '0
DIL 7-0	Unimplemented. Read as 0

bit 5-0 EEDATH<5:0>: Six Most Significant Data bits from program memory

REGISTER 10-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	EEADRH4 ⁽¹⁾	EEADRH3	EEADRH2	EEADRH1	EEADRH0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0 EEADRH<4:0>: Specifies the four Most Significant Address bits or high bits for program memory reads

Note 1: PIC16F886/PIC16F887 only.

10.3 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM should be verified (see Example 10-5) to the desired value to be written.

EXAMPLE 10-5: WRITE VERIFY

BANKSEL	EEDAT	;
MOVF	EEDAT, W	;EEDAT not changed
		;from previous write
BANKSEL	EECON1	;
BSF	EECON1, RD	;YES, Read the
		;value written
BANKSEL	EEDAT	;
XORWF	EEDAT, W	;
BTFSS	STATUS, Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
:		;Yes, continue
BCF	STATUS, RP1	;Bank 0

10.3.1 USING THE DATA EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM (specification D124) without exceeding the total number of write cycles to a single byte (specifications D120 and D120A). If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

10.4 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- Power Glitch
- Software Malfunction

10.5 Data EEPROM Operation During Code-Protect

Data memory can be code-protected by programming the \overline{CPD} bit in the Configuration Word Register 1 (Register 14-1) to '0'.

When the data memory is code-protected, only the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from programming zeros over the existing code (which will execute as NOPs) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations in program memory to '0' will also help prevent data memory code protection from becoming breached.

11.6.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Table 11-5.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 11.6.4** "**Enhanced PWM Auto-Shutdown Mode**". An autoshutdown event will only affect pins that have PWM outputs enabled.

REGISTER DEFINITIONS: PULSE STEERING CONTROL

REGISTER 11-5: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
—	_	—	STRSYNC	STRD	STRC	STRB	STRA
bit 7							bit 0

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4	STRSYNC: Steering Sync bit
	1 = Output steering update occurs on next PWM period
	0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3	STRD: Steering Enable bit D
	1 = P1D pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1D pin is assigned to port pin
bit 2	STRC: Steering Enable bit C
	1 = P1C pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1C pin is assigned to port pin
bit 1	STRB: Steering Enable bit B
	1 = P1B pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1B pin is assigned to port pin
bit 0	STRA: Steering Enable bit A
	1 = P1A pin has the PWM waveform with polarity control from CCPxM<1:0>
	0 = P1A pin is assigned to port pin

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

Logondi

12.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the Internal Oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 4.5** "Internal Clock Modes" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 12.3.1 "Auto-Baud Detect**"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

REGISTER DEFINITIONS: EUSART CONTROL

REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
-n = Value at POR	1	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknow	'n
bit 7	CSRC: Clock Sc Asynchronous m Don't care Synchronous mc 1 = Master mc 0 = Slave mod	ource Select bit <u>node:</u> ode: ode (clock generate le (clock from exte	ed internally fro rnal source)	om BRG)			
bit 6	TX9: 9-bit Trans 1 = Selects 9-1 0 = Selects 8-1	mit Enable bit bit transmission bit transmission					
bit 5	TXEN: Transmit 1 = Transmit er 0 = Transmit di	Enable bit ⁽¹⁾ nabled isabled					
bit 4	SYNC: EUSART 1 = Synchrono 0 = Asynchrono	Mode Select bit us mode ous mode					
bit 3	SENDB: Send B Asynchronous m 1 = Send Sync 0 = Sync Break Synchronous m Don't care	Break Character bit hode: Break on next tran transmission con hode:	nsmission (clea npleted	ared by hardware u	upon completion)		
bit 2	BRGH: High Bar Asynchronous m 1 = High speed 0 = Low speed Synchronous mo Unused in this m	ud Rate Select bit node: J ode: node					
bit 1	TRMT: Transmit 1 = TSR empty 0 = TSR full	Shift Register Stat /	us bit				
bit 0	TX9D: Ninth bit of Can be address/	of Transmit Data /data bit or a parity	bit.				
Note 1: SRE	N/CREN override	s TXEN in Sync m	ode.				

12.5 EUSART Operation During Sleep

The EUSART WILL remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

12.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 12.4.2.4 "Synchronous Slave Reception Setup:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

12.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Transmission (see Section 12.4.2.2 "Synchronous Slave Transmission Setup:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit is also set then the Interrupt Service Routine at address 0004h will be called.

14.2.4 BROWN-OUT RESET (BOR)

The BOREN0 and BOREN1 bits in the Configuration Word Register 1 select one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit (PCON<4>) enables/disables the BOR allowing it to be controlled in software. By selecting BOREN<1:0>, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 14-3 for the Configuration Word definition.

The BOR4V bit in the Configuration Word Register 2 selects one of two Brown-out Reset voltages. When BOR4B = 1, VBOR is set to 4V. When BOR4V = 0, VBOR is set to 2.1V.

If VDD falls below VBOR for greater than parameter (TBOR) (see **Section 17.0 "Electrical Specifications"**), the Brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not insured to occur if VDD falls below VBOR for less than parameter (TBOR).

On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 14-3). The Power-up Timer will now be invoked, if enabled and will keep the chip in Reset an additional 64 ms.

Note:	The Power-up Timer is enabled by the
	PWRTE bit in the Configuration Word
	Register 1.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

FIGURE 14-3: BROWN-OUT SITUATIONS

14.7 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using $ICSP^{TM}$ for verification purposes.

Note:	The entire data EEPROM and Flash
	program memory will be erased when the
	code protection is switched from on to off.
	See the "PIC16F88X Memory
	Programming Specification" (DS41287) for
	more information.

14.8 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant seven bits of the ID locations are used.

14.9 In-Circuit Serial Programming™

The PIC16F882/883/884/886/887 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for:

- power
- ground
- programming voltage

This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RB6/ICSPCLK and RB7/ICSPDAT pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the "*PIC16F88X Memory Programming Specification*" (DS41287) for more information. RB7 becomes the programming data and RB6 becomes the programming clock. Both RB7 and RB6 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Program/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether the command was a Load or a Read. For complete details of serial programming, please refer to the "*PIC16F88X Memory Programming Specification*" (DS41287).

A typical In-Circuit Serial Programming connection is shown in Figure 14-11.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\bar{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f				
Syntax:	[<i>label</i>] CLRF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Description:	The contents of register 'f' are cleared and the Z bit is set.				

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ \text{1} \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

 $\ensuremath{\textcircled{}^{\odot}}$ 2006-2015 Microchip Technology Inc.

17.2 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended)

DC CH	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					o therwise stated) 5°C for industrial 25°C for extended	
Param		Min	Truck	Max	Unite	Conditions		
No.	Device Characteristics	MIN.	турт	max.	Units	Vdd	Note	
D010	Supply Current (IDD) ^(1, 2)	—	13	19	μA	2.0	Fosc = 32 kHz	
		—	22	30	μA	3.0	LP Oscillator mode	
		—	33	60	μA	5.0		
D011*		_	180	250	μA	2.0	Fosc = 1 MHz	
		—	290	400	μA	3.0	XT Oscillator mode	
		_	490	650	μA	5.0		
D012		_	280	380	μA	2.0	Fosc = 4 MHz	
		—	480	670	μA	3.0	XT Oscillator mode	
		—	0.9	1.4	mA	5.0		
D013*			170	295	μA	2.0	Fosc = 1 MHz	
		—	280	480	μA	3.0	EC Oscillator mode	
		—	470	690	μA	5.0		
D014			290	450	μA	2.0	Fosc = 4 MHz	
		—	490	720	μA	3.0	EC Oscillator mode	
		—	0.85	1.3	mA	5.0		
D015		_	8	20	μA	2.0	Fosc = 31 kHz	
		—	16	40	μA	3.0	LFINTOSC mode	
		—	31	65	μA	5.0		
D016*		_	416	520	μA	2.0	Fosc = 4 MHz	
		—	640	840	μA	3.0	HFINTOSC mode	
		—	1.13	1.6	mA	5.0		
D017		_	0.65	0.9	mA	2.0	Fosc = 8 MHz	
		—	1.01	1.3	mA	3.0	HFINTOSC mode	
		-	1.86	2.3	mA	5.0		
D018		_	340	580	μA	2.0	Fosc = 4 MHz	
			550	900	μΑ	3.0	EXTRC mode ⁽³⁾	
		—	0.92	1.4	mA	5.0		
D019			3.8	4.7	mA	4.5	Fosc = 20 MHz	
		—	4.0	4.8	mA	5.0	HS Oscillator mode	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Character	istic	Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCP1 Input Low Time	No Prescaler	0.5TCY + 20	—	—	ns	
			With Prescaler	20	_		ns	
CC02*	TccH	CCP1 Input High Time	No Prescaler	0.5TCY + 20	—		ns	
			With Prescaler	20	_	_	ns	
CC03*	TccP	CCP1 Input Period		<u>3Tcy + 40</u> N			ns	N = prescale value (1, 4 or 16)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-12: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 17-12: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions		
120	ТскH2ртV	<u>SYNC XMIT (Master & Slave)</u> Clock high to data-out valid	—	40	ns			
121	Tckrf	Clock out rise time and fall time (Master mode)	_	20	ns			
122	Tdtrf	Data-out rise time and fall time	_	20	ns			

FIGURE 17-13: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 17-13: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
125	TDTV2CKL	<u>SYNC RCV (Master & Slave)</u> Data-hold before CK ↓ (DT hold time)	10		ns		
126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns		

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
90*	TSU:STA	Start condition	100 kHz mode	4.7	_	μs	Only relevant for
		setup time	400 kHz mode	0.6	—	μS	Repeated Start condition
91*	THD:STA	Start condition hold	100 kHz mode	4.0	_	μS	After this period the first
		time	400 kHz mode	0.6	—	μS	clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup	100 kHz mode	250	—	ns	(Note 2)
		time	400 kHz mode	100	—	ns	
92*	Tsu:sto	Stop condition	100 kHz mode	4.7	—	μs	
		setup time	400 kHz mode	0.6	—	μS	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission can start
	Св	Bus capacitive loading		—	400	pF	

TABLE 17-16: I²C[™] BUS DATA REQUIREMENTS

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

*

FIGURE 18-7: TYPICAL IDD vs. VDD OVER Fosc (EXTRC MODE)

FIGURE 18-8: MAXIMUM IDD vs. VDD (EXTRC MODE)

FIGURE 18-42: TYPICAL HFINTOSC FREQUENCY CHANGE vs. Vdd (-40°C)

