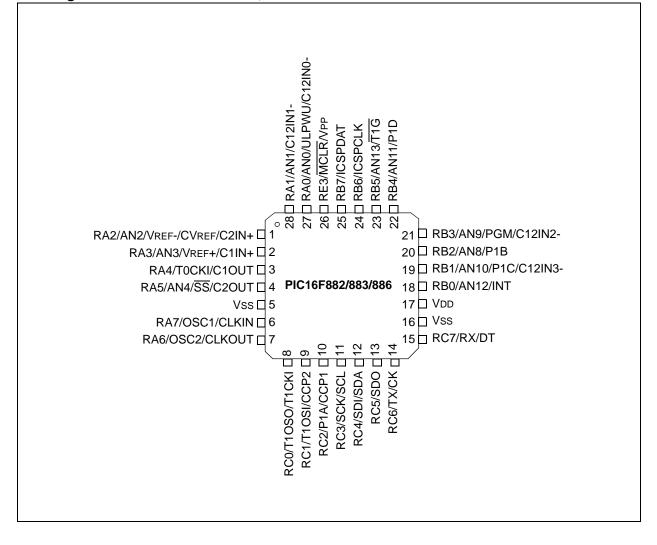


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f887-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams – PIC16F882/883/886, 28-Pin QFN

TABL	E 3:	3: 40-PIN PDIP ALLOCATION TABLE (PIC16F884/887)								
0/1	40-Pin PDIP	Analog	Comparators	Timers	ECCP	EUSART	MSSP	Interrupt	Pull-up	Basic
RA0	2	AN0/ULPWU	C12IN0-	—	—	_	—	—	—	—
RA1	3	AN1	C12IN1-	—	_			—		—
RA2	4	AN2	C2IN+	—	_	_		_		VREF-/CVREF
RA3	5	AN3	C1IN+	—	_	_	_	—	_	VREF+
RA4	6	_	C1OUT	T0CKI	_	_		_		—
RA5	7	AN4	C2OUT	—	_	_	SS	—	_	—
RA6	14	_	_	—	_	_	_	_	_	OSC2/CLKOUT
RA7	13	_		—	_	_		_	_	OSC1/CLKIN
RB0	33	AN12	_	—	_	_	_	IOC/INT	Y	—
RB1	34	AN10	C12IN3-	—	_	_	_	IOC	Y	—
RB2	35	AN8	_	—	_	_	_	IOC	Y	—
RB3	36	AN9	C12IN2-	—	_	_	_	IOC	Y	PGM
RB4	37	AN11	_	—	_	_		IOC	Y	—
RB5	38	AN13		T1G	_	_		IOC	Y	—
RB6	39	_	_	—	_	_	_	IOC	Y	ICSPCLK
RB7	40	—	_	—	_	_	_	IOC	Y	ICSPDAT
RC0	15	_	_	T1OSO/T1CKI	_	_		_		—
RC1	16	—	_	T1OSI	CCP2	_	_	—	_	—
RC2	17	_	_	—	CCP1/P1A	_	_	_	_	—
RC3	18	—	—	—	_	_	SCK/SCL	—	_	—
RC4	23	_	_	—	—	_	SDI/SDA	—	—	—
RC5	24	_		—	—	_	SDO	—	—	_
RC6	25	—	_	—	—	TX/CK	_	—	—	—
RC7	26	—		—	—	RX/DT	_	—	_	—
RD0	19	—		—	—		—	—		—
RD1	20	—		—	—		_	—	_	—
RD2	21	—	_	_	—	_	—	—	_	—
RD3	22	—	_		—	_	_	—	_	—
RD4	27	—	_	_	—	_	—	—	_	—
RD5	28	—	_		P1B	_	_	—	_	—
RD6	29	—	_	_	P1C	_	_	—	—	—
RD7	30	—	_		P1D	_	—	—	_	—
RE0	8	AN5	_	_	—		—	_	—	_
RE1	9	AN6	_	_				—	—	_
RE2	10	AN7	-	_	—	_	—	—	_	_
RE3	1	—	_	—	—	_		—	Y(1)	MCLR/VPP
	11	_	_	_		_	_	_		Vdd
_	32	—	_			_	_	—	_	Vdd
	12	_	_	_	—		—	_	_	Vss
_	31	—	_		—	_	—	—	_	Vss

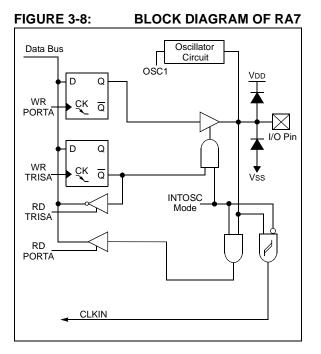
TABLE 3: 40-PIN PDIP ALLOCATION TABLE (PIC16F884/887)

Note 1: Pull-up activated only with external MCLR configuration.

Name	Function	Input Type	Output Type	Description
RA0/AN0/ULPWU/C12IN0-	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	_	A/D Channel 0 input.
	ULPWU	AN	—	Ultra Low-Power Wake-up input.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
RA1/AN1/C12IN1-	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	A/D Channel 1 input.
	C12IN1-	AN	—	Comparator C1 or C2 negative input.
RA2/AN2/Vref-/CVref/C2IN+	RA2	TTL	CMOS	General purpose I/O.
	AN2	AN	_	A/D Channel 2.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	CVREF	_	AN	Comparator Voltage Reference output.
	C2IN+	AN	_	Comparator C2 positive input.
RA3/AN3/Vref+/C1IN+	RA3	TTL	_	General purpose I/O.
	AN3	AN	_	A/D Channel 3.
	VREF+	AN	—	Programming voltage.
	C1IN+	AN	_	Comparator C1 positive input.
RA4/T0CKI/C1OUT	RA4	TTL	CMOS	General purpose I/O.
	T0CKI	ST	_	Timer0 clock input.
	C10UT	_	CMOS	Comparator C1 output.
RA5/AN4/SS/C2OUT	RA5	TTL	CMOS	General purpose I/O.
	AN4	AN	_	A/D Channel 4.
	SS	ST	_	Slave Select input.
	C2OUT	_	CMOS	Comparator C2 output.
RA6/OSC2/CLKOUT	RA6	TTL	CMOS	General purpose I/O.
	OSC2	_	XTAL	Master Clear with internal pull-up.
	CLKOUT	—	CMOS	Fosc/4 output.
RA7/OSC1/CLKIN	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL	—	Crystal/Resonator.
	CLKIN	ST	—	External clock input/RC oscillator connection.
RB0/AN12/INT	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN12	AN	_	A/D Channel 12.
	INT	ST	—	External interrupt.
RB1/AN10/P1C/C12IN3-	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN10	AN	_	A/D Channel 10.
	P1C	—	CMOS	PWM output.
	C12IN3-	AN	_	Comparator C1 or C2 negative input.
RB2/AN8/P1B	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN8	AN	_	A/D Channel 8.
	P1B	_	CMOS	PWM output.
Legend: AN = Analog inpu TTL = TTL compa HV = High Voltag	It or output tible input	CMOS ST XTAL	= CMO	S compatible input or output OD = Open-Drain itt Trigger input with CMOS levels

TABLE 1-1:	PIC16F882/883/886 PINOUT DESCRIPTION
IADLE I-I.	FIG 10F002/003/000 FINUUT DESCRIFTION

FIGURE 2-4: PIC16F882 SPECIAL FUNCTION REGISTERS


	File		File		File		File
	Address		Address		Address		Addre
ndirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183ł
FSR	04h	FSR	84h	FSR	104h	FSR	184ł
PORTA	05h	TRISA	85h	WDTCON	105h	SRCON	185ł
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186ł
PORTC	07h	TRISC	87h	CM1CON0	107h	BAUDCTL	187h
	08h		88h	CM2CON0	108h	ANSEL	188h
PORTE	09h	TRISE	89h	CM2CON1	109h	ANSELH	189ł
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ał
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bł
PIR1	0Ch	PIE1	8Ch	EEDAT	10Ch	EECON1	18CI
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2 ⁽¹⁾	18DI
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved	18Eł
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh	Reserved	18Fł
T1CON	10h	OSCTUNE	90h		110h		190ł
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192ł
SSPBUF	13h	SSPADD	93h		113h		193ł
SSPCON	14h	SSPSTAT	94h		114h		194ł
CCPR1L	15h	WPUB	95h		115h		195ł
CCPR1H	16h	IOCB	96h		116h		196ł
CCP1CON	17h	VRCON	97h		117h		197h
RCSTA	18h	TXSTA	98h		118h		198ł
TXREG	19h	SPBRG	99h		119h		199ł
RCREG	1Ah	SPBRGH	9Ah		11Ah		19Ał
CCPR2L	1Bh	PWM1CON	9Bh		11Bh		19Bł
CCPR2H	1Ch	ECCPAS	9Ch		11Ch		19CI
CCP2CON	1Dh	PSTRCON	9Dh		11Dh		19DI
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eł
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fł
	20h	General Purpose Registers	A0h		120h		1A0ł
General Purpose Registers		32 Bytes	BFh C0h				
96 Bytes			EFh		16Fh		1EFI
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0i 1FFi
Bank 0		Bank 1		Bank 2		Bank 3	

Note 1: Not a physical register.

3.2.3.8 RA7/OSC1/CLKIN

Figure 3-8 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- · a clock input

TABLE 3-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	104
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	41
CM1CON0	C10N	C10UT	C10E	C1POL		C1R	C1CH1	C1CH0	89
CM2CON0	C2ON	C2OUT	C2OE	C2POL		C2R	C2CH1	C2CH0	90
CM2CON1	MC1OUT	MC2OUT	C1RSEL	C2RSEL		_	T1GSS	C2SYNC	92
PCON	_	_	ULPWUE	SBOREN		_	POR	BOR	37
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	31
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	40
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	177
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	40

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7							bit 0
Legend:							

REGISTER 3-7: WPUB: WEAK PULL-UP PORTB REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 7-0 WPUB<7:0>: Weak Pull-up Register bit

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull-ups to be enabled.

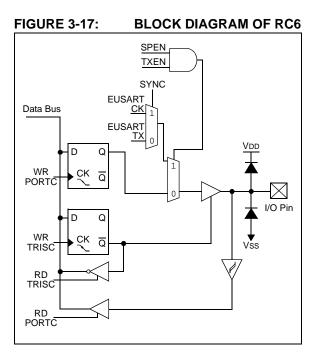
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 3-8: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCB7 | IOCB6 | IOCB5 | IOCB4 | IOCB3 | IOCB2 | IOCB1 | IOCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

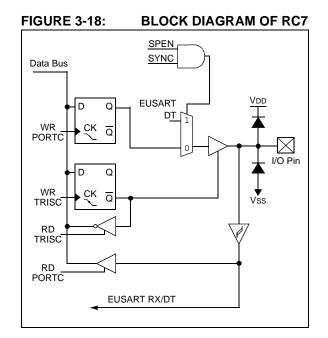
bit 7-0 IOCB<7:0>: Interrupt-on-Change PORTB Control bit


1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

3.5.7 RC6/TX/CK

Figure 3-17 shows the diagram for this pin. This pin is configurable to function as one of the following:


- a general purpose I/O
- an asynchronous serial output
- a synchronous clock I/O

3.5.8 RC7/RX/DT

Figure 3-18 shows the diagram for this pin. This pin is configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial input
- a synchronous serial data I/O

TABLE 3-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	122
CCP2CON			DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	123
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	54
PSTRCON	_			STRSYNC	STRD	STRC	STRB	STRA	144
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	158
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	177
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	81
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	54

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

8.2 Comparator Control

Each comparator has a separate control and Configuration register: CM1CON0 for Comparator C1 and CM2CON0 for Comparator C2. In addition, Comparator C2 has a second control register, CM2CON1, for controlling the interaction with Timer1 and simultaneous reading of both comparator outputs.

The CM1CON0 and CM2CON0 registers (see Registers 8-1 and 8-2, respectively) contain the control and Status bits for the following:

- Enable
- Input selection
- Reference selection
- Output selection
- Output polarity

8.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

8.2.2 COMPARATOR INPUT SELECTION

The CxCH<1:0> bits of the CMxCON0 register direct one of four analog input pins to the comparator inverting input.

Note:	To use C <u>x</u> IN+ and C <u>x</u> IN- pins as analog
	inputs, the appropriate bits must be set in
	the ANSEL and ANSELH registers and
	the corresponding TRIS bits must also be
	set to disable the output drivers.

8.2.3 COMPARATOR REFERENCE SELECTION

Setting the CxR bit of the CMxCON0 register directs an internal voltage reference or an analog input pin to the non-inverting input of the comparator. See **Section 8.10 "Comparator Voltage Reference"** for more information on the internal voltage reference module.

8.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CM2CON1 register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

Note 1: The CxOE bit overrides the PORT data latch. Setting the CxON has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

8.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 8-1 shows the output state versus input conditions, including polarity control.

TABLE 8-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVIN - > CxVIN +	0	0
CxVIN- < CxVIN+	0	1
CxVIN - > CxVIN +	1	1
CxVIN- < CxVIN+	1	0

8.3 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference specifications in **Section 17.0 "Electrical Specifications"** for more details.

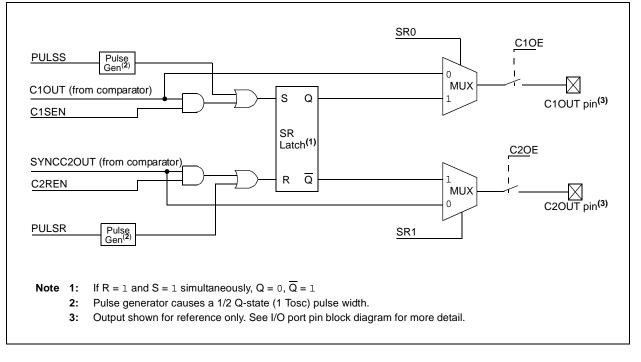
8.9 Comparator SR Latch

The SR latch module provides additional control of the comparator outputs. The module consists of a single SR latch and output multiplexers. The SR latch can be set, reset or toggled by the comparator outputs. The SR latch may also be set or reset, independent of comparator output, by control bits in the SRCON control register. The SR latch output multiplexers select whether the latch outputs or the comparator outputs are directed to the I/O port logic for eventual output to a pin.

8.9.1 LATCH OPERATION

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. Each latch input is connected to a comparator output and a software controlled pulse generator. The latch can be set by C1OUT or the PULSS bit of the SRCON register. The latch can be reset by C2OUT or the PULSR bit of the SRCON register. The latch is reset-dominant, therefore, if both Set and Reset inputs are high the latch will go to the Reset state. Both the PULSS and PULSR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch set or Reset operation.

8.9.2 LATCH OUTPUT


The SR<1:0> bits of the SRCON register control the latch output multiplexers and determine four possible output configurations. In these four configurations, the CxOUT I/O port logic is connected to:

- C1OUT and C2OUT
- C1OUT and SR latch \overline{Q}
- C2OUT and SR latch Q
- SR latch Q and Q

After any Reset, the default output configuration is the unlatched C1OUT and C2OUT mode. This maintains compatibility with devices that do not have the SR latch feature.

The applicable TRIS bits of the corresponding ports must be cleared to enable the port pin output drivers. Additionally, the CxOE comparator output enable bits of the CMxCON0 registers must be set in order to make the comparator or latch outputs available on the output pins. The latch configuration enable states are completely independent of the enable states for the comparators.

FIGURE 8-7: SR LATCH SIMPLIFIED BLOCK DIAGRAM

IADEE J-2.			700001						
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADCS1	ADCS0	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	104
ADCON1	ADFM		VCFG1	VCFG0	_	_	_		105
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	41
ANSELH	—	—	ANS13	ANS12	ANS11	ANS10	ANS9	ANS8	49
ADRESH	A/D Resul	lt Register I	High Byte						106
ADRESL	A/D Resul	lt Register I	Low Byte						106
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	32
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	33
PIR1		ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	35
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	40
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	49
PORTE	—	—	—	—	RE3	RE2	RE1	RE0	60
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	40
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	49
TRISE					TRISE3	TRISE2	TRISE1	TRISE0	60

TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

11.5.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 11-4.

EQUATION 11-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 11-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 11-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
bit 7						•	bit 0			
Legend:										
R = Readable		W = Writable		-	nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	SPEN: Serial	Port Enable bit	t							
	•	rt enabled (con rt disabled (hel	-	T and TX/CK p	ins as serial por	rt pins)				
bit 6	RX9: 9-bit Re	ceive Enable b	it							
		-bit reception 3-bit reception								
bit 5	SREN: Single	e Receive Enab	le bit							
		Asynchronous mode:								
		Don't care								
	-	Synchronous mode – Master:								
	 1 = Enables single receive 0 = Disables single receive 									
		This bit is cleared after reception is complete.								
	-	Synchronous mode – Slave								
	Don't care									
bit 4	CREN: Conti	CREN: Continuous Receive Enable bit								
	Asynchronous mode:									
		1 = Enables receiver								
	0 = Disables receiver <u>Synchronous mode</u> :									
	1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)									
	 0 = Disables continuous receive 									
bit 3	ADDEN: Add	ress Detect En	able bit							
	Asynchronou	Asynchronous mode 9-bit (RX9 = 1):								
	0 = Disables		ion, all bytes		d the receive bu nd ninth bit can					
	Don't care									
bit 2	FERR: Frami	-								
	1 = Framing 0 = No frami		pdated by rea	ading RCREG I	register and rec	eive next valid	byte)			
bit 1	OERR: Overr									
	1 = Overrun 0 = No overr	error (can be cl un error	eared by clea	aring bit CREN)					
bit 0	RX9D: Ninth	bit of Received	Data							
	This can be a	ddress/data bit	or a parity bi	t and must be o	calculated by us	er firmware.				

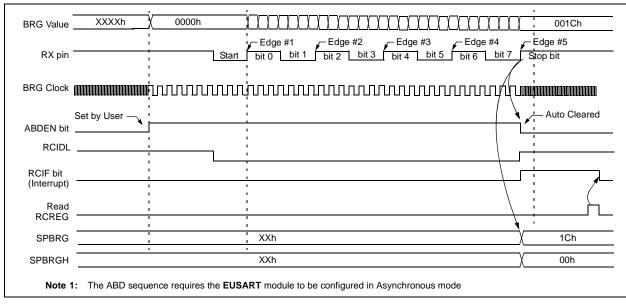
REGISTER 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

12.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCTL register starts the auto-baud calibration sequence (Figure 12-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 12-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRG register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRG register did not overflow by checking for 00h in the SPBRGH register.


The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 12-6. During ABD, both the SPBRGH and SPBRG registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRG registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see Section 12.3.2 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - **3:** During the auto-baud process, the autobaud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRG register pair.

TABLE 12-6: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRG and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 12-6: AUTOMATIC BAUD RATE CALIBRATION

13.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

13.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit[™] (I²C[™])
 - Full Master mode
 - Slave mode (with general address call).

The I^2C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode.

13.2 Control Registers

The MSSP module has three associated registers. These include a STATUS register and two control registers.

Register 13-1 shows the MSSP STATUS register (SSPSTAT), Register 13-2 shows the MSSP Control Register 1 (SSPCON), and Register 13-3 shows the MSSP Control Register 2 (SSPCON2).

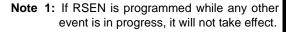
When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The buffer full bit BF of the SSPSTAT register indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 13-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable, and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP STATUS register (SSPSTAT register) indicates the various status conditions.

13.3.2 ENABLING SPI I/O

To enable the serial port, SSP Enable bit SSPEN of the SSPCON register must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON registers, and then set the <u>SSPEN</u> bit. This configures the SDI, SDO, SCK and <u>SS</u> pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISA<5> bit set


Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

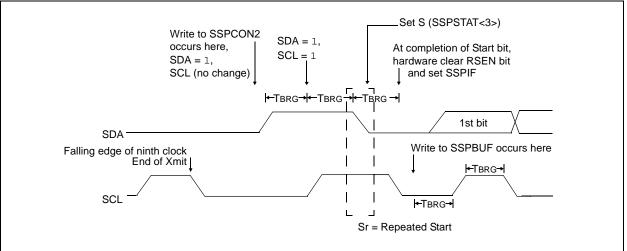
EXAMPLE 13-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	GOTO	SSPSTAT, BF LOOP SSPBUF, W	;Has data been received (transmit complete)? ;No ;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
		TXDATA, W SSPBUF	;W reg = contents of TXDATA ;New data to xmit

13.4.7 I²C[™] MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2 register) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG, while SCL is high. Following this, the RSEN bit (SSPCON2 register) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT register) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

13.4.7.1 WCOL Status Flag

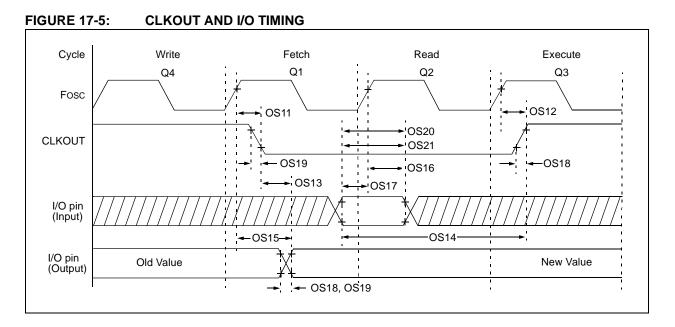
If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

Note: Because queuing of events is not allowed, writing of the lower five bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 13-14: REPEAT START CONDITION WAVEFORM

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	RLF REG1,0
	Before Instruction REG1 = 1110 0110 C = 0
	After Instruction
	REG1 = 1110 0110 W = 1100 1100
	C = 1

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f


SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \text{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBLW	Subtract W from literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k - (W) \rightarrow (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.				
	C = 0 $W > k$				

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	$W < 3:0 > \le k < 3:0 >$

SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) - (W) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W < 3:0 > \le f < 3:0 >$

TABLE 17-3: CLKOUT AND I/O TIMING PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	—	70	ns	VDD = 5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾		_	72	ns	VDD = 5.0V
OS13	TckL2IoV	CLKOUT↓ to Port out valid ⁽¹⁾	_	_	20	ns	
OS14	ТюV2скН	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_		ns	
OS15*	TosH2IoV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70	ns	VDD = 5.0V
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	_	ns	VDD = 5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20		_	ns	
OS18	TIOR	Port output rise time ⁽²⁾		15 40	72 32	ns	VDD = 2.0V VDD = 5.0V
OS19	TIOF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 2.0V VDD = 5.0V
OS20*	TINP	INT pin input high or low time	25	—	_	ns	
OS21*	Trap	PORTA interrupt-on-change new input level time	Тсү	—		ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.

TABLE 17-11: PIC16F882/883/884/886/887 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD130*	TAD	A/D Clock Period	1.6	—	9.0	μS	Tosc-based, VREF \geq 3.0V
			3.0	—	9.0	μS	Tosc-based, VREF full range
		A/D Internal RC Oscillator Period	3.0	6.0	9.0	μS	ADCS<1:0> = 11 (ADRC mode) At VDD = 2.5V
			1.6	4.0	6.0	μS	At VDD = 5.0V
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	TAD	Set GO/DONE bit to new data in A/D Result register
AD132*	TACQ	Acquisition Time		11.5	—	μS	
AD133*	TAMP	Amplifier Settling Time	_	—	5	μS	
AD134	Tgo	Q4 to A/D Clock Start	_	Tosc/2	—	—	
			_	Tosc/2 + Tcy			If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.

2: See Section 9.3 "A/D Acquisition Requirements" for minimum conditions.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other PIC devices to the PIC16F88X Family of devices.

B.1 PIC16F87X to PIC16F88X

TABLE B-1: FE/	ATURE COMPARISON
----------------	------------------

Feature	PIC16F87X	PIC16F88X
Max Operating Speed	20 MHz	20 MHz
Max Program Memory (Words)	8192	8192
SRAM (bytes)	368	368
A/D Resolution	10-bit	10-bit
Data EEPROM (Bytes)	256	256
Timers (8/16-bit)	2/1	2/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y (2.1V/4V)
Software Control Option of WDT/BOR	Ν	Y
Internal Pull-ups	RB<7:4>	RB<7:0>, MCLR
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	2	2
References	CVREF	CVREF and VP6
ECCP/CCP	0/2	1/1
Ultra Low-Power Wake-Up	Ν	Y
Extended WDT	N	Y
INTOSC Frequencies	N	32 kHz-8 MHz
Clock Switching	N	Y
MSSP	Standard	w/Slave Address Mask
USART	AUSART	EUSART
ADC Channels	8	14

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.