Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 20MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 35 | | Program Memory Size | 14KB (8K x 14) | | Program Memory Type | FLASH | | EEPROM Size | 256 x 8 | | RAM Size | 368 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V | | Data Converters | A/D 14x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Through Hole | | Package / Case | 40-DIP (0.600", 15.24mm) | | Supplier Device Package | 40-PDIP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16f887-i-p | FIGURE 2-5: PIC16F883/PIC16F884 SPECIAL FUNCTION REGISTERS | | File | | File | | File | | File | |---------------------------------|---------|---|------------|---|--------------|-----------------------|--------------| | | Address | <u></u> | Address | | Address | | Address | | Indirect addr. (1) | 00h | Indirect addr. (1) | 80h | Indirect addr. (1) | 100h | Indirect addr. (1) | 180h | | TMR0 | 01h | OPTION_REG | 81h | TMR0 | 101h | OPTION_REG | 181h | | PCL | 02h | PCL | 82h | PCL | 102h | PCL | 182h | | STATUS | 03h | STATUS | 83h | STATUS | 103h | STATUS | 183h | | FSR | 04h | FSR | 84h | FSR | 104h | FSR | 184h | | PORTA | 05h | TRISA | 85h | WDTCON | 105h | SRCON | 185h | | PORTB | 06h | TRISB | 86h | PORTB | 106h | TRISB | 186h | | PORTC | 07h | TRISC | 87h | CM1CON0 | 107h | BAUDCTL | 187h | | PORTD ⁽²⁾ | 08h | TRISD ⁽²⁾ | 88h | CM2CON0 | 108h | ANSEL | 188h | | PORTE | 09h | TRISE | 89h | CM2CON1 | 109h | ANSELH | 189h | | PCLATH | 0Ah | PCLATH | 8Ah | PCLATH | 10Ah | PCLATH | 18Ah | | INTCON | 0Bh | INTCON | 8Bh | INTCON | 10Bh | INTCON | 18Bh | | PIR1 | 0Ch | PIE1 | 8Ch | EEDAT | 10Ch | EECON1 | 18Ch | | PIR2 | 0Dh | PIE2 | 8Dh | EEADR | 10Dh | EECON2 ⁽¹⁾ | 18Dh | | TMR1L | 0Eh | PCON | 8Eh | EEDATH | 10Eh | Reserved | 18Eh | | TMR1H | 0Fh | OSCCON | 8Fh | EEADRH | 10Fh | Reserved | 18Fh | | T1CON | 10h | OSCTUNE | 90h | | 110h | | 190h | | TMR2 | 11h | SSPCON2 | 91h | | 111h | | 191h | | T2CON | 12h | PR2 | 92h | | 112h | | 192h | | SSPBUF | 13h | SSPADD | 93h | | 113h | | 193h | | SSPCON | 14h | SSPSTAT | 94h | | 114h | | 194h | | CCPR1L | 15h | WPUB | 95h | | 115h | | 195h | | CCPR1H | 16h | IOCB | 96h | | 116h | | 196h | | CCP1CON | 17h | VRCON | 97h | | 117h | | 197h | | RCSTA | 18h | TXSTA | 98h | | 118h | | 198h | | TXREG | 19h | SPBRG | 99h | | 119h | | 199h | | RCREG | 1Ah | SPBRGH | 9Ah | | 11Ah | | 19Ah | | CCPR2L | 1Bh | PWM1CON | 9Bh | | 11Bh | | 19Bh | | CCPR2H | 1Ch | ECCPAS | 9Ch | | 11Ch | | 19Ch | | CCP2CON | 1Dh | PSTRCON | 9Dh | | 11Dh | | 19Dh | | ADRESH | 1Eh | ADRESL | 9Eh | | 11Eh | | 19Eh | | ADCON0 | 1Fh | ADCON1 | 9Fh | | 11Fh | | 19Fh | | General
Purpose
Registers | 20h | General
Purpose
Registers
80 Bytes | A0h | General
Purpose
Registers
80 Bytes | 120h | | 1A0h | | 00.5 | | | rr₁ | | 405- | | 4 C C L | | 96 Bytes | | 0000000 | EFh
E0h | 0000000 | 16Fh | 0000000 | 1EFh | | | 7Fh | accesses
70h-7Fh | F0h
FFh | accesses
70h-7Fh | 170h
17Fh | accesses
70h-7Fh | 1F0h
1FFh | | Bank 0 | | Bank 1 | | Bank 2 | | Bank 3 | | ### 2.2.2.7 PIR2 Register The PIR2 register contains the interrupt flag bits, as shown in Register 2-7. Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. ### **REGISTER DEFINITIONS: PIR2** ### REGISTER 2-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2 | R/W-0 | R/W-0 | /W-0 R/W-0 R/W-0 | | R/W-0 R/W-0 | | U-0 | R/W-0 | |-------|----------------------|------------------|-------|-------------|---|--------|-------| | OSFIF | OSFIF C2IF C1IF EEIF | | BCLIF | ULPWUIF | _ | CCP2IF | | | bit 7 | | | | | | | bit 0 | Note: | Legend: | | | | | | | | | |-------------------|---|---------------------------------|------------------------------|------------------------------|--|--|--|--| | R = Readable bit | | W = Writable bit | U = Unimplemented bit, | read as '0' | | | | | | -n = Value at POR | | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | | | | | | | | | | | | | | | bit 7 | bit 7 OSFIF: Oscillator Fail Interrupt Flag bit | | | | | | | | | | 1 = Syst | em oscillator failed, clock inp | out has changed to INTOSC (r | must be cleared in software) | | | | | | | 0 = Syst | em clock operating | | | | | | | | bit 6 | C2IF: Co | mparator C2 Interrupt Flag b | oit | | | | | | | | 1 = Com | parator output (C2OUT bit) | has changed (must be cleared | l in software) | | | | | 0 = Comparator output (C2OUT bit) has not changedC1IF: Comparator C1 Interrupt Flag bit 1 = Comparator output (C1OUT bit) has changed (must be cleared in software) 0 = Comparator output (C1OUT bit) has not changed bit 4 **EEIF:** EE Write Operation Interrupt Flag bit 1 = Write operation completed (must be cleared in software)0 = Write operation has not completed or has not started bit 3 BCLIF: Bus Collision Interrupt Flag bit 1 = A bus collision has occurred in the MSSP when configured for I^2C Master mode 0 = No bus collision has occurred bit 2 **ULPWUIF:** Ultra Low-Power Wake-up Interrupt Flag bit 1 = Wake-up condition has occurred (must be cleared in software) 0 = No Wake-up condition has occurred bit 1 Unimplemented: Read as '0' bit 0 CCP2IF: CCP2 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode bit 5 # 3.2.3 PIN DESCRIPTIONS AND DIAGRAMS Each PORTA pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the A/D Converter (ADC), refer to the appropriate section in this data sheet. ### 3.2.3.1 RA0/AN0/ULPWU/C12IN0- Figure 3-1 shows the diagram for this pin. This pin is configurable to function as one of the following: - a general purpose I/O - an analog input for the ADC - a negative analog input to Comparator C1 or C2 - an analog input for the Ultra Low-Power Wake-up FIGURE 3-1: BLOCK DIAGRAM OF RA0 ### 4.4.3 LP, XT, HS MODES The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 4-3). The mode selects a low, medium or high gain setting of the internal inverteramplifier to support various resonator types and speed. **LP** Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals). **XT** Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification. **HS** Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting. Figure 4-3 and Figure 4-4 show typical circuits for quartz crystal and ceramic resonators, respectively. FIGURE 4-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE) - Note 1: A series resistor (Rs) may be required for quartz crystals with low drive level. - 2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω). - Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application. - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application. - **3:** For oscillator design assistance, reference the following Microchip Applications Notes: - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826) - AN849, "Basic PIC® Oscillator Design" (DS00849) - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943) - AN949, "Making Your Oscillator Work" (DS00949) FIGURE 4-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE) - Note 1: A series resistor (Rs) may be required for ceramic resonators with low drive level. - 2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω). - An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation. ### 8.8 Additional Comparator Features There are three additional comparator features: - Timer1 count enable (gate) - · Synchronizing output with Timer1 - · Simultaneous read of comparator outputs ### 8.8.1 COMPARATOR C2 GATING TIMER1 This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CM2CON1 register will enable Timer1 to increment based on the output of Comparator C2. This requires that Timer1 is on and gating is enabled. See Section 6.0 "Timer1 Module with Gate Control" for details. It is recommended to synchronize the comparator with Timer1 by setting the C2SYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment. # 8.8.2 SYNCHRONIZING COMPARATOR C2 OUTPUT TO TIMER1 The Comparator C2 output can be synchronized with Timer1 by setting the C2SYNC bit of the CM2CON1 register. When enabled, the C2 output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figures 8-2 and 8-3) and the Timer1 Block Diagram (Figure 6-1) for more information. # 8.8.3 SIMULTANEOUS COMPARATOR OUTPUT READ The MC1OUT and MC2OUT bits of the CM2CON1 register are mirror copies of both comparator outputs. The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers. **Note 1:** Obtaining the status of C1OUT or C2OUT by reading CM2CON1 does not affect the comparator interrupt mismatch registers. ### REGISTER 8-3: CM2CON1: COMPARATOR C2 CONTROL REGISTER 1 | R-0 | R-0 R/W-0 R/W-0 | | R/W-0 | U-0 U-0 | | R/W-1 | R/W-0 | |--------|-----------------------------|--|-------|---------|-------|--------|-------| | MC1OUT | IC1OUT MC2OUT C1RSEL C2RSEL | | _ | _ | T1GSS | C2SYNC | | | bit 7 | | | | | | | bit 0 | | Legend: | | | | | | | | |-------------------|------------------|--|--------------------|--|--|--|--| | R = Readable bit | W = Writable bit | ole bit U = Unimplemented bit, read as '0' | | | | | | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | | | | | bit 7 | MC1OUT: Mirror Copy of C1OUT bit | |-------|---| | hit 6 | MC2OUT: Mirror Copy of C2OUT bit | bit 5 C1RSEL: Comparator C1 Reference Select bit 1 = CVREF routed to C1VREF input of Comparator C1 0 = Absolute voltage reference (0.6) routed to C1VREF input of Comparator C1 (or 1.2V precision reference on parts so equipped) bit 4 C2RSEL: Comparator C2 Reference Select bit 1 = CVREF routed to C2VREF input of Comparator C2 0 = Absolute voltage reference (0.6) routed to C2VREF input of Comparator C2 (or 1.2V precision reference on parts so equipped) bit 3-2 **Unimplemented:** Read as '0' bit 1 T1GSS: Timer1 Gate Source Select bit 1 = Timer1 gate source is $\overline{T1G}$ 0 = Timer1 gate source is SYNCC2OUT. bit 0 C2SYNC: Comparator C2 Output Synchronization bit 1 = Output is synchronous to falling edge of Timer1 clock 0 = Output is asynchronous # 11.0 CAPTURE/COMPARE/PWM MODULES (CCP1 AND CCP2) This device contains one Enhanced Capture/Compare/PWM (CCP1) and Capture/Compare/PWM module (CCP2). The CCP1 and CCP2 modules are identical in operation, with the exception of the Enhanced PWM features available on CCP1 only. See **Section 11.6** "**PWM (Enhanced Mode)**" for more information. **Note:** CCPRx and CCPx throughout this document refer to CCPR1 or CCPR2 and CCP1 or CCP2, respectively. # 11.1 Enhanced Capture/Compare/PWM (CCP1) The Enhanced Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle. Table 11-1 shows the timer resources required by the ECCP module. TABLE 11-1: ECCP MODE – TIMER RESOURCES REQUIRED | ECCP Mode | Timer Resource | | | | | |-----------|----------------|--|--|--|--| | Capture | Timer1 | | | | | | Compare | Timer1 | | | | | | PWM | Timer2 | | | | | #### 11.6.3 START-UP CONSIDERATIONS When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. Note: When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the Off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s). The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits. The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins. FIGURE 11-19: SIMPLIFIED STEERING BLOCK DIAGRAM - Note 1: Port outputs are configured as shown when the CCP1CON register bits P1M<1:0> = 00 and CCP1M<3:2> = 11. - **2:** Single PWM output requires setting at least one of the STRx bits. ### 12.1.2.4 Receive Framing Error Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG. The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error. The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt. Note: If all receive characters in the receive FIFO have framing errors, repeated reads of the RCREG will not clear the FERR bit. ### 12.1.2.5 Receive Overrun Error The receive FIFO buffer can hold two characters. An overrun error will be generated If a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register. #### 12.1.2.6 Receiving 9-Bit Characters The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG. #### 12.1.2.7 Address Detection A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register. Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored. Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit. ### REGISTER 12-3: BAUDCTL: BAUD RATE CONTROL REGISTER | R-0 | R-1 | U-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | |--------|-------|--------|-------|-------|---------|-------|-------| | ABDOVF | RCIDL | - SCKP | | BRG16 | BRG16 — | | ABDEN | | bit 7 | | | | | | | bit 0 | Legend: bit 2 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 ABDOVF: Auto-Baud Detect Overflow bit Asynchronous mode: 1 = Auto-baud timer overflowed0 = Auto-baud timer did not overflow Synchronous mode: Don't care bit 6 RCIDL: Receive Idle Flag bit <u>Asynchronous mode</u>: 1 = Receiver is Idle 0 = Start bit has been received and the receiver is receiving Synchronous mode: Don't care bit 5 **Unimplemented:** Read as '0' bit 4 SCKP: Synchronous Clock Polarity Select bit Asynchronous mode: 1 = Transmit inverted data to the RB7/TX/CK pin 0 = Transmit non-inverted data to the RB7/TX/CK pin Synchronous mode: 1 = Data is clocked on rising edge of the clock0 = Data is clocked on falling edge of the clock bit 3 BRG16: 16-bit Baud Rate Generator bit 1 = 16-bit Baud Rate Generator is used0 = 8-bit Baud Rate Generator is used Unimplemented: Read as '0' bit 1 **WUE:** Wake-up Enable bit Asynchronous mode: 1 = Receiver is waiting for a falling edge. No character will be received byte RCIF will be set. WUE will automatically clear after RCIF is set. 0 = Receiver is operating normally Synchronous mode: Don't care bit 0 ABDEN: Auto-Baud Detect Enable bit Asynchronous mode: 1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete) 0 = Auto-Baud Detect mode is disabled Synchronous mode: Don't care TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED) | | | SYNC = 0, BRGH = 1, BRG16 = 0 | | | | | | | | | | | | | |--------|------------------|-------------------------------|-----------------------------|-------------------|------------|-----------------------------|------------------|------------|-----------------------------|------------------|------------|-----------------------------|--|--| | BAUD | Fosc = 4.000 MHz | | | Fosc = 3.6864 MHz | | | Fosc = 2.000 MHz | | | Fosc = 1.000 MHz | | | | | | | Actual
Rate | %
Error | SPBRG
value
(decimal) | | | | 300 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 300 | 0.16 | 207 | | | | 1200 | 1202 | 0.16 | 207 | 1200 | 0.00 | 191 | 1202 | 0.16 | 103 | 1202 | 0.16 | 51 | | | | 2400 | 2404 | 0.16 | 103 | 2400 | 0.00 | 95 | 2404 | 0.16 | 51 | 2404 | 0.16 | 25 | | | | 9600 | 9615 | 0.16 | 25 | 9600 | 0.00 | 23 | 9615 | 0.16 | 12 | _ | _ | _ | | | | 10417 | 10417 | 0.00 | 23 | 10473 | 0.53 | 21 | 10417 | 0.00 | 11 | 10417 | 0.00 | 5 | | | | 19.2k | 19.23k | 0.16 | 12 | 19.2k | 0.00 | 11 | _ | _ | _ | _ | | _ | | | | 57.6k | _ | _ | _ | 57.60k | 0.00 | 3 | _ | _ | _ | _ | _ | _ | | | | 115.2k | _ | _ | _ | 115.2k | 0.00 | 1 | _ | _ | _ | _ | _ | _ | | | | | | SYNC = 0, BRGH = 0, BRG16 = 1 | | | | | | | | | | | | | | |--------|-------------------|-------------------------------|-----------------------------|-------------------|------------|-----------------------------|--------------------|------------|-----------------------------|------------------|------------|-----------------------------|--|--|--| | BAUD | Fosc = 20.000 MHz | | | Fosc = 18.432 MHz | | | Fosc = 11.0592 MHz | | | Fosc = 8.000 MHz | | | | | | | RATE | Actual
Rate | %
Error | SPBRG
value
(decimal) | | | | | 300 | 300.0 | -0.01 | 4166 | 300.0 | 0.00 | 3839 | 300.0 | 0.00 | 2303 | 299.9 | -0.02 | 1666 | | | | | 1200 | 1200 | -0.03 | 1041 | 1200 | 0.00 | 959 | 1200 | 0.00 | 575 | 1199 | -0.08 | 416 | | | | | 2400 | 2399 | -0.03 | 520 | 2400 | 0.00 | 479 | 2400 | 0.00 | 287 | 2404 | 0.16 | 207 | | | | | 9600 | 9615 | 0.16 | 129 | 9600 | 0.00 | 119 | 9600 | 0.00 | 71 | 9615 | 0.16 | 51 | | | | | 10417 | 10417 | 0.00 | 119 | 10378 | -0.37 | 110 | 10473 | 0.53 | 65 | 10417 | 0.00 | 47 | | | | | 19.2k | 19.23k | 0.16 | 64 | 19.20k | 0.00 | 59 | 19.20k | 0.00 | 35 | 19.23k | 0.16 | 25 | | | | | 57.6k | 56.818 | -1.36 | 21 | 57.60k | 0.00 | 19 | 57.60k | 0.00 | 11 | 55556 | -3.55 | 8 | | | | | 115.2k | 113.636 | -1.36 | 10 | 115.2k | 0.00 | 9 | 115.2k | 0.00 | 5 | _ | _ | _ | | | | | | SYNC = 0, BRGH = 0, BRG16 = 1 | | | | | | | | | | | | | |--------|-------------------------------|------------|-----------------------------|-------------------|------------|-----------------------------|------------------|------------|-----------------------------|----------------|------------------|-----------------------------|--| | BAUD | Fosc = 4.000 MHz | | | Fosc = 3.6864 MHz | | | Fosc = 2.000 MHz | | | Fos | Fosc = 1.000 MHz | | | | RATE | Actual
Rate | %
Error | SPBRG
value
(decimal) | | | 300 | 300.1 | 0.04 | 832 | 300.0 | 0.00 | 767 | 299.8 | -0.108 | 416 | 300.5 | 0.16 | 207 | | | 1200 | 1202 | 0.16 | 207 | 1200 | 0.00 | 191 | 1202 | 0.16 | 103 | 1202 | 0.16 | 51 | | | 2400 | 2404 | 0.16 | 103 | 2400 | 0.00 | 95 | 2404 | 0.16 | 51 | 2404 | 0.16 | 25 | | | 9600 | 9615 | 0.16 | 25 | 9600 | 0.00 | 23 | 9615 | 0.16 | 12 | _ | _ | _ | | | 10417 | 10417 | 0.00 | 23 | 10473 | 0.53 | 21 | 10417 | 0.00 | 11 | 10417 | 0.00 | 5 | | | 19.2k | 19.23k | 0.16 | 12 | 19.20k | 0.00 | 11 | _ | _ | _ | _ | _ | _ | | | 57.6k | _ | _ | _ | 57.60k | 0.00 | 3 | _ | _ | _ | _ | _ | _ | | | 115.2k | _ | _ | _ | 115.2k | 0.00 | 1 | _ | _ | _ | _ | _ | _ | | ### 12.4 EUSART Synchronous Mode Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry. There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device. Start and Stop bits are not used in synchronous transmissions. #### 12.4.1 SYNCHRONOUS MASTER MODE The following bits are used to configure the EUSART for Synchronous Master operation: - SYNC = 1 - CSRC = 1 - SREN = 0 (for transmit); SREN = 1 (for receive) - CREN = 0 (for transmit); CREN = 1 (for receive) - SPFN = 1 Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART. If the RX/DT or TX/CK pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits. ### 12.4.1.1 Master Clock Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits. ### 12.4.1.2 Clock Polarity A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCTL register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock. ### 12.4.1.3 Synchronous Master Transmission Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation. A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG. Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge. **Note:** The TSR register is not mapped in data memory, so it is not available to the user. # 12.4.1.4 Synchronous Master Transmission Setup: - Initialize the SPBRGH, SPBRG register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 12.3 "EUSART Baud Rate Generator (BRG)"). - Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC. - Disable Receive mode by clearing bits SREN and CREN. - 4. Enable Transmit mode by setting the TXEN bit. - 5. If 9-bit transmission is desired, set the TX9 bit. - If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register. - If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit. - Start transmission by loading data to the TXREG register. ### 14.6 Power-Down Mode (Sleep) The Power-Down mode is entered by executing a SLEEP instruction. If the Watchdog Timer is enabled: - WDT will be cleared but keeps running. - PD bit in the STATUS register is cleared. - TO bit is set. - · Oscillator driver is turned off. - I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance). For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTA should be considered. The MCLR pin must be at a logic high level. Note: It should be noted that a Reset generated by a WDT time-out does not drive MCLR pin low. #### 14.6.1 WAKE-UP FROM SLEEP The device can wake-up from Sleep through one of the following events: - 1. External Reset input on MCLR pin. - 2. Watchdog Timer Wake-up (if WDT was enabled). - 3. Interrupt from RB0/INT pin, PORTB change or a peripheral interrupt. The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The $\overline{10}$ and \overline{PD} bits in the STATUS register can be used to determine the cause of device Reset. The \overline{PD} bit, which is set on power-up, is cleared when Sleep is invoked. $\overline{10}$ bit is cleared if WDT Wake-up occurred. The following peripheral interrupts can wake the device from Sleep: - 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter. - 2. ECCP Capture mode interrupt. - 3. A/D conversion (when A/D clock source is FRC). - 4. EEPROM write operation completion. - 5. Comparator output changes state. - 6. Interrupt-on-change. - 7. External Interrupt from INT pin. - EUSART Break detect, I²C slave. Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present. When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from Sleep. The SLEEP instruction is completely executed. The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up. ### 14.6.2 WAKE-UP USING INTERRUPTS Note: When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: - If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared. - If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction. ### 16.2 MPLAB XC Compilers The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X. For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE. The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications. MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include: - · Support for the entire device instruction set - Support for fixed-point and floating-point data - · Command-line interface - · Rich directive set - Flexible macro language - MPLAB X IDE compatibility ### 16.3 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging. The MPASM Assembler features include: - Integration into MPLAB X IDE projects - User-defined macros to streamline assembly code - Conditional assembly for multipurpose source files - Directives that allow complete control over the assembly process ### 16.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: - Efficient linking of single libraries instead of many smaller files - Enhanced code maintainability by grouping related modules together - Flexible creation of libraries with easy module listing, replacement, deletion and extraction # 16.5 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: - Support for the entire device instruction set - Support for fixed-point and floating-point data - · Command-line interface - · Rich directive set - · Flexible macro language - MPLAB X IDE compatibility # 17.5 DC Characteristics: PIC16F882/883/884/886/887-I (Industrial) PIC16F882/883/884/886/887-E (Extended) | DC CHA | ARACTE | RISTICS | Operating temperature | | -40°C | ditions (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended | | | |--------------|--------|--|-----------------------|-------|----------|--|--|--| | Param
No. | Sym. | Characteristic | Min. | Тур† | Max. | Units | Conditions | | | | VIL | Input Low Voltage | | | | | | | | | | I/O Port: | | | | | | | | D030 | | with TTL buffer | Vss | _ | 0.8 | V | $4.5 \text{V} \leq \text{Vdd} \leq 5.5 \text{V}$ | | | D030A | | | Vss | _ | 0.15 VDD | V | $2.0V \le VDD \le 4.5V$ | | | D031 | | with Schmitt Trigger buf-
fer | Vss | _ | 0.2 VDD | V | $2.0V \le VDD \le 5.5V$ | | | D032 | | MCLR, OSC1 (RC mode) ⁽¹⁾ | Vss | _ | 0.2 VDD | V | | | | D033 | | OSC1 (XT and LP modes) | Vss | _ | 0.3 | V | | | | D033A | | OSC1 (HS mode) | Vss | _ | 0.3 VDD | V | | | | | VIH | Input High Voltage | | | | | | | | | | I/O ports: | | _ | | | | | | D040 | | with TTL buffer | 2.0 | _ | VDD | V | $4.5 \text{V} \leq \text{Vdd} \leq 5.5 \text{V}$ | | | D040A | | | 0.25 VDD + 0.8 | _ | VDD | V | $2.0V \le VDD \le 4.5V$ | | | D041 | | with Schmitt Trigger buffer | 0.8 VDD | _ | VDD | V | $2.0V \le VDD \le 5.5V$ | | | D042 | | MCLR | 0.8 VDD | _ | VDD | V | | | | D043 | | OSC1 (XT and LP modes) | 1.6 | _ | VDD | V | | | | D043A | | OSC1 (HS mode) | 0.7 Vdd | _ | VDD | V | | | | D043B | | OSC1 (RC mode) | 0.9 Vdd | _ | VDD | V | (Note 1) | | | | lı∟ | Input Leakage Current ⁽²⁾ | | | | | | | | D060 | | I/O ports | _ | ± 0.1 | ± 1 | μΑ | Vss ≤ VPIN ≤ VDD,
Pin at high-impedance | | | D061 | | MCLR ⁽³⁾ | _ | ± 0.1 | ± 5 | μΑ | VSS ≤ VPIN ≤ VDD | | | D063 | | OSC1 | _ | ± 0.1 | ± 5 | μΑ | Vss ≤ VPIN ≤ VDD, XT, HS and LP oscillator configuration | | | D070* | IPUR | PORTB Weak Pull-up Cur-
rent | 50 | 250 | 400 | μА | VDD = 5.0V, VPIN = VSS | | | | Vol | Output Low Voltage ⁽⁵⁾ | | | | | | | | D080 | | I/O ports | _ | _ | 0.6 | V | IOL = 8.5 mA, VDD = 4.5V (Ind.) | | | D090 | Vон | Output High Voltage ⁽⁵⁾ I/O ports | VDD - 0.7 | _ | _ | V | IOH = -3.0 mA, VDD = 4.5V
(Ind.) | | - * These parameters are characterized but not tested. - † Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. - Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode. - 2: Negative current is defined as current sourced by the pin. - 3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. - 4: See Section 10.3.1 "Using the Data EEPROM" for additional information. - 5: Including OSC2 in CLKOUT mode. TABLE 17-16: I²C™ BUS DATA REQUIREMENTS | Param.
No. | Symbol | Characte | eristic | Min. | Max. | Units | Conditions | | |---------------|---------|----------------------------|--------------|------------|------|-------|---|--| | 100* | THIGH | Clock high time | 100 kHz mode | 4.0 | 1 | μS | Device must operate at a minimum of 1.5 MHz | | | | | | 400 kHz mode | 0.6 | 1 | μS | Device must operate at a minimum of 10 MHz | | | | | | SSP Module | 1.5TcY | | | | | | 101* | TLOW | Clock low time | 100 kHz mode | 4.7 | l | μ\$ | Device must operate at a minimum of 1.5 MHz | | | | | | 400 kHz mode | 1.3 | | μS | Device must operate at a minimum of 10 MHz | | | | | | SSP Module | 1.5Tcy | _ | | | | | 102* | TR | SDA and SCL rise time | 100 kHz mode | _ | 1000 | ns | | | | | | | 400 kHz mode | 20 + 0.1CB | 300 | ns | CB is specified to be from 10-400 pF | | | 103* | TF | SDA and SCL fall time | 100 kHz mode | _ | 300 | ns | | | | | | | 400 kHz mode | 20 + 0.1CB | 300 | ns | CB is specified to be from 10-400 pF | | | 90* | Tsu:sta | Start condition setup time | 100 kHz mode | 4.7 | _ | μS | Only relevant for | | | | | | 400 kHz mode | 0.6 | _ | μS | Repeated Start condition | | | 91* | THD:STA | Start condition hold time | 100 kHz mode | 4.0 | | μS | After this period the first | | | | | | 400 kHz mode | 0.6 | | μS | clock pulse is generated | | | 106* | THD:DAT | Data input hold time | 100 kHz mode | 0 | - | ns | | | | | | | 400 kHz mode | 0 | 0.9 | μS | | | | 107* | Tsu:dat | Data input setup time | 100 kHz mode | 250 | _ | ns | (Note 2) | | | | | | 400 kHz mode | 100 | _ | ns | | | | 92* | Tsu:sto | Stop condition setup time | 100 kHz mode | 4.7 | _ | μS | | | | | | | 400 kHz mode | 0.6 | _ | μS | | | | 109* | Таа | Output valid from clock | 100 kHz mode | _ | 3500 | ns | (Note 1) | | | | | | 400 kHz mode | _ | _ | ns | | | | 110* | TBUF | Bus free time | 100 kHz mode | 4.7 | | μS | Time the bus must be free | | | | | | 400 kHz mode | 1.3 | _ | μS | before a new transmission can start | | | | Св | Bus capacitive loading | ng | _ | 400 | pF | | | These parameters are characterized but not tested. - **Note 1:** As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. - 2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released. FIGURE 18-17: TYPICAL WDT IPD vs. VDD (25°C) FIGURE 18-18: MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE #### 19.0 PACKAGING INFORMATION #### 19.1 **Package Marking Information** 28-Lead SPDIP (.300") Example 28-Lead SOIC (7.50 mm) Example 28-Lead SSOP (5.30 mm) Example Legend: XX...X Customer-specific information Υ Year code (last digit of calendar year) ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code (e3) Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will Note: be carried over to the next line, thus limiting the number of available characters for customer-specific information.