

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

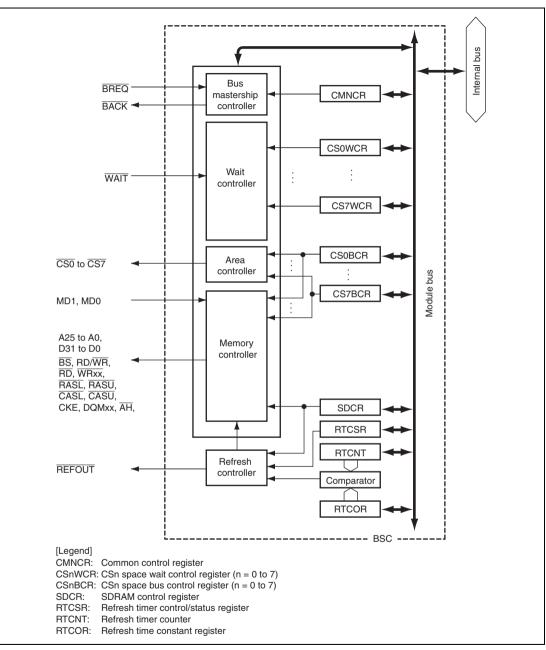
E·XFL

Product Status	Not For New Designs
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, Ethernet, I ² C, SCI, SPI, USB
Peripherals	DMA, PWM, WDT
Number of I/O	112
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	64К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f72145hdfa-v1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Items	Specification
FPU	On-chip floating-point coprocessor
(SH7216 Group only)	Supports single-precision (32 bits) and double-precision (64 bits)
	Supports IEEE 754-compliant data types and exceptions
	Rounding mode: Round to Nearest and Round to Zero
	Handling of denormalize numbers: Truncation to Zero
	Floating-point registers
	Sixteen 32-bit floating-point registers (single-precision x 16 words or double-precision x 8 words)
	Two 32-bit floating-point system registers
	Supports FMAC (multiply and accumulate) instruction
	Supports FDIV (division) and FSQRT (square root) instructions
	 Supports FLDI0/FLDI1 (load constant 0/1) instructions
	Instruction execution times
	Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8 cycles (double-precision)
	Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles (double-precision)
	Note: FMAC is supported for single-precision only.
	Five-stage pipeline
Operating modes	Operating modes
	Extended ROM enabled mode
	Single-chip mode
	Processing states
	Program execution state
	Exception handling state
	Bus mastership release state
	Power-down modes
	Sleep mode
	Software standby mode
	Module standby mode


						Co	ompatib	oility
Instruct	tion	Instruction Code	Operation	Execu- tion Cycles		SH2E	SH4	SH-2A/ SH2A- FPU
BT/S	label	10001101ddddddd	Delayed branch When T = 1, disp \times 2 + PC \rightarrow PC, When T = 0, nop	2/1*	_	Yes	Yes	
BRA	label	1010ddddddddddd	Delayed branch, disp \times 2 + PC \rightarrow PC	2	_	Yes	Yes	
BRAF	Rm	0000mmmm00100011	Delayed branch, Rm + PC \rightarrow PC	2	_	Yes	Yes	
BSR	label	1011ddddddddddd	Delayed branch, PC \rightarrow PR, disp \times 2 + PC \rightarrow PC	2	_	Yes	Yes	
BSRF	Rm	0000mmmm00000011	Delayed branch, PC \rightarrow PR, Rm + PC \rightarrow PC	2	_	Yes	Yes	
JMP	@Rm	0100mmmm00101011	Delayed branch, Rm \rightarrow PC	2	_	Yes	Yes	
JSR	@Rm	0100mmmm00001011	Delayed branch, PC \rightarrow PR, Rm \rightarrow PC	2	_	Yes	Yes	
JSR/N	@Rm	0100mmmm01001011	$\text{PC-2} \rightarrow \text{PR}, \text{Rm} \rightarrow \text{PC}$	3	_			Yes
JSR/N	@@(disp8, TBR)	10000011ddddddd	$PC-2 \rightarrow PR$, (disp × 4 + TBR) $\rightarrow PC$	5	_			Yes
RTS		000000000001011	Delayed branch, PR \rightarrow PC	2	_	Yes	Yes	
RTS/N		000000001101011	$PR \to PC$	3				Yes
RTV/N	Rm	0000mmmm01111011	$\text{Rm} \rightarrow \text{R0, PR} \rightarrow \text{PC}$	3	_			Yes

Note: * One cycle when the program does not branch.

			1st Tran	sfer							
Transfer Mode	CHNE	CHNS	RCHNE	DISEL	Transfer Counter* ¹	CHNE	CHNS	RCHNE	DISEL	Transfer Counter* ¹	DTC Transfer
Block	0	_		0	Not 0				-	_	Ends at 1st transfer
	0	0_0		—		_	_	_	Ends at 1st		
	0	_	_	1	_			_			transfer Interrupt request to CPU
	1	0	_	_	_	0	_	_	0	Not 0	Ends at 2nd transfer
					0 — 0 —	0	_	_	0	0	Ends at 2nd
						_	1	_	transfer Interrupt request to CPU		
	1	1	_	0		_		_	_		Ends at 1st transfer
	1	1	_	1	Not 0	_	_	_	_		Ends at 1st transfer Interrupt request to CPU
	1	1	_	1	0	0	_	_	0	Not 0	Ends at 2nd transfer
						0	_	_	0	0	Ends at 2nd
						0	_	_	1		transfer Interrupt request to CPU

Notes: 1. CRA in normal mode transfer, CRAL in repeat transfer mode, or CRB in block transfer mode

2. When the contents of the CRAH is written to the CRAL

Bit	Bit Name	Initial Value	R/W	Description
1	SCC	0	R/(W)	Synchronous Clearing Control
				Specifies whether to clear TCNT_3 and TCNT_4 in the MTU2S when synchronous counter clearing between the MTU2 and MTU2S occurs in complementary PWM mode.
				When using this control, place the MTU2S in complementary PWM mode.
				When modifying the SCC bit while the counters are operating, do not modify the CCE or WRE bits.
				Counter clearing synchronized with the MTU2 is disabled by the SCC bit setting only when synchronous clearing occurs outside the Tb interval at the trough. When synchronous clearing occurs in the Tb interval at the trough including the period immediately after TCNT_3 and TCNT_4 start operation, TCNT_3 and TCNT_4 in the MTU2S are cleared.
				For the Tb interval at the trough in complementary PWM mode, see figure 11.40.
				In the MTU2, this bit is reserved. It is always read as 0 and the write value should always be 0.
				0: Enables clearing of TCNT_3 and TCNT_4 in the MTU2S by MTU2-MTU2S synchronous clearing operation
				1: Disables clearing of TCNT_3 and TCNT_4 in the MTU2S by MTU2-MTU2S synchronous clearing operation
				[Setting condition]
				• When 1 is written to SCC after reading SCC = 0

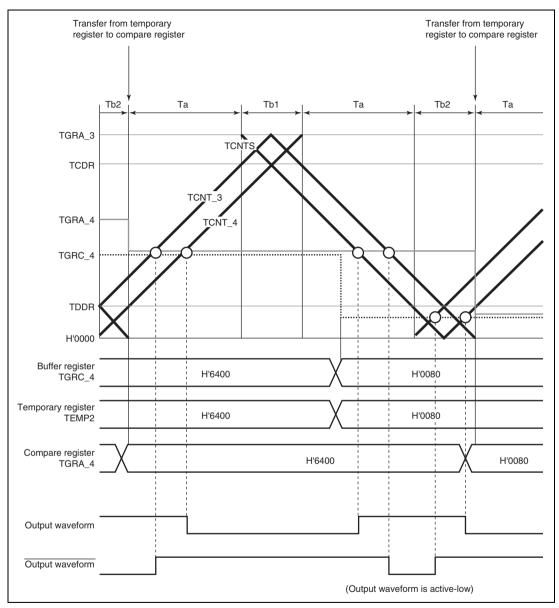


Figure 11.40 Example of Complementary PWM Mode Operation

(q) Example of AC Synchronous Motor (Brushless DC Motor) Drive Waveform Output

In complementary PWM mode, a brushless DC motor can easily be controlled using the timer gate control register (TGCR). Figures 11.69 to 11.72 show examples of brushless DC motor drive waveforms created using TGCR.

When output phase switching for a 3-phase brushless DC motor is performed by means of external signals detected with a Hall element, etc., clear the FB bit in TGCR to 0. In this case, the external signals indicating the polarity position are input to channel 0 timer input pins TIOC0A, TIOC0B, and TIOC0C (set with PFC). When an edge is detected at pin TIOC0A, TIOC0B, or TIOC0C, the output on/off state is switched automatically.

When the FB bit is 1, the output on/off state is switched when the UF, VF, or WF bit in TGCR is cleared to 0 or set to 1.

The drive waveforms are output from the complementary PWM mode 6-phase output pins. With this 6-phase output, in the case of on output, it is possible to use complementary PWM mode output and perform chopping output by setting the N bit or P bit to 1. When the N bit or P bit is 0, level output is selected.

The 6-phase output active level (on output level) can be set with the OLSN and OLSP bits in the timer output control register (TOCR) regardless of the setting of the N and P bits.

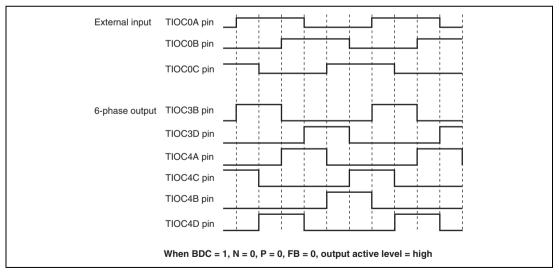


Figure 11.69 Example of Output Phase Switching by External Input (1)

Bit	Bit Name	Initial Value	R/W	Description
2	SPOM	0	R/W	RSPI Output Pin Mode
				Sets the RSPI output pins to CMOS output/open drain output.
				0: CMOS output
				1: Open-drain output
1	_	0	R	Reserved
				The write value should always be 0. Otherwise, operation cannot be guaranteed.
0	SPLP	0	R/W	RSPI Loopback
				When the SPLP bit is set to 1, the RSPI shuts off the path between the MISO pin and the shift register, and between the MOSI pin and the shift register, and connects (reverses) the input path and the output path for the shift register (loopback mode).
				0: Normal mode
				1: Loopback mode

18.3.4 RSPI Status Register (SPSR)

SPSR indicates the operating status of the RSPI. SPSR can be read by the CPU. Writing 1 to the SPRF, SPTEF, MODF, and OVRF bits cannot be performed by the CPU. These bits can be cleared to 0 after they are read as 1.

Bit:	7	6	5	4	3	2	1	0
	SPRF	-	SPTEF	-	-	MODF	MIDLE	OVRF
Initial value:	0	0	1	0	0	0	0	0
R/W:	R/(W)*	R	R/(W)*	R	R	R/(W)*	R	R/(W)*

Note: * Only 0 can be written to this bit after reading it as 1 to clear the flag.

18.4.11 Error Processing

Figures 18.30 and 18.31 show error processing. The RSPI can recover from an error which may occur in master or slave mode, using the following error processing.

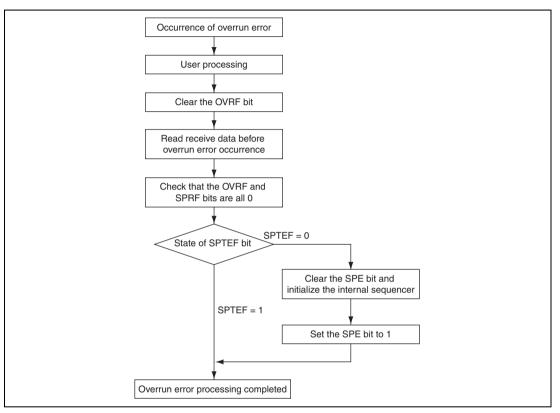


Figure 18.30 Error Processing (Overrun Error)

Bit	Bit Name	Initial Value	R/W	Description
5	SDAO	1	R/W	SDA Output Value Control
				This bit is used with SDAOP when modifying output level of SDA. This bit should not be manipulated during transfer.
				0: When reading, SDA pin outputs low.
				When writing, SDA pin is changed to output low.
				1: When reading, SDA pin outputs high.
				When writing, SDA pin is changed to output Hi-Z (outputs high by external pull-up resistance).
4	SDAOP	1	R/W	SDAO Write Protect
				Controls change of output level of the SDA pin by modifying the SDAO bit. To change the output level, clear SDAO and SDAOP to 0 or set SDAO to 1 and clear SDAOP to 0. This bit is always read as 1.
3	SCLO	1	R	SCL Output Level
				Monitors SCL output level. When SCLO is 1, SCL pin outputs high. When SCLO is 0, SCL pin outputs low.
2	_	1	R	Reserved
				This bit is always read as 1. The write value should always be 1.
1	IICRST	0	R/W	IIC Control Part Reset
				Resets the control part except for I ² C registers. If this bit is set to 1 when hang-up occurs because of communication failure during I ² C bus operation, some IIC3 registers and the control part can be reset.
0	_	1	R	Reserved
				This bit is always read as 1. The write value should always be 1.

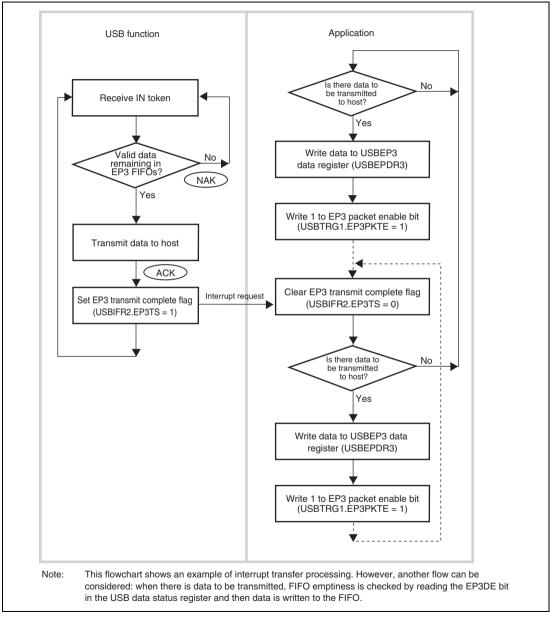
	_			Pin nar	ne	
	-		Initial	function		
Pin number	Pin number	On-chip ROM	unabled mode	On-chip ROM enabled mode	Single-chip mode	
BGA	LQFP	MCU mode 0	MCU mode 1	MCU mode 2	MCU mode 3	Settable function in PFC
F13	123		Ν	IMI		_
C13	134		FWE/ASEBF	KAK/ASEBRK		—
B13	135		ASI	EMDO		—
D13	127		Т	CK		_
D14	128		т	MS		_
D15	125		٦	ſDI		_
C15	126		т	DO		_
C12	129		TI	RST		_
B8	157		F	2A0		PA0/CS0*1/IRQ4/CRx0/RXD0/
						RX_CLK
C7	158		F	PA1		PA1/CS1*1/IRQ5/CTx0/TXD0/
						MII_RXD0
A7	159		F	PA2		PA2/CS2*1/TCLKD/SSL0/
						SCK0/MII_RXD1
B7	160		F	PA3		PA3/CS3*1/TCLKC/MISO/
						RXD1/MII_RXD2
D6	161		F	PA4		PA4/CS4*1/TCLKB/MOSI/
						TXD1/MII_RXD3
C6	162		F	PA5		PA5/CS5*1/TCLKA/RSPCK/
						SCK1/RX_ER
K14	103		F	PA6		PA6/CS6*1/IRQ6/TCLKA/
						RSPCK/SCK1/TX_ER
K13	102		F	PA7		PA7/CS5*1/IRQ5/TCLKB/
						MOSI/TXD1/MII_TXD3
K12	101		F	PA8		PA8/CS4*1/IRQ4/TCLKC/
						MISO/RXD1/MII_TXD2
L15	100		F	PA9		PA9/CS3*1/IRQ3/TCLKD/
						SSL0/SCK0/MII_TXD1

22.1.9 Port C Pull-Up MOS Control Register L (PCPCRL)

PCPCRL controls on/off of the input pull-up MOS of port C in bits.

• Port C Pull-Up MOS Control Register L (PCPCRL)

Bit: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PC15 PCR	PC14 PCR	PC13 PCR	PC12 PCR	PC11 PCR	PC10 PCR	PC9 PCR	PC8 PCR	PC7 PCR	PC6 PCR	PC5 PCR	PC4 PCR	PC3 PCR	PC2 PCR	PC1 PCR	PC0 PCR
Initial value: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W


Bit	Bit Name	Initial Value	R/W	Description
15	PC15PCR	0	R/W	The corresponding input pull-up MOS turns on when
14	PC14PCR	0	R/W	one of these bits is set to 1.
13	PC13PCR	0	R/W	_
12	PC12PCR	0	R/W	—
11	PC11PCR	0	R/W	_
10	PC10PCR	0	R/W	_
9	PC9PCR	0	R/W	—
8	PC8PCR	0	R/W	_
7	PC7PCR	0	R/W	—
6	PC6PCR	0	R/W	—
5	PC5PCR	0	R/W	_
4	PC4PCR	0	R/W	_
3	PC3PCR	0	R/W	_
2	PC2PCR	0	R/W	—
1	PC1PCR	0	R/W	_
0	PC0PCR	0	R/W	

• Port D Pull-Up MOS Control Register L (PDPCRL)

Bit: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PD15 PCR	PD14 PCR	PD13 PCR	PD12 PCR	PD11 PCR	PD10 PCR	PD9 PCR	PD8 PCR	PD7 PCR	PD6 PCR	PD5 PCR	PD4 PCR	PD3 PCR	PD2 PCR	PD1 PCR	PD0 PCR
Initial value: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15	PD15PCR	0	R/W	The corresponding input pull-up MOS turns on
14	PD14PCR	0	R/W	when one of these bits is set to 1.
13	PD13PCR	0	R/W	_
12	PD12PCR	0	R/W	_
11	PD11PCR	0	R/W	_
10	PD10PCR	0	R/W	_
9	PD9PCR	0	R/W	_
8	PD8PCR	0	R/W	_
7	PD7PCR	0	R/W	_
6	PD6PCR	0	R/W	_
5	PD5PCR	0	R/W	_
4	PD4PCR	0	R/W	_
3	PD3PCR	0	R/W	_
2	PD2PCR	0	R/W	_
1	PD1PCR	0	R/W	_
0	PD0PCR	0	R/W	_

24.5.7 EP3/EP6/EP9 Interrupt-IN Transfer

Figure 24.13 EP3 Interrupt-IN Transfer Operation

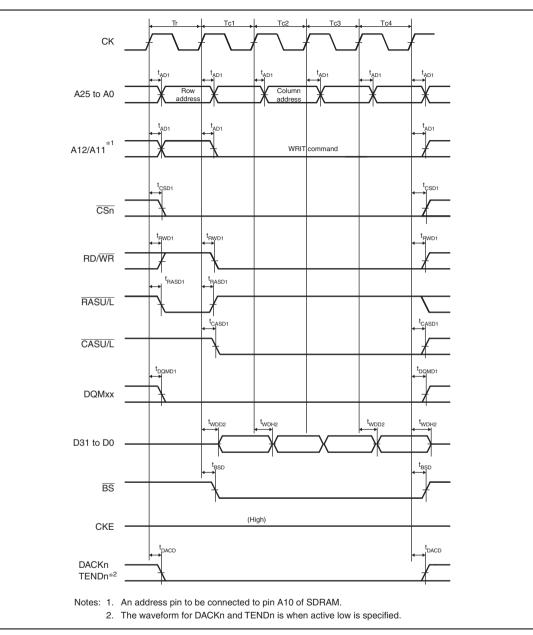
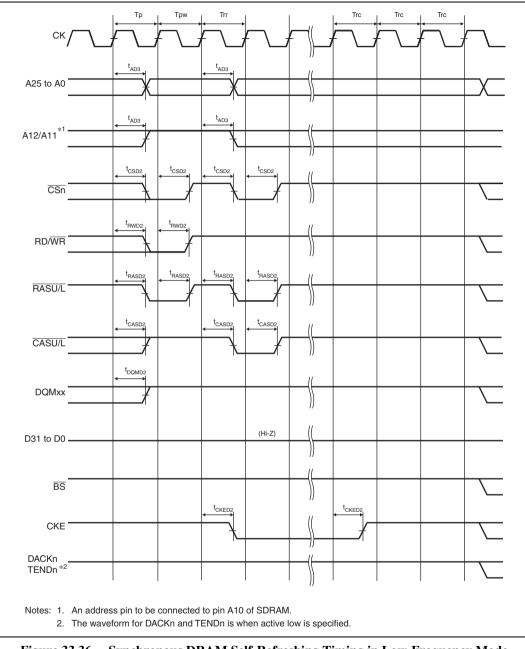
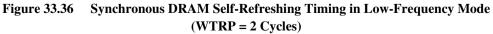




Figure 33.29 Synchronous DRAM Burst Write Bus Cycle (Four Write Cycles) (Bank Active Mode: ACT + WRITE Commands, WTRCD = 0 Cycle, TRWL = 0 Cycle)

33.3.9 Watchdog Timer Timing

Table 33.13 Watchdog Timer Timing

Conditions: $V_{cc}Q = PLLV_{cc} = DrV_{cc} = 3.0 \text{ to } 3.6 \text{ V}, AV_{cc} = AVREF = 4.5 \text{ to } 5.5 \text{ V},$ $V_{ss} = PLLV_{ss} = DrV_{ss} = AVREFVSS = AV_{ss} = 0 \text{ V},$ $Ta = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \text{ (Industrial specifications)}$

Item	Symbol	Min.	Max.	Unit	Figure
WDTOVF delay time	t _{wovd}		50	ns	Figure 33.44

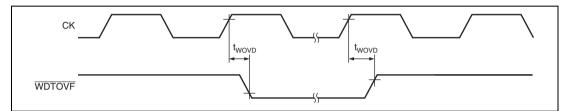


Figure 33.44 Watchdog Timer Timing

33.7 FLD Characteristics

Table 33.26 FLD (Flash Memory for Data Storage) Characteristics

Conditions: $V_{cc}Q = PLLV_{cc} = DrV_{cc} = 3.0 \text{ to } 3.6 \text{ V}, AV_{cc} = AVREF = 4.5 \text{ to } 5.5 \text{ V},$ $V_{ss} = PLLV_{ss} = DrV_{ss} = AVREFVSS = AV_{ss} = 0 \text{ V},$

Operating temperature range during programming/erasing:

 $Ta = -40^{\circ}C$ to $+85^{\circ}C$ (Industrial specifications)

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Figure
Programming	8 bytes	t _{P8}	_	0.4	2	ms	$P\phi = 50 \text{ MHz}$	
time	128 bytes	t _{P128}	_	1	5	ms	_	
Erasure time	8 Kbytes	t _{esk}		300	900	ms	$P\phi = 50 \text{ MHz}$	
Blank check	8 bytes	t _{BC8}	_	_	30	μs	$P\phi = 50 \text{ MHz}$	
time	8 Kbytes	t _{всак}		_	2.5	ms	-	
Rewrite/erase	$N_{_{PEC}}$	30000* ²	_		Times			
Suspend delay time during writing				_	225	μs	$P\phi = 20 \text{ MHz}$	Figure
				_	175	μs	$P\phi = 40 \text{ MHz}$	- 33.71
				_	155	μs	$P\phi = 50 \text{ MHz}$	_
First suspend delay time during erasing (in suspension priority mode)		t _{sesd1}	_	_	220	μs	$P\phi = 20 \text{ MHz}$	_
				_	130	μs	$P\phi = 40 \text{ MHz}$	
				_	120	μs	$P\phi = 50 \text{ MHz}$	_
Second suspend delay time during erasing (in suspension priority mode)		t _{sesd2}			1.7	ms	Ρφ = 50 MHz	-
Suspend delay time during erasing in erasure priority mode		t _{seed}	_		1.7	ms	-	
Resume command interval time		t _{resi}	1.7	—	—	ms	-	
Data hold time*3		t _{DDRP}	10	_		Years	-	

33.8 Usage Notes

33.8.1 Notes on Connecting Capacitors

This LSI includes an internal step-down circuit to automatically reduce the internal power supply voltage to an appropriate level. Between this internal stepped-down power supply (V_{cL} pin) and the V_{ss} pin, a capacitor for stabilizing the internal voltage needs to be connected. Connection of the external capacitor is shown in figure 33.72. The external capacitor should be located near the pin. Do not apply any power supply voltage to the V_{cL} pin.

A multilayer ceramic capacitor should be inserted for each pair of power supply pins as a bypass capacitor. The bypass capacitor must be inserted as close to the power supply pins of the LSI as possible. Connect the bypass capacitor and the capacitor for stabilizing the internal voltage with the capacitance from 0.02 to 0.33 μ F, after being evaluated in the system. For details on capacitors related to crystal oscillation, see section 4.9, Notes on Board Design.

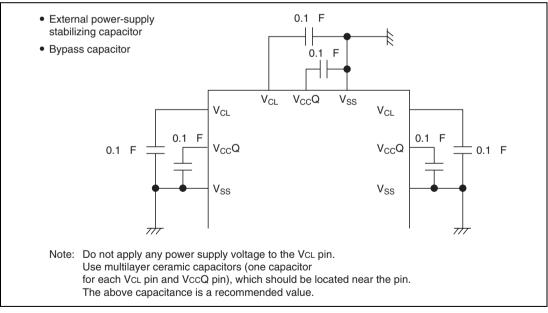
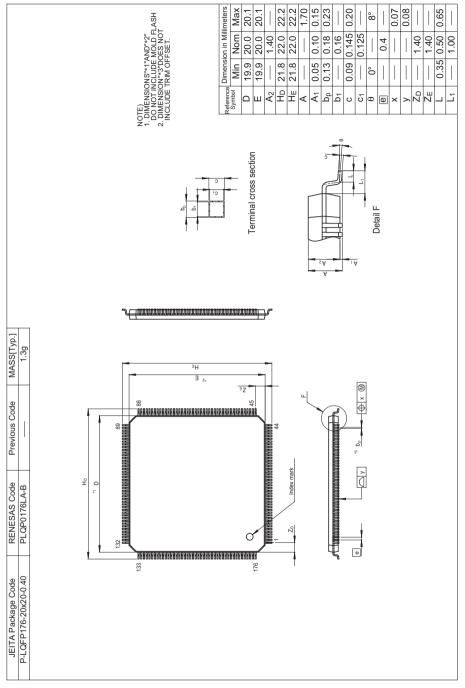



Figure 33.72 Connection of Capacitors

