

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	SH2A-FPU
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, SCI, SPI, USB
Peripherals	DMA, PWM, WDT
Number of I/O	112
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LFBGA
Supplier Device Package	176-LFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f72167adbg-u1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1.3 Exception Handling Vector Table

Before exception handling begins running, the exception handling vector table must be set in memory. The exception handling vector table stores the start addresses of exception service routines. (The reset exception handling table holds the initial values of PC and SP.)

All exception sources are given different vector numbers and vector table address offsets, from which the vector table addresses are calculated. During exception handling, the start addresses of the exception service routines are fetched from the exception handling vector table, which is indicated by this vector table address.

Table 5.3 shows the vector numbers and vector table address offsets. Table 5.4 shows how vector table addresses are calculated.

Exception Sources		Vector Numbers	Vector Table Address Offset
Power-on reset	PC	0	H'00000000 to H'00000003
	SP	1	H'0000004 to H'0000007
Manual reset	PC	2	H'0000008 to H'000000B
	SP	3	H'000000C to H'000000F
General illegal instru	ction	4	H'00000010 to H'00000013
(Reserved by system	1)	5	H'00000014 to H'00000017
Slot illegal instruction	ı	6	H'00000018 to H'0000001B
(Reserved by system	ו)	7	H'0000001C to H'0000001F
		8	H'0000020 to H'0000023
CPU address error		9	H'0000024 to H'0000027
DMAC address error		10	H'0000028 to H'000002B
Interrupts	NMI	11	H'000002C to H'0000002F
	User break	12	H'0000030 to H'0000033
FPU exception		13	H'0000034 to H'0000037
H-UDI		14	H'0000038 to H'000003B
Bank overflow		15	H'000003C to H'000003F
Bank underflow		16	H'00000040 to H'00000043

Table 5.3 Exception Handling Vector Table

6.8.1 Banked Register and Input/Output of Banks

(1) Banked Register

The contents of the general registers (R0 to R14), global base register (GBR), multiply and accumulate registers (MACH and MACL), and procedure register (PR), and the vector table address offset are banked.

(2) Register Banks

This LSI has fifteen register banks, bank 0 to bank 14. Register banks are stacked in first-in lastout (FILO) sequence. Saving takes place in order, beginning from bank 0, and restoration takes place in the reverse order, beginning from the last bank saved to.

6.8.2 Bank Save and Restore Operations

(1) Saving to Bank

Figure 6.11 shows register bank save operations. The following operations are performed when an interrupt for which usage of register banks is allowed is accepted by the CPU:

- a. Assume that the bank number bit value in the bank number register (IBNR), BN, is "i" before the interrupt is generated.
- b. The contents of registers R0 to R14, GBR, MACH, MACL, and PR, and the interrupt vector table address offset (VTO) of the accepted interrupt are saved in the bank indicated by BN, bank i.
- c. The BN value is incremented by 1.

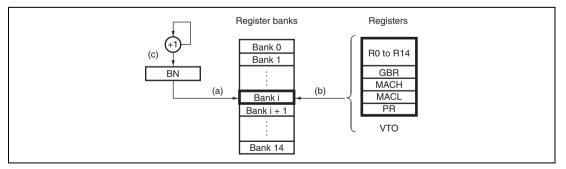


Figure 6.11 Bank Save Operations

Bit	Bit Name	Initial Value	R/W	Description
21 to 19	IWRRD[2:0]	011	R/W	Idle Cycles for Read-Read in Another Space
				Specify the number of idle cycles to be inserted after the access to a memory that is connected to the space. The target cycle is a read-read cycle of which continuous access cycles switch between different spaces.
				000: No idle cycle inserted
				001: 1 idle cycle inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted
				100: 6 idle cycles inserted
				101: 8 idle cycles inserted
				110: 10 idle cycles inserted
				111: 12 idle cycles inserted
18 to 16	IWRRS[2:0]	011	R/W	Idle Cycles for Read-Read in the Same Space
				Specify the number of idle cycles to be inserted after the access to a memory that is connected to the space. The target cycle is a read-read cycle of which continuous access cycles are for the same space.
				000: No idle cycle inserted
				001: 1 idle cycle inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted
				100: 6 idle cycles inserted
				101: 8 idle cycles inserted
				110: 10 idle cycles inserted
				111: 12 idle cycles inserted
15	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

Table 9.11Relationship between BSZ[1:0], A2/3ROW[1:0], A2/3COL[1:0], and AddressMultiplex Output (1)-1

	Setting			
BSZ [1:0]	A2/3 ROW [1:0]	A2/3 COL [1:0]		
11 (32 Bits)	00 (11 Bits)	00 (8 Bits)		
Output Pin of This LSI	Row Address Output Cycle	Column Address Output Cycle	SDRAM Pin	Function
A17	A25	A17		Unused
A16	A24	A16	-	
A15	A23	A15	-	
A14	A22* ²	A22* ²	A12(BA1)	Specifies bank
A13	A21* ²	A21* ²	A11(BA0)	
A12	A20	L/H* ¹	A10/AP	Specifies address/precharge
A11	A19	A11	A9	Address
A10	A18	A10	A8	
A9	A17	A9	A7	
A8	A16	A8	A6	
A7	A15	A7	A5	
A6	A14	A6	A4	
A5	A13	A5	A3	
A4	A12	A4	A2	
A3	A11	A3	A1	
A2	A10	A2	A0	
A1	A9	A1		Unused
A0	A8	A0	-	
Example of conr	nected memory			

64-Mbit product (512 Kwords \times 32 bits \times 4 banks, column 8 bits product): 1

16-Mbit product (512 Kwords \times 16 bits \times 2 banks, column 8 bits product): 2

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high according to the access mode.

2. Bank address specification

Table 9.15Relationship between BSZ[1:0], A2/3ROW[1:0], A2/3COL[1:0], and AddressMultiplex Output (5)-1

	Setting			
BSZ [1:0]	A2/3 ROW [1:0]	A2/3 COL [1:0]	_	
10 (16 Bits)	01 (12 Bits)	01 (9 Bits)	_	
Output Pin of This LSI	Row Address Output Cycle	Column Address Output Cycle	- SDRAM Pin	Function
A17	A26	A17		Unused
A16	A25	A16		
A15	A24	A15	_	
A14	A23* ²	A23* ²	A13 (BA1)	Specifies bank
A13	A22* ²	A22* ²	A12 (BA0)	
A12	A21	A12	A11	Address
A11	A20	L/H* ¹	A10/AP	Specifies address/precharge
A10	A19	A10	A9	Address
A9	A18	A9	A8	
A8	A17	A8	A7	
A7	A16	A7	A6	
A6	A15	A6	A5	
A5	A14	A5	A4	
A4	A13	A4	A3	
A3	A12	A3	A2	
A2	A11	A2	A1	
A1	A10	A1	A0	
A0	A9	A0		Unused
Example of con	nected memory			

128-Mbit product (2 Mwords \times 16 bits \times 4 banks, column 9 bits product): 1

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high according to the access mode.

2. Bank address specification

(3) Input Capture Function

The TCNT value can be transferred to TGR on detection of the TIOC pin input edge.

Rising edge, falling edge, or both edges can be selected as the detected edge. For channels 0 and 1, it is also possible to specify another channel's counter input clock or compare match signal as the input capture source.

Note: When another channel's counter input clock is used as the input capture input for channels 0 and 1, $P\phi/1$ should not be selected as the counter input clock used for input capture input. Input capture will not be generated if $P\phi/1$ is selected.

(a) Example of Input Capture Operation Setting Procedure

Figure 11.10 shows an example of the input capture operation setting procedure.

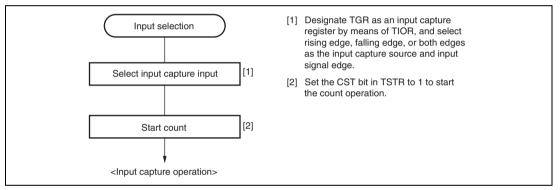


Figure 11.10 Example of Input Capture Operation Setting Procedure

(21) Operation when Error Occurs during Complementary PWM Mode Operation, and Operation is Restarted in Normal Mode

Figure 11.159 shows an explanatory diagram of the case where an error occurs in complementary PWM mode and operation is restarted in normal mode after re-setting.

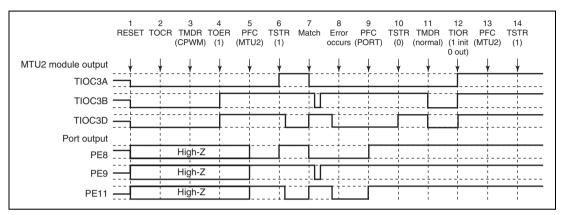
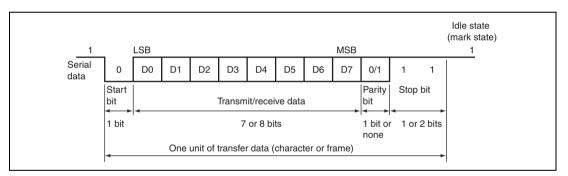


Figure 11.159 Error Occurrence in Complementary PWM Mode, Recovery in Normal Mode

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Select the complementary PWM output level and cyclic output enabling/disabling with TOCR.
- 3. Set complementary PWM.
- 4. Enable channel 3 and 4 output with TOER.
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. The complementary PWM waveform is output on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR. (MTU2 output becomes the complementary PWM output initial value.)
- 11. Set normal mode. (MTU2 output goes low.)
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.


16.4.2 Operation in Asynchronous Mode

In asynchronous mode, each transmitted or received character begins with a start bit and ends with a stop bit. Serial communication is synchronized one character at a time.

The transmitting and receiving sections of the SCI are independent, so full duplex communication is possible. Both the transmitter and receiver have a double-buffered structure so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 16.2 shows the general format of asynchronous serial communication. In asynchronous serial communication, the communication line is normally held in the mark (high) state. The SCI monitors the line and starts serial communication when the line goes to the space (low) state, indicating a start bit. One serial character consists of a start bit (low), data (LSB first), parity bit (high or low), and stop bit (high), in that order.

When receiving in asynchronous mode, the SCI synchronizes at the falling edge of the start bit. The SCI samples each data bit on the eighth pulse of a clock with a frequency 16 times the bit rate. Receive data is latched at the center of each bit.

Figure 16.2 Example of Data Format in Asynchronous Communication (8-Bit Data with Parity and Two Stop Bits)

Section 17 Serial Communication Interface with FIFO (SCIF)

This LSI has one channel of serial communication interface with FIFO (SCIF) that supports both asynchronous and clocked synchronous serial communication. It also has 16-stage FIFO registers for both transmission and reception independently for each channel that enable this LSI to perform efficient high-speed continuous communication.

17.1 Features

- Asynchronous serial communication:
 - Serial data communication is performed by start-stop in character units. The SCIF can communicate with a universal asynchronous receiver/transmitter (UART), an asynchronous communications interface adapter (ACIA), or any other communications chip that employs a standard asynchronous serial system. There are eight selectable serial data communication formats.
 - Data length: 7 or 8 bits
 - Stop bit length: 1 or 2 bits
 - Parity: Even, odd, or none
 - Receive error detection: Parity, framing, and overrun errors
 - Break detection: Break is detected when a framing error is followed by at least one frame at the space 0 level (low level). It is also detected by reading the RXD level directly from the serial port register when a framing error occurs.
- Clocked synchronous serial communication:
 - Serial data communication is synchronized with a clock signal. The SCIF can communicate
 with other chips having a clocked synchronous communication function. There is one serial
 data communication format.
 - Data length: 8 bits
 - Receive error detection: Overrun errors
- Full duplex communication: The transmitting and receiving sections are independent, so the SCIF can transmit and receive simultaneously. Both sections use 16-stage FIFO buffering, so high-speed continuous data transfer is possible in both the transmit and receive directions.
- On-chip baud rate generator with selectable bit rates
- Internal or external transmit/receive clock source: From either baud rate generator (internal) or SCK pin (external)

(2-5) Transfer Operation Flowchart

Figure 18.29 shows an example of transfer operation flowchart in master mode during clock synchronous operation.

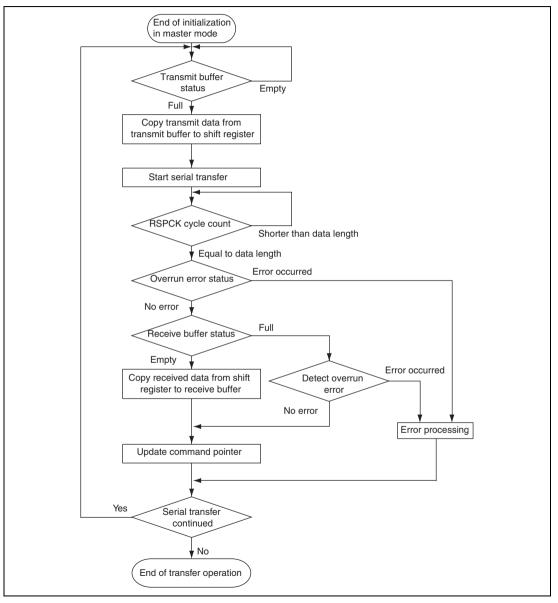


Figure 18.29 Example of Transfer Operation Flowchart in Master Mode

TSEG2: TSG2 + 1

BRP: BRP[7:0] (bits 7 to 0 in BCR0)

The RCAN-ET Bit Rate Calculation is:

Bit Rate = $\frac{f_{Clk}}{2 * (BRP + 1) * (TSEG1 + TSEG2 + 1)}$

where BRP is given by the register value, and TSEG1 and TSEG2 are derived values from TSG1 and TSG2 register values. The '+ 1' in the above formula is for the Sync-Seg which duration is 1 time quanta.

 f_{CLK} = Peripheral Clock

BCR Setting Constraints

TSEG1min > TSEG2 \ge SJWmax (SJW = 1 to 4) 8 \le TSEG1 + TSEG2 + 1 \le 25 time quanta (TSEG1 + TSEG2 + 1 = 7 is not allowed) TSEG2 \ge 2

These constraints allow the setting range shown in the table below for TSEG1 and TSEG2 in the Bit Configuration Register. The number in the table shows possible setting of SJW. "No" shows that there is no allowed combination of TSEG1 and TSEG2.

Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)	Function 4 (Related Module)	Function 5 (Related Module)	Function 6 (Related Module)	Function 7 (Related Module)	Function 8 (Related Module)
A	PA9 I/O (Port)	CS3 output (BSC)	_	IRQ3 input (INTC)	TCLKD input (MTU2)	SSLO I/O (RSPI)	SCK0 I/O (SCI)	MII_TXD1 output (Ether)
	PA8 I/O (Port)	CS4 output (BSC)	—	IRQ4 input (INTC)	TCLKC input (MTU2)	MISO I/O (RSPI)	RXD1 input (SCI)	MII_TXD2 output (Ether)
	PA7 I/O (Port)	CS5 output (BSC)	_	IRQ5 input (INTC)	TCLKB input (MTU2)	MOSI I/O (RSPI)	TXD1 output (SCI)	MII_TXD3 output (Ether)
	PA6 I/O (Port)	CS6 output (BSC)	_	IRQ6 input (INTC)	TCLKA input (MTU2)	RSPCK I/O (RSPI)	SCK1 I/O (SCI)	TX_ER output (Ether)
	PA5 I/O (Port)	CS5 output (BSC)	_	_	TCLKA input (MTU2)	RSPCK I/O (RSPI)	SCK1 I/O (SCI)	RX_ER input (Ether)
	PA4 I/O (Port)	CS4 output (BSC)	_	_	TCLKB input (MTU2)	MOSI I/O (RSPI)	TXD1 output (SCI)	MII_RXD3 input (Ether)
	PA3 I/O (Port)	CS3 output (BSC)	—	_	TCLKC input (MTU2)	MISO I/O (RSPI)	RXD1 input (SCI)	MII_RXD2 input (Ether)
	PA2 I/O (Port)	CS2 output (BSC)	_	_	TCLKD input (MTU2)	SSLO I/O (RSPI)	SCK0 I/O (SCI)	MII_RXD1 input (Ether)
	PA1 I/O (Port)	CS1 output (BSC)	_	IRQ5 input (INTC)	_	CTx0 output (RCAN-ET)	TXD0 output (SCI)	MII_RXD0 input (Ether)
	PA0 I/O (Port)	CS0 output (BSC)	_	IRQ4 input (INTC)	_	CRx0 input (RCAN-ET)	RXD0 input (SCI)	RX_CLK input (Ether)

Bit	Bit Name	Initial Value	R/W	Description
11		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
10 to 8	PE10MD[2:0]	000	R/W	PE10 Mode
				Select the function of the PE10/DREQ3/TIOC3C/SSL3/TXD2/TX_CLK pin.
				000: PE10 I/O (port)
				001: Setting prohibited
				010: DREQ3 input (DMAC)
				011: Setting prohibited
				100: TIOC3C I/O (MTU2)
				101: SSL3 output (RSPI)
				110: TXD2 output (SCI)
				111: TX_CLK input (Ether)
7	—	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
6 to 4	PE9MD[2:0]	000	R/W	PE9 Mode
				Select the function of the PE9/DACK2/TIOC3B/TX_EN pin.
				000: PE9 I/O (port)
				001: Setting prohibited
				010: DACK2 output (DMAC)
				011: Setting prohibited
				100: TIOC3B I/O (MTU2)
				101: Setting prohibited
				110: Setting prohibited
				111: TX_EN output (Ether)
3		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

Bit	Bit Name	Initial Value	R/W	Description
5	PE5PR	Pin state	R	The pin state is returned regardless of the PFC setting.
4	PE4PR	Pin state	R	These bits cannot be modified.
3	PE3PR	Pin state	R	_
2	PE2PR	Pin state	R	_
1	PE1PR	Pin state	R	_
0	PE0PR	Pin state	R	_

23.6 Port F

Port F is an I/O port with 8 pins shown in figure 23.6.

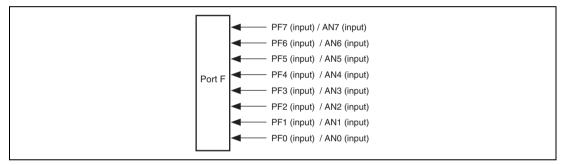


Figure 23.6 Port F

23.6.1 Register Descriptions

Port F has the following registers. See section 32, List of Registers for details on the register address and states in each operating mode.

Table 23.11 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Access Size
Port F data register L	PFDRL	R	_	H'FFFE3A82	8, 16

24.9 DTC Transfer

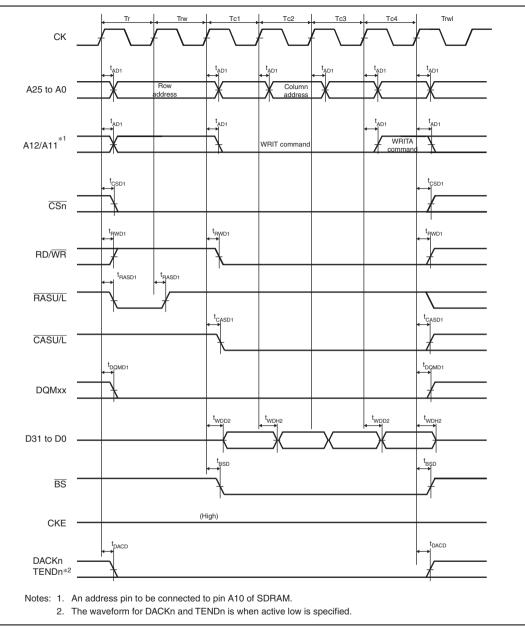
This module allows DTC transfer for endpoints 1, 2, 4, and 5, excluding transfer of word and longword. If endpoint 1 contains at least one byte of valid receive data, a DTC transfer request is issued to endpoint 1. If there is no valid data in endpoint 2, a DTC transfer request is issued to endpoint 2. If endpoint 4 contains at least one byte of valid receive data, a DTC transfer request is issued to endpoint 4. If there is no valid data in endpoint 5, a DTC transfer request is issued to endpoint 5.

When EP1DMAE or EP4DMAE in the USBDMA setting register is set to 1 to allow DTC transfer, 0-length data received for endpoint 1 or 4 is ignored. When DTC transfer is set, it is unnecessary to write 1 to the EP1RDFN, EP2PKTE, EP4RDFN, and EP5PKTE bits in USBTRG1 or USBTRG2. (However, the PKTE bit in USBTRG1 or USBTRG2 must be set to 1 for data with a size less than the maximum number of bytes.) For EP1 and EP4, the FIFO buffer automatically becomes empty when the received data has been completely read. For EP2 and EP5, the FIFO automatically becomes full when the maximum number of bytes (64 bytes) is written to the FIFO, allowing the data in the FIFO to be transmitted. (See figures 24.22 and 24.25.)

24.9.1 DTC Transfer for Endpoints 1 and 4

If the received data for EP1 is transferred by DTC, when the currently selected data FIFO becomes empty, processing equivalent to writing 1 to the EP1RDFN bit in USBTRG1 is automatically performed in the module. Therefore, do not write 1 to the EP1RDFN bit in USBTRG1 after reading the data on one side of the FIFO. If 1 is written to the EP1RDFN bit, correct operation cannot be guaranteed.

For example, if 150-byte data is received from the host, processing equivalent to writing 1 to the EP1RDFN bit in USBTRG1 is automatically performed internally in the three places in figure 24.22. Since this processing is performed when the data on the currently selected FIFO becomes empty, the processing is automatically performed in the same way even if data of 64 bytes or less is transferred.


Similarly, if the received data for EP4 is transferred by DTC, when the currently selected data FIFO becomes empty, processing equivalent to writing 1 to the EP4RDFN bit in USBTRG2 is automatically performed in the module. Therefore, do not write 1 to the EP4RDFN bit in USBTRG2 after reading the data on one side of the FIFO. If 1 is written to the EP4RDFN bit, correct operation cannot be guaranteed.

235 P	A20/WRL/DQMLL/BREQ/IRQ6/CASU/POE4/TXD1/AH	
		CONTROL
234 P	A20/WRL/DQMLL/BREQ/IRQ6/CASU/POE4/TXD1/AH	INPUT
233 P	A19/WRH/DQMLU/WAIT/IRQ7/RASU/POE8/RXD1/BS	OUTPUT
232 P	A19/WRH/DQMLU/WAIT/IRQ7/RASU/POE8/RXD1/BS	CONTROL
231 P	A19/WRH/DQMLU/WAIT/IRQ7/RASU/POE8/RXD1/BS	INPUT
230 P	PA18/CK	OUTPUT
229 P	PA18/CK	CONTROL
228 P	PA18/CK	INPUT
227 P	PA17/RD	OUTPUT
226 P	PA17/RD	CONTROL
225 P	PA17/RD	INPUT
224 P	A16/WRL/DQMLL	OUTPUT
223 P	A16/WRL/DQMLL	CONTROL
222 P	PA16/WRL/DQMLL	INPUT
221 P	PA15/WRH/DQMLU	OUTPUT
220 P	PA15/WRH/DQMLU	CONTROL
219 P	A15/WRH/DQMLU	INPUT
218 P	A14/WRHH/DQMUU/RASL	OUTPUT
217 P	A14/WRHH/DQMUU/RASL	CONTROL
216 P	A14/WRHH/DQMUU/RASL	INPUT
215 P	A13/WRHL/DQMUL/CASL	OUTPUT
214 P	A13/WRHL/DQMUL/CASL	CONTROL
213 P	A13/WRHL/DQMUL/CASL	INPUT
212 P	PC0/A0/IRQ4/POE0	OUTPUT
211 P	PC0/A0/IRQ4/POE0	CONTROL
210 P	PC0/A0/IRQ4/POE0	INPUT
209 P	PC1/A1	OUTPUT
208 P	PC1/A1	CONTROL
207 P	PC1/A1	INPUT
206 P	PC2/A2	OUTPUT
205 P	PC2/A2	CONTROL
204 P	PC2/A2	INPUT

Module Name	Register Name	Abbreviation	Number of Bits	Address	Access Size
PFC	Port D pull-up MOS control register H	PDPCRH	16	H'FFFE39A8	8, 16, 32
	Port D pull-up MOS control register L	PDPCRL	16	H'FFFE39AA	8, 16
	Port E IO register L	PEIORL	16	H'FFFE3A06	8, 16
	Port E control register L4	PECRL4	16	H'FFFE3A10	8, 16, 32
	Port E control register L3	PECRL3	16	H'FFFE3A12	8, 16
	Port E control register L2	PECRL2	16	H'FFFE3A14	8, 16, 32
	Port E control register L1	PECRL1	16	H'FFFE3A16	8, 16
	Large current port control register	HCPCR	16	H'FFFE3A20	8, 16, 32
	IRQOUT function control register	IFCR	16	H'FFFE3A22	8, 16
	Port E pull-up MOS control register L	PEPCRL	16	H'FFFE3A2A	8, 16
	DACK output timing control register	PDACKCR	16	H'FFFE3A2C	8, 16
I/O port	Port A data register H	PADRH	16	H'FFFE3800	8, 16, 32
	Port A data register L	PADRL	16	H'FFFE3802	8, 16
	Port A port register H	PAPRH	16	H'FFFE381C	8, 16, 32
	Port A port register L	PAPRL	16	H'FFFE381E	8, 16
	Port B data register L	PBDRL	16	H'FFFE3882	8, 16
	Port B port register L	PBPRL	16	H'FFFE389E	8, 16
	Port C data register L	PCDRL	16	H'FFFE3902	8, 16
	Port C port register L	PCPRL	16	H'FFFE391E	8, 16
	Port D data register H	PDDRH	16	H'FFFE3980	8, 16, 32
	Port D data register L	PDDRL	16	H'FFFE3982	8, 16
	Port D port register H	PDPRH	16	H'FFFE399C	8, 16, 32
	Port D port register L	PDPRL	16	H'FFFE399E	8, 16
	Port E data register L	PEDRL	16	H'FFFE3A02	8, 16
	Port E port register L	PEPRL	16	H'FFFE3A1E	8, 16
	Port F data register L	PFDRL	16	H'FFFE3A82	8, 16
USB	USB interrupt flag register 0	USBIFR0	8	H'FFFE7000	8
	USB interrupt flag register 1	USBIFR1	8	H'FFFE7001	8
	USB interrupt flag register 2	USBIFR2	8	H'FFFE7002	8
	USB interrupt flag register 3	USBIFR3	8	H'FFFE7003	8
	USB interrupt flag register 4	USBIFR4	8	H'FFFE7004	8
	USB interrupt enable register 0	USBIER0	8	H'FFFE7008	8

Module Name	Register	Power-on Reset	Manual Reset	Software Standby	Module Standby	Sleep
BSC	CS1WCR	Initialized	Retained	Retained	_	Retained
	CS2WCR	Initialized	Retained	Retained		Retained
	CS3WCR	Initialized	Retained	Retained		Retained
	CS4WCR	Initialized	Retained	Retained		Retained
	CS5WCR	Initialized	Retained	Retained		Retained
	CS6WCR	Initialized	Retained	Retained		Retained
	CS7WCR	Initialized	Retained	Retained		Retained
	SDCR	Initialized	Retained	Retained		Retained
	RTCSR	Initialized	Retained (Flag processing continued)	Retained	_	Retained (Flag processing continued)
	RTCNT	Initialized	Retained (Count-up continued)	Retained		Retained (Count-up continued)
	RTCOR	Initialized	Retained	Retained		Retained
	BSCEHR	Initialized	Retained	Retained		Retained
DMAC	SAR_0	Initialized	Retained	Retained	Retained	Retained
	DAR_0	Initialized	Retained	Retained	Retained	Retained
	DMATCR_0	Initialized	Retained	Retained	Retained	Retained
	CHCR_0	Initialized	Retained	Retained	Retained	Retained
	RSAR_0	Initialized	Retained	Retained	Retained	Retained
	RDAR_0	Initialized	Retained	Retained	Retained	Retained
	RDMATCR_0	Initialized	Retained	Retained	Retained	Retained
	SAR_1	Initialized	Retained	Retained	Retained	Retained
	DAR_1	Initialized	Retained	Retained	Retained	Retained
	DMATCR_1	Initialized	Retained	Retained	Retained	Retained
	CHCR_1	Initialized	Retained	Retained	Retained	Retained
	RSAR_1	Initialized	Retained	Retained	Retained	Retained
	RDAR_1	Initialized	Retained	Retained	Retained	Retained
	RDMATCR_1	Initialized	Retained	Retained	Retained	Retained

Figure 33.25 Synchronous DRAM Burst Write Bus Cycle (Four Write Cycles) (Auto Precharge, WTRCD = 1 Cycle, TRWL = 1 Cycle)

33.3.12 RSPI Timing

Table 33.16 SPI Timing

Conditions: $V_{cc}Q = PLLV_{cc} = DrV_{cc} = 3.0 \text{ to } 3.6 \text{ V}, AV_{cc} = AVREF = 4.5 \text{ to } 5.5 \text{ V},$ $V_{ss} = PLLV_{ss} = DrV_{ss} = AVREFV_{ss} = AV_{ss} = 0 \text{ V},$ $Ta = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ (Industrial specifications)

Item		Symbol	Min.	Тур.	Max.	Unit	Figure
RSPCK clock cycle*1	Master	t _{sPcyc}	2	_	4096	t _{Pcyc}	Figure 33.49
	Slave	_	8	_	4096	-	
RSPCK clock cycle high pulse width	Master	t _{spckwh}	$(t_{_{SPCyc}} - t_{_{SPCKR}} - t_{_{SPCKF}})/2 - 3$			ns	
	Slave	_	$(t_{_{SPCyc}} - t_{_{SPCKR}} - t_{_{SPCKR}})/2$		_	_	
RSPCK clock cycle low pulse width	Master	t _{spckwl}	$(t_{_{SPCyc}} - t_{_{SPCKR}} - t_{_{SPCKF}})/2 - 3$		_	ns	
	Slave	_	$(t_{_{SPCyc}} - t_{_{SPCKR}} - t_{_{SPCKF}})/2$		_	_	
RSPCK clock rise/fall time* ²	Master	t _{spckr} , t _{spckr}	_		5	ns	
	Slave		_		1	t _{Pcyc}	t _{Pcyc}
Data input setup time	Master	t _{s∪}	25	_	_	ns	Figures 33.50
	Slave	_	$20-2\times t_{_{Pcyc}}$	_	_	-	to 33.53
Data input hold time	Master	t _H	0	_	_	ns	—
	Slave	_	$20 + 2 \times t_{_{Pcyc}}$		_	-	
SSL setup time	Master	\mathbf{t}_{LEAD}	1		8	$\mathbf{t}_{_{\mathrm{SPcyc}}}$	_
	Slave	_	4	_	_	t _{Pcyc}	
SSL hold time	Master	t _{LAG}	1		8	$\mathbf{t}_{_{\mathrm{SPcyc}}}$	
	Slave	_	4		_	t _{Pcyc}	
Data output delay time	Master	t _{op}	_	_	10	ns	
	Slave	—	_		$3 \times t_{_{Pcyc}} + 15$	-	
Data output hold time	Master	t _{он}	0	_	_	ns	
	Slave	_	0	_	_	_	
Continuous transmission delay time	Master	t _{tD}	$t_{_{SPcyc}}$ + 2 × $t_{_{Pcyc}}$		$\begin{array}{l} 8 \times t_{_{SPcyc}} + 2 \\ \times t_{_{Pcyc}} \end{array}$	ns	
	Slave		$4 \times t_{_{\text{Pcyc}}}$	_	_	_	