

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFL

| Product Status             | Not For New Designs                                                              |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | SH2A-FPU                                                                         |
| Core Size                  | 32-Bit Single-Core                                                               |
| Speed                      | 200MHz                                                                           |
| Connectivity               | CANbus, Ethernet, I <sup>2</sup> C, SCI, SPI, USB                                |
| Peripherals                | DMA, PWM, WDT                                                                    |
| Number of I/O              | 112                                                                              |
| Program Memory Size        | 1MB (1M x 8)                                                                     |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 128K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 8x12b                                                                        |
| Oscillator Type            | External                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 176-LQFP                                                                         |
| Supplier Device Package    | 176-LFQFP (20x20)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f72167gdfa-v1 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Instruction Formate | Source Operand        | Destination                         | Example                 |
|---------------------|-----------------------|-------------------------------------|-------------------------|
| nd4 format          |                       |                                     |                         |
|                     | RU (Register direct)  | nnnndddd:<br>Begister indirect with | MOV.B<br>PO (disp Pp)   |
| xxxx xxxx nnnn dddd |                       | displacement                        | K0,8(d15p,KII)          |
| nmd format          | mmmm: Register direct | nnnndddd: Register                  | MOV.L                   |
| 150                 |                       | indirect with                       | Rm,@(disp,Rn)           |
| xxxx nnnn mmmm dddd |                       | displacement                        |                         |
|                     | mmmmdddd: Register    | nnnn: Register direct               | MOV.L                   |
|                     | displacement          |                                     | @(disp, km), kn         |
| nmd12 format        | mmm: Register direct  | nnnndddd: Register                  | MOV.L                   |
| 3216                | C C                   | indirect with                       | Rm,@(disp12,Rn)         |
| xxxx nnnn mmmm xxxx |                       | displacement                        |                         |
| 15 0                | mmmmdddd: Register    | nnnn: Register direct               | MOV.L                   |
| xxxx dddd dddd dddd | indirect with         |                                     | @(disp12,Rm),Rn         |
| d fo was of         | displacement          |                                     |                         |
|                     | indirect with         | RU (Register direct)                | MOV.L<br>Q(dign (BR) R0 |
| xxxx xxxx dddd dddd | displacement          |                                     | e(disp, dbh), no        |
|                     | R0 (Register direct)  | ddddddd: GBR                        | MOV.L                   |
|                     | ( <b>0</b> )          | indirect with                       | R0,@(disp,GBR)          |
|                     |                       | displacement                        |                         |
|                     | ddddddd: PC           | R0 (Register direct)                | MOVA                    |
|                     | relative with         |                                     | @(disp,PC),R0           |
|                     | displacement          |                                     |                         |
|                     | dddddddd: IBR         | —                                   | JSR/N<br>66(dicp8 TPP)  |
|                     | displacement          |                                     | 66 (d15p0, 1DR)         |
|                     | ddddddd: PC           | _                                   | BF label                |
|                     | relative              |                                     |                         |
| d12 format          | adaadaadada: PC       | _                                   | BRA label               |
| 150                 | relative              |                                     | (label = disp +         |
| xxxx dddd dddd dddd |                       |                                     | PC)                     |
| nd8 format          | ddddddd: PC           | nnnn: Register direct               | MOV.L                   |
|                     | relative with         |                                     | @(disp,PC),Rn           |
| xxxx nnnn aaaa aaaa | uspiacement           |                                     |                         |

|      |          | Initial |     |                                                                                                                                                                                                                            |
|------|----------|---------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit  | Bit Name | Value   | R/W | Description                                                                                                                                                                                                                |
| 1, 0 | HW[1:0]  | 00      | R/W | Delay Cycles from $\overline{\text{RD}}$ , $\overline{\text{WRxx}}$ Negation to Address, $\overline{\text{CS5}}$ Negation                                                                                                  |
|      |          |         |     | Specify the number of delay cycles from $\overline{\text{RD}}$ and $\overline{\text{WRxx}}$ negation to address and $\overline{\text{CS5}}$ negation when area 5 is specified as normal space or SRAM with byte selection. |
|      |          |         |     | Specify the number of delay cycles from $\overline{RD}$ and WRxx negation to $\overline{CS5}$ negation when area 5 is specified as MPx-I/O.                                                                                |
|      |          |         |     | 00: 0.5 cycles                                                                                                                                                                                                             |
|      |          |         |     | 01: 1.5 cycles                                                                                                                                                                                                             |
|      |          |         |     | 10: 2.5 cycles                                                                                                                                                                                                             |
|      |          |         |     | 11: 3.5 cycles                                                                                                                                                                                                             |

#### • CS6WCR

| Bit:           | 31 | 30 | 29 | 28  | 27    | 26  | 25  | 24    | 23  | 22  | 21 | 20  | 19 | 18 | 17  | 16    |
|----------------|----|----|----|-----|-------|-----|-----|-------|-----|-----|----|-----|----|----|-----|-------|
|                | -  | -  | -  | -   | -     | -   | -   | -     | -   | -   | -  | BAS | -  | -  | -   | -     |
| Initial value: | 0  | 0  | 0  | 0   | 0     | 0   | 0   | 0     | 0   | 0   | 0  | 0   | 0  | 0  | 0   | 0     |
| R/W:           | R  | R  | R  | R   | R     | R   | R   | R     | R   | R   | R  | R/W | R  | R  | R   | R     |
|                |    |    |    |     |       |     |     |       |     |     |    |     |    |    |     |       |
| Bit:           | 15 | 14 | 13 | 12  | 11    | 10  | 9   | 8     | 7   | 6   | 5  | 4   | 3  | 2  | 1   | 0     |
|                | -  | -  | -  | SW  | [1:0] |     | WR  | [3:0] |     | WM  | -  | -   | -  | -  | HW[ | [1:0] |
| Initial value: | 0  | 0  | 0  | 0   | 0     | 1   | 0   | 1     | 0   | 0   | 0  | 0   | 0  | 0  | 0   | 0     |
| R/W:           | R  | R  | R  | R/W | R/W   | R/W | R/W | R/W   | R/W | R/W | R  | R   | R  | R  | R/W | R/W   |

| Dit      | Dit Nome | Initial<br>Volue |      | Description                                                                                                                              |
|----------|----------|------------------|------|------------------------------------------------------------------------------------------------------------------------------------------|
| ы        | BIL Name | value            | F/ W | Description                                                                                                                              |
| 31 to 21 | _        | All 0            | R    | Reserved                                                                                                                                 |
|          |          |                  |      | These bits are always read as 0. The write value should always be 0.                                                                     |
| 20       | BAS      | 0                | R/W  | SRAM with Byte Selection Byte Access Select                                                                                              |
|          |          |                  |      | Specifies the $\overline{\text{WRxx}}$ and RD/ $\overline{\text{WR}}$ signal timing when the SRAM interface with byte selection is used. |
|          |          |                  |      | <ol> <li>Asserts the WRxx signal at the read timing and<br/>asserts the RD/WR signal during the write access<br/>cycle.</li> </ol>       |
|          |          |                  |      | <ol> <li>Asserts the WRxx signal during the read/write<br/>access cycle and asserts the RD/WR signal at the<br/>write timing.</li> </ol> |

- Notes: 1. Using the write buffer, the bus master can execute the succeeding processing before he previous write cycle is completed. For details, see section 9.5.12 (2), Access from he Side of the LSI Internal Bus Master.
  - 2. When  $I\phi:B\phi = 1:1/8$ , the value is 3B $\phi$ . When  $I\phi:B\phi$  is not 1:1/8, the value is  $4I\phi + 3B\phi$ .
  - 3. When  $l\phi:B\phi = 8:1$ , the value is  $1B\phi$ . When  $l\phi:B\phi = 4:1$ , the value is  $2B\phi$ . When  $l\phi:B\phi = 2:1$ , the value is  $2B\phi$  to  $3B\phi$ . When  $l\phi:B\phi = 1:1$ , the value is  $3B\phi$  to  $4B\phi$ .
  - When Iφ:Bφ = 8:1, the value is 1Bφ. When Iφ:Bφ = 4:1, the value is 1Bφ to 2Bφ. When Iφ:Bφ = 2:1, the value is 2Bφ. When Iφ:Bφ = 1:1, the value is 2Bφ.
  - The above indicates the number of access cycles of which executed when the instructions are by on-chip ROM or by on-chip RAM.

When  $I\phi:B\phi = 1:1$ , n = 0 and I = 0.

When  $I\phi:B\phi = 2:1$ , n = 1 to 0 and I = 0.

When  $I\phi:B\phi = 4:1$ , n = 3 to 0 and I = 0, 1.

When  $I\phi:B\phi = 8:1$ , n = 7 to 0 and I = 1.

m = wait cycle

o = idle cycle + wait cycle

n and I depend on the internal execution state.

|     |          | Initial |     |                                                       |
|-----|----------|---------|-----|-------------------------------------------------------|
| Bit | Bit Name | Value   | R/W | Description                                           |
| 0   | OE3B     | 0       | R/W | Master Enable TIOC3B                                  |
|     |          |         |     | This bit enables/disables the TIOC3B pin MTU2 output. |
|     |          |         |     | 0: MTU2 output is disabled (inactive level)*          |
|     |          |         |     | 1: MTU2 output is enabled                             |

Note: \* The inactive level is determined by the settings in timer output control registers 1 and 2 (TOCR1 and TOCR2). For details, refer to section 11.3.20, Timer Output Control Register 1 (TOCR1), and section 11.3.21, Timer Output Control Register 2 (TOCR2). Set these bits to 1 to enable MTU2 output in other than complementary PWM or resetsynchronized PWM mode. When these bits are set to 0, low level is output.

### 11.3.20 Timer Output Control Register 1 (TOCR1)

TOCR1 is an 8-bit readable/writable register that enables/disables PWM synchronized toggle output in complementary PWM mode/reset synchronized PWM mode, and controls output level inversion of PWM output.

| Bit:           | 7 | 6    | 5 | 4 | 3      | 2    | 1    | 0    |
|----------------|---|------|---|---|--------|------|------|------|
|                | - | PSYE | - | - | TOCL   | TOCS | OLSN | OLSP |
| Initial value: | 0 | 0    | 0 | 0 | 0      | 0    | 0    | 0    |
| R/W:           | R | R/W  | R | R | R/(W)* | R/W  | R/W  | R/W  |

Note: \* This bit can be set to 1 only once after a power-on reset. After 1 is written, 0 cannot be written to the bit.

| Bit  | Bit Name | Initial<br>value | R/W | Description                                                                            |
|------|----------|------------------|-----|----------------------------------------------------------------------------------------|
| 7    | _        | 0                | R   | Reserved                                                                               |
|      |          |                  |     | This bit is always read as 0. The write value should always be 0.                      |
| 6    | PSYE     | 0                | R/W | PWM Synchronous Output Enable                                                          |
|      |          |                  |     | This bit selects the enable/disable of toggle output synchronized with the PWM period. |
|      |          |                  |     | 0: Toggle output is disabled                                                           |
|      |          |                  |     | 1: Toggle output is enabled                                                            |
| 5, 4 |          | All 0            | R   | Reserved                                                                               |
|      |          |                  |     | These bits are always read as 0. The write value should always be 0.                   |

#### (25) Operation when Error Occurs during Complementary PWM Mode Operation, and Operation is Restarted in Reset-Synchronized PWM Mode

Figure 11.163 shows an explanatory diagram of the case where an error occurs in complementary PWM mode and operation is restarted in reset-synchronized PWM mode.





1 to 10 are the same as in figure 11.159.

- 11. Set normal mode. (MTU2 output goes low.)
- 12. Disable channel 3 and 4 output with TOER.
- 13. Select the reset-synchronized PWM mode output level and cyclic output enabling/disabling with TOCR.
- 14. Set reset-synchronized PWM.
- 15. Enable channel 3 and 4 output with TOER.
- 16. Set MTU2 output with the PFC.
- 17. Operation is restarted by TSTR.

|     |            | Initial |      |                                                                                                                                                                                                                                                                                |
|-----|------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit | Bit Name   | Value   | R/W  | Description                                                                                                                                                                                                                                                                    |
| 9   | MTU2SP2CZE | 1       | R/W* | MTU2S Port 2 Output Comparison/High-Impedance<br>Enable                                                                                                                                                                                                                        |
|     |            |         |      | Specifies whether to compare output levels for the<br>MTU2S high-current PE0/TIOC4AS and<br>PE2/TIOC4CS pins and to place them in high-<br>impedance state when the OSF2 bit is set to 1 while<br>the OCE2 bit is 1 or when one of the POE4F and<br>MTU2SHIZ bits is set to 1. |
|     |            |         |      | 0: Does not compare output levels or place the pins in high-impedance state.                                                                                                                                                                                                   |
|     |            |         |      | 1: Compares output levels and places the pins in<br>high-impedance state.                                                                                                                                                                                                      |
| 8   | MTU2SP3CZE | 1       | R/W* | MTU2S Port 3 Output Comparison/High-Impedance<br>Enable                                                                                                                                                                                                                        |
|     |            |         |      | Specifies whether to compare output levels for the<br>MTU2S high-current PE1/TIOC4BS and<br>PE3/TIOC4DS pins and to place them in high-<br>impedance state when the OSF2 bit is set to 1 while<br>the OCE2 bit is 1 or when one of the POE4F and<br>MTU2SHIZ bits is set to 1. |
|     |            |         |      | 0: Does not compare output levels or place the pins in high-impedance state.                                                                                                                                                                                                   |
|     |            |         |      | 1: Compares output levels and places the pins in<br>high-impedance state.                                                                                                                                                                                                      |
| 7   | _          | 0       | R    | Reserved                                                                                                                                                                                                                                                                       |
|     |            |         |      | This bit is always read as 0. The write value should always be 0.                                                                                                                                                                                                              |

Maximum Bit Rate (bits/s)

P<sub>φ</sub> (MHz)

|    | 1 ( )   | <b>\ \</b> |
|----|---------|------------|
| 10 | 2.5000  | 156250     |
| 12 | 3.0000  | 187500     |
| 14 | 3.5000  | 218750     |
| 16 | 4.0000  | 250000     |
| 18 | 4.5000  | 281250     |
| 20 | 5.0000  | 312500     |
| 22 | 5.5000  | 343750     |
| 24 | 6.0000  | 375000     |
| 26 | 6.5000  | 406250     |
| 28 | 7.0000  | 437500     |
| 30 | 7.5000  | 468750     |
| 32 | 8.0000  | 500000     |
| 34 | 8.5000  | 531250     |
| 36 | 9.0000  | 562500     |
| 38 | 9.5000  | 593750     |
| 40 | 10.0000 | 625000     |
| 50 | 12.5000 | 781250     |

#### Table 16.12 Maximum Bit Rates with External Clock Input (Asynchronous Mode)

External Input Clock (MHz)



## 17.4 Operation

#### 17.4.1 Overview

For serial communication, the SCIF has an asynchronous mode in which characters are synchronized individually, and a clocked synchronous mode in which communication is synchronized with clock pulses.

The SCIF has a 16-stage FIFO buffer for both transmission and receptions, reducing the overhead of the CPU, and enabling continuous high-speed communication.

The transmission format is selected in the serial mode register (SCSMR), as shown in table 17.14. The SCIF clock source is selected by the combination of the CKE1 and CKE0 bits in the serial control register (SCSCR), as shown in table 17.15.

#### (1) Asynchronous Mode

- Data length is selectable: 7 or 8 bits
- Parity bit is selectable. So is the stop bit length (1 or 2 bits). The combination of the preceding selections constitutes the communication format and character length.
- In receiving, it is possible to detect framing errors, parity errors, receive FIFO data full, overrun errors, receive data ready, and breaks.
- The number of stored data bytes is indicated for both the transmit and receive FIFO registers.
- An internal or external clock can be selected as the SCIF clock source.
  - When an internal clock is selected, the SCIF operates using the clock of on-chip baud rate generator.
  - When an external clock is selected, the external clock input must have a frequency 16 times the bit rate. (The on-chip baud rate generator is not used.)

#### (2) Clocked Synchronous Mode

- The transmission/reception format has a fixed 8-bit data length.
- In receiving, it is possible to detect overrun errors (ORER).
- An internal or external clock can be selected as the SCIF clock source.
  - When an internal clock is selected, the SCIF operates using the clock of the on-chip baud rate generator, and outputs this clock to external devices as the synchronous clock.
  - When an external clock is selected, the SCIF operates on the input synchronous clock not using the on-chip baud rate generator.



Figure 18.1 Block Diagram of RSPI

- 4. When the serial transfer ends with the receive buffer of SPDR being empty, the RSPI sets the SPRF bit to 1, and copies the receive data in the shift register to the receive buffer. Because the shift register becomes empty upon completion of serial transfer, if the transmit buffer was full before the serial transfer ended, the RSPI sets the SPTEF bit to 1, and copies the data in the transmit buffer to the shift register. Even when received data is not copied from the shift register to the receive buffer in an overrun error status, upon completion of the serial transfer the RSPI determines that the shift register is empty, and as a result data transfer from the transmit buffer to the shift register is enabled.
- 5. When the DTC/DMAC reads SPDR with the receive buffer being full, the RSPI sets the SPRF bit to 0, and sends the data in the receive buffer to the bus inside the chip.

If the CPU or the DTC/DMAC writes to SPDR when the SPTEF bit is 0, the RSPI does not update the data in the transmit buffer. When writing to SPDR, make sure that the SPTEF bit is 1. That the SPTEF bit is 1 can be checked by reading SPSR or by using an RSPI transmit interrupt. To use an RSPI transmit interrupt, set the SPTIE bit in SPCR to 1.

If the RSPI is disabled (the SPE bit in SPCR being 0), the SPTEF bit is initialized to 1. For this reason, setting the SPTIE bit to 1 when the RSPI is disabled generates an RSPI transmit interrupt.

When serial transfer ends with the SPRF bit being 1, the RSPI does not copy data from the shift register to the receive buffer, and detects an overrun error (see section 18.4.7, Error Detection). To prevent a receive data overrun error, set the SPRF bit to 0 before the serial transfer ends. That the SPRF bit is 1 can be checked by either reading SPSR or by using an RSPI receive interrupt. To use an RSPI receive interrupt, set the SPRIE bit in SPCR to 1.

|   | Occurrence Condition                   | RSPI Operation                                                             | Error Detection  |  |  |  |
|---|----------------------------------------|----------------------------------------------------------------------------|------------------|--|--|--|
| F | The SSL0 input signal is asserted      | Serial transfer suspended.                                                 | Mode fault error |  |  |  |
|   | during serial transfer in multi-master | Missing send/receive data.                                                 |                  |  |  |  |
|   | mode.                                  | Driving of the RSPCK, MOSI,<br>and SSL1 to SSL3 output<br>signals stopped. |                  |  |  |  |
|   |                                        | RSPI disabled.                                                             |                  |  |  |  |
| G | The SSL0 input signal is negated       | Serial transfer suspended.                                                 | Mode fault error |  |  |  |
|   | during serial transfer in slave mode.  | Missing send/receive data.                                                 |                  |  |  |  |
|   |                                        | Driving of the MISO output signal stopped.                                 |                  |  |  |  |
|   |                                        | RSPI disabled.                                                             |                  |  |  |  |

On operation A shown in table 18.8, the RSPI does not detect an error. To prevent data omission during the writing to SPDR by the CPU or the DTC/DMAC, write operations to SPDR should be executed when the SPTEF bit in the RSPI status register (SPSR) is 1.

Likewise, the RSPI does not detect an error on operation B. In a serial transfer that was started before the shift register was updated, the RSPI sends the data that was received in the previous serial transfer, and does not treat the operation indicated in B as an error. Notice that the received data from the previous serial transfer is retained in the receive buffer of SPDR, and thus it can be correctly read by the CPU or the DTC/DMAC (if SPDR is not read before the end of the serial transfer, an overrun error may result).

Similarly, the RSPI does not detect an error on operation C. To prevent the CPU or the DTC/DMAC from reading extraneous data, SPDR read operation should be executed when the SPRF bit in SPSR is 1.

An overrun error shown in D is described in section 18.4.7 (1), Overrun Error. A mode fault error shown in E to G is described in section 18.4.7 (2), Mode Fault Error. On operations of the SPTEF and SPRF bits in SPSR, see section 18.4.6, Transmit Buffer Empty/Receive Buffer Full Flags.



Figure 19.12 Slave Receive Mode Operation Timing (2)



The locations not used (between H'000 and H'2F2) are reserved and cannot be accessed.

#### 21.3.2 Mailbox Structure

Mailboxes play a role as message buffers to transmit / receive CAN frames. Each Mailbox is comprised of 3 identical storage fields that are 1): Message Control, 2): Local Acceptance Filter Mask, 3): Message Data. The following table shows the address map for the control, LAFM, data and addresses for each mailbox.

|                  | Address   |           |           |           |  |  |  |  |
|------------------|-----------|-----------|-----------|-----------|--|--|--|--|
|                  | Control0  | LAFM      | Data      | Control1  |  |  |  |  |
| Mailbox          | 4 bytes   | 4 bytes   | 8 bytes   | 2 bytes   |  |  |  |  |
| 0 (Receive Only) | 100 – 103 | 104– 107  | 108 – 10F | 110 – 111 |  |  |  |  |
| 1                | 120 – 123 | 124 – 127 | 128 – 12F | 130 – 131 |  |  |  |  |
| 2                | 140 – 143 | 144 – 147 | 148 – 14F | 150 – 151 |  |  |  |  |
| 3                | 160 – 163 | 164 - 167 | 168 – 16F | 170 – 171 |  |  |  |  |
| 4                | 180 – 183 | 184 – 187 | 188 – 18F | 190 – 191 |  |  |  |  |
| 5                | 1A0 – 1A3 | 1A4 – 1A7 | 1A8 – 1AF | 1B0 – 1B1 |  |  |  |  |
| 6                | 1C0 – 1C3 | 1C4 – 1C7 | 1C8 – 1CF | 1D0 – 1D1 |  |  |  |  |
| 7                | 1E0 – 1E3 | 1E4 – 1E7 | 1E8 – 1EF | 1F0 – 1F1 |  |  |  |  |
| 8                | 200 – 203 | 204 – 207 | 208 – 20F | 210 – 211 |  |  |  |  |
| 9                | 220 – 223 | 224 – 227 | 228 – 22F | 230 – 231 |  |  |  |  |
| 10               | 240 – 243 | 244 – 247 | 248 – 24F | 250 – 251 |  |  |  |  |
| 11               | 260 – 263 | 264 – 267 | 268 – 26F | 270 – 271 |  |  |  |  |
| 12               | 280 – 283 | 284 – 287 | 288 – 28F | 290 – 291 |  |  |  |  |
| 13               | 2A0 – 2A3 | 2A4 – 2A7 | 2A8 – 2AF | 2B0 – 2B1 |  |  |  |  |
| 14               | 2C0 – 2C3 | 2C4 – 2C7 | 2C8 – 2CF | 2D0 – 2D1 |  |  |  |  |
| 15               | 2E0 – 2E3 | 2E4 – 2E7 | 2E8 – 2EF | 2F0 – 2F1 |  |  |  |  |

Mailbox-0 is a receive-only box, and all the other Mailboxes can operate as both receive and transmit boxes, dependant upon the MBC (Mailbox Configuration) bits in the Message Control. The following diagram shows the structure of a Mailbox in detail.

**Bit 14 — Auto Halt Bus Off (MCR14):** If both this bit and MCR6 are set, MCR1 is automatically set as soon as RCAN-ET enters BusOff.

| Bit14 : MCR14 | Description                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------|
| 0             | RCAN-ET remains in BusOff for normal recovery sequence (128 x 11<br>Recessive Bits) (Initial value) |
| 1             | RCAN-ET moves directly into Halt Mode after it enters BusOff if MCR6 is set.                        |

This bit can be modified only in reset mode.

Bit 13 — Reserved. The written value should always be '0' and the returned value is '0'.

Bit 12 — Reserved. The written value should always be '0' and the returned value is '0'.

Bit 11 — Reserved. The written value should always be '0' and the returned value is '0'.

**Bit 10 - 8** — **Test Mode (TST[2:0]):** This bit enables/disables the test modes. Please note that before activating the Test Mode it is requested to move RCAN-ET into Halt mode or Reset mode. This is to avoid that the transition to Test Mode could affect a transmission/reception in progress. For details, please refer to section 21.4.1, Test Mode Settings.

Please note that the test modes are allowed only for diagnosis and tests and not when RCAN-ET is used in normal operation.

| Bit10:<br>TST2 | Bit9:<br>TST1 | Bit8:<br>TST0 | Description                          |
|----------------|---------------|---------------|--------------------------------------|
| 0              | 0             | 0             | Normal Mode (initial value)          |
| 0              | 0             | 1             | Listen-Only Mode (Receive-Only Mode) |
| 0              | 1             | 0             | Self Test Mode 1 (External)          |
| 0              | 1             | 1             | Self Test Mode 2 (Internal)          |
| 1              | 0             | 0             | Write Error Counter                  |
| 1              | 0             | 1             | Error Passive Mode                   |
| 1              | 1             | 0             | setting prohibited                   |
| 1              | 1             | 1             | setting prohibited                   |

### • Port D Control Register H2 (PDCRH2)

| Bit:           | 15 | 14  | 13      | 12  | 11 | 10  | 9       | 8    | 7 | 6   | 5       | 4   | 3 | 2   | 1       | 0   |
|----------------|----|-----|---------|-----|----|-----|---------|------|---|-----|---------|-----|---|-----|---------|-----|
| [              | -  | PD  | 023MD[2 | :0] | -  | PE  | 022MD[2 | ::0] | - | PE  | 021MD[2 | :0] | - | PE  | D20MD[2 | :0] |
| Initial value: | 0  | 0   | 0       | 0*  | 0  | 0   | 0       | 0*   | 0 | 0   | 0       | 0*  | 0 | 0   | 0       | 0*  |
| R/W:           | R  | R/W | R/W     | R/W | R  | R/W | R/W     | R/W  | R | R/W | R/W     | R/W | R | R/W | R/W     | R/W |

Note: \* The initial value is 1 during the on-chip ROM disabled 32-bit external extension mode.

| Bit      | Bit Name    | Initial<br>Value | R/W | Description                                                       |
|----------|-------------|------------------|-----|-------------------------------------------------------------------|
| 15       | _           | 0                | R   | Reserved                                                          |
|          |             |                  |     | This bit is always read as 0. The write value should always be 0. |
| 14 to 12 | PD23MD[2:0] | 000*             | R/W | PD23 Mode                                                         |
|          |             |                  |     | Select the function of the PD23/D23/DACK1/IRQ7/COL pin.           |
|          |             |                  |     | 000: PD23 I/O (port)                                              |
|          |             |                  |     | 001: D23 I/O (BSC)                                                |
|          |             |                  |     | 010: DACK1 output (DMAC)                                          |
|          |             |                  |     | 011: IRQ7 input (INTC)                                            |
|          |             |                  |     | 100: Setting prohibited                                           |
|          |             |                  |     | 101: Setting prohibited                                           |
|          |             |                  |     | 110: Setting prohibited                                           |
|          |             |                  |     | 111: COL input (Ether)                                            |
| 11       | —           | 0                | R   | Reserved                                                          |
|          |             |                  |     | This bit is always read as 0. The write value should always be 0. |
| 10 to 8  | PD22MD[2:0] | 000*             | R/W | PD22 Mode                                                         |
|          |             |                  |     | Select the function of the PD22/D22/DREQ1/IRQ6/WOL pin.           |
|          |             |                  |     | 000: PD22 I/O (port)                                              |
|          |             |                  |     | 001: D22 I/O (BSC)                                                |
|          |             |                  |     | 010: DREQ1 input (DMAC)                                           |
|          |             |                  |     | 011: IRQ6 input (INTC)                                            |
|          |             |                  |     | 100: Setting prohibited                                           |
|          |             |                  |     | 101: Setting prohibited                                           |
|          |             |                  |     | 110: Setting prohibited                                           |
|          |             |                  |     | 111: WOL output (Ether)                                           |

| Bit     | Bit Name    | Initial<br>Value | R/W | Description                                                           |
|---------|-------------|------------------|-----|-----------------------------------------------------------------------|
| 11      | _           | 0                | R   | Reserved                                                              |
|         |             |                  |     | This bit is always read as 0. The write value should always be 0.     |
| 10 to 8 | PE10MD[2:0] | 000              | R/W | PE10 Mode                                                             |
|         |             |                  |     | Select the function of the<br>PE10/DREQ3/TIOC3C/SSL3/TXD2/TX_CLK pin. |
|         |             |                  |     | 000: PE10 I/O (port)                                                  |
|         |             |                  |     | 001: Setting prohibited                                               |
|         |             |                  |     | 010: DREQ3 input (DMAC)                                               |
|         |             |                  |     | 011: Setting prohibited                                               |
|         |             |                  |     | 100: TIOC3C I/O (MTU2)                                                |
|         |             |                  |     | 101: SSL3 output (RSPI)                                               |
|         |             |                  |     | 110: TXD2 output (SCI)                                                |
|         |             |                  |     | 111: TX_CLK input (Ether)                                             |
| 7       | _           | 0                | R   | Reserved                                                              |
|         |             |                  |     | This bit is always read as 0. The write value should always be 0.     |
| 6 to 4  | PE9MD[2:0]  | 000              | R/W | PE9 Mode                                                              |
|         |             |                  |     | Select the function of the<br>PE9/DACK2/TIOC3B/TX_EN pin.             |
|         |             |                  |     | 000: PE9 I/O (port)                                                   |
|         |             |                  |     | 001: Setting prohibited                                               |
|         |             |                  |     | 010: DACK2 output (DMAC)                                              |
|         |             |                  |     | 011: Setting prohibited                                               |
|         |             |                  |     | 100: TIOC3B I/O (MTU2)                                                |
|         |             |                  |     | 101: Setting prohibited                                               |
|         |             |                  |     | 110: Setting prohibited                                               |
|         |             |                  |     | 111: TX_EN output (Ether)                                             |
| 3       |             | 0                | R   | Reserved                                                              |
|         |             |                  |     | This bit is always read as 0. The write value should always be 0.     |

## Table 27.12 FCU Command Format

|                      | Number   |          |        |              |        |             |        | Fourth and Fifth |        |             |      | Seventh |       |             |      |
|----------------------|----------|----------|--------|--------------|--------|-------------|--------|------------------|--------|-------------|------|---------|-------|-------------|------|
|                      | of Bus   | First    | Cycle  | Second Cycle |        | Third Cycle |        | Cycles           |        | Sixth Cycle |      | Cycles  |       | 131st Cycle |      |
| Command              | Cycles   | Address  | Data   | Address      | Data   | Address     | Data   | Address          | Data   | Address     | Data | Address | Data  | Address     | Data |
| Normal mode          | : 1      | RA       | H'FF   | _            | _      | _           | _      | _                | _      | _           | _    | _       | _     | _           | -    |
| transition           |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| Status read          | 1        | RA       | H'70   | _            | _      | _           | _      | _                | _      | _           | _    | _       | _     | _           | _    |
| mode                 |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| transition           |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| Lock bit read        | 1        | RA       | H'71   | _            | _      | _           | _      | _                | _      | _           | _    | _       | _     | _           | _    |
| mode                 |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| transition           |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| (IOCK DIT Teau<br>1) |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
|                      |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| Program              | 131      | HA       | H.F8   | HA           | H'80   | WA          | WD1    | RA               | WDn    | RA          | WDn  | RA      | WDn   | HA          | H'D0 |
| Block erase          | 2        | RA       | H'20   | BA           | H'D0   | _           | _      | -                | _      | -           | _    | -       | _     | _           | -    |
| P/E suspend          | 1        | RA       | H'B0   | _            | _      | _           | _      | _                | _      | _           | _    | _       | _     | _           | _    |
| P/E resume           | 1        | RA       | H'D0   | _            | _      | _           | _      | _                | _      | _           | _    | _       | —     | _           | _    |
| Status registe       | er 1     | RA       | H'50   | _            | _      | _           | _      | _                | _      | _           | _    | _       | _     | _           | _    |
| clear                |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| Lock bit read        | 2        | RA       | H'71   | BA           | H'D0   | _           | _      | _                | _      | _           | _    | _       | _     | _           | _    |
| 2                    |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| Lock bit             | 2        | RA       | H'77   | BA           | H'D0   | _           | _      | _                | _      | _           | _    | _       | _     | _           | _    |
| program              |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| Peripheral           | 6        | RA       | H'E9   | RA           | H'03   | WA          | H'0F0F | WA               | H'0F0F | RA          | H'D0 | _       | _     | _           | _    |
| clock                |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| notification         |          |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| [Legend              | ]        |          |        |              |        |             |        |                  |        |             |      |         |       |             |      |
| RA:                  | ROM p    | rogram   | /eras  | e addre      | ess    |             |        |                  |        |             |      |         |       |             |      |
|                      | An add   | ress in  | the ra | ange fr      | om H   | 80800       | 000 t  | o H'80           | 8FFF   | FF          |      |         |       |             |      |
| WA:                  | ROM p    | rogram   | addr   | ess          |        |             |        |                  |        |             |      |         |       |             |      |
|                      | Start ac | dress    | of 25  | 6-byte       | progr  | ammin       | g dat  | а                |        |             |      |         |       |             |      |
| BA:                  | ROM e    | rasure   | block  | addres       | SS     |             |        |                  |        |             |      |         |       |             |      |
|                      | An add   | ress in  | the ta | arget ei     | rasure | e block     | (spe   | cified I         | by the | ROM         | prog | ram/era | ase a | ddress      | )    |
| WDn:                 | n-th wo  | rd of pi | rogra  | mming        | data   | (n = 1      | to 12  | 8)               | -      |             | . 0  |         |       |             | -    |

# Section 29 On-Chip RAM

The SH7214 and SH7216 Groups incorporate 128-Kbyte RAM, which is connected to F (Fetch), M (Memory), and I (Internal) buses. This on-chip RAM can be accessed via any of these buses independently.

Figure 29.1 shows RAM block diagrams and figure 29.2 shows RAM and bus connections.

The on-chip RAM is allocated in addresses H'FFF80000 to H'FFF9FFFF (pages 0 to 7), as shown in table 29.1.

## 29.1 Features

• Access

The CPU/FPU, DMAC, and DTC can access on-chip RAM in 8, 16, or 32 bits. Data in the onchip RAM can be effectively used as program area or stack area data necessary for access at high speed.

Four pages (pages 0 to 3): one cycle in case of writing and reading

Four pages (pages 4 to 7): two cycles in case of writing, three cycles in case of reading

• Ports

Each page in the on-chip RAM has two independent read and write ports. The read port is connected to I, F, and M buses and the write port is connected to I and M buses. The F and M buses are used for accesses from the CPU. The I bus is used for accesses from external address spaces.

• Priority

If the same page is accessed from multiple buses simultaneously, the access is performed according to the bus priority. The bus priority is as follows: I bus (highest), M bus (middle), F bus (lowest).

• Pages

SH72167, SH72147: 128 Kbytes, eight pages (0 to 7 pages) SH72166, SH72146: 96 Kbytes, six pages (0 to 5 pages) SH72165, SH72145: 64 Kbytes, four pages (0 to 3 pages)

| Module<br>Name | Register<br>Abbreviation | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |
|----------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|
| DMAC           | DMARS3                   |                   | CH7MID[5:0]       |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   | CH6RID[1:0]       |                   |                   |                   |                   |                  |                  |  |  |  |  |
| MTU2           | TCR_0                    |                   | CCLR[2:0]         |                   | G[1:0]            |                   | TPSC[2:0]         |                  |                  |  |  |  |  |
|                | TMDR_0                   | —                 | 3:0]              |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                | TIORH_0                  |                   | IOE               | 8[3:0]            |                   |                   | IOA[              | 3:0]             |                  |  |  |  |  |
|                | TIORL_0                  |                   | IOE               | 0[3:0]            |                   |                   | IOC[              | 3:0]             |                  |  |  |  |  |
|                | TIER_0                   | TTGE              | —                 | —                 | TCIEV             | TGIED             | TGIEC             | TGIEB            | TGIEA            |  |  |  |  |
|                | TSR_0                    | —                 | —                 | —                 | TCFV              | TGFD              | TGFC              | TGFB             | TGFA             |  |  |  |  |
|                | TCNT_0                   |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                | TGRA_0                   |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                | TGRB_0                   |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                | TGRC_0                   |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                | TGRD_0                   |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                | TGRE_0                   |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                | TGRF_0                   |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                | TIER2_0                  | TTGE2             | —                 | —                 | _                 | _                 | _                 | TGIEF            | TGIEE            |  |  |  |  |
|                | TSR2_0                   | —                 | —                 | —                 | _                 | _                 | _                 | TGFF             | TGFE             |  |  |  |  |
|                | TBTM_0                   | —                 | —                 | —                 | _                 | _                 | TTSE              | TTSB             | TTSA             |  |  |  |  |
|                | TCR_1                    | —                 | CCL               | R[1:0]            | CKE               | G[1:0]            |                   | TPSC[2:0]        |                  |  |  |  |  |
|                | TMDR_1                   | —                 | —                 | —                 | _                 |                   | MD[3              | 3:0]             |                  |  |  |  |  |
|                | TIOR_1                   |                   | IOE               | 8[3:0]            | •                 |                   | IOA[              | [3:0]            |                  |  |  |  |  |
|                | TIER_1                   | TTGE              | _                 | TCIEU             | TCIEV             | _                 | —                 | TGIEB            | TGIEA            |  |  |  |  |
|                | TSR_1                    | TCFD              |                   | TCFU              | TCFV              | _                 | _                 | TGFB             | TGFA             |  |  |  |  |
|                | TCNT_1                   |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   | 1                 |                   |                  |                  |  |  |  |  |
|                | TGRA_1                   |                   |                   |                   |                   | 1                 |                   |                  |                  |  |  |  |  |
|                |                          |                   |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |



Figure 33.55 I<sup>2</sup>C Bus Interface 3 Input/Output Timing

