

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	I ² C, SPI, SSI, UART/USART, USB OTG
Peripherals	DMA, WDT
Number of I/O	132
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf54450acvm180

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Hardware Design Considerations

3.2 Oscillator Power Filtering

Figure 3 shows an example for isolating the oscillator power supply from the I/O supply (EVDD) and ground.

Figure 3. Oscillator Power Filter

3.3 Supply Voltage Sequencing

Figure 4 shows situations in sequencing the I/O V_{DD} (EV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (PV_{DD}), and internal logic/core V_{DD} (IV_{DD}).

¹ Input voltage must not be greater than the supply voltage (EV_{DD}, SDV_{DD}, IV_{DD}, or PV_{DD}) by more than 0.5V at any time, including during power-up.

² Use 50 V/millisecond or slower rise time for all supplies.

Figure 4. Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD}.

3.3.1 Power-Up Sequence

If EV_{DD}/SDV_{DD} are powered up with the IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must power up. The rise times on the power supplies should be slower than 50 V/millisecond to avoid turning on the internal ESD protection clamp diodes.

3.3.2 Power-Down Sequence

If IV_{DD}/PV_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PV_{DD} power down before EV_{DD} or SDV_{DD} must power down. There are no requirements for the fall times of the power supplies.

4 Pin Assignments and Reset States

4.1 Signal Multiplexing

The following table lists all the MCF5445*x* pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 4, "Pin Assignments and Reset States," for package diagrams. For a more detailed discussion of the MCF5445*x* signals, consult the *MCF54455 Reference Manual* (MCF54455RM).

NOTE

In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., FB_AD23), while designations for multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO default to their GPIO functionality. See Table 3 for a list of the exceptions.

Pin	256 MAPBGA	360 TEPBGA				
FB_AD[31:0]	FB_AD[31:0] except when serial boot selects 0-bit boot port size.					
FB_BE/BWE[3:0]	FB_BE/BWE[3:0]					
FB_CS[3:1]	FB_C	<u>S</u> [3:1]				
FB_OE	FB_	OE				
FB_R/W	FB_	R/W				
FB_TA	FB_TA					
FB_TS	FB_	TS				

Table 3. Special-Case Default Signal Functionality

Pin Assignments and Reset States

Table 3. Sr	oecial-Case	Default	Signal	Functionality	v	(continued)
14610 01 01		Donadit	e.g	. anotionant	, ,	(

Pin	256 MAPBGA	360 TEPBGA
PCI_GNT[3:0]	GPIO	PCI_GNT[3:0]
PCI_REQ[3:0]	GPIO	PCI_REQ[3:0]
IRQ1	GPIO	PCI_INTA and configured as an agent.
ATA_RESET	GPIO	ATA reset

Table 4. MCF5445x Signal Infor	rmation and Muxing
--------------------------------	--------------------

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
			Reset					
RESET	—	_	_	U	I	EVDD	L4	Y18
RSTOUT	—	_	—	—	0	EVDD	M15	B17
			Clock					
EXTAL/PCI_CLK	—	_	_	—	I	EVDD	M16	A16
XTAL	—	_	—	U ³	0	EVDD	L16	A17
		Mo	ode Selection					
BOOTMOD[1:0]	—	_		—	I	EVDD	M5, M7	AB17, AB21
			FlexBus					
FB_AD[31:24]	PFBADH[7:0] ⁴	FB_D[31:24]		_	I/O	EVDD	A14, A13, D12, C12, B12, A12, D11, C11	J2, K4, J1, K1–3, L1, L4
FB_AD[23:16]	PFBADMH[7:0] ⁴	FB_D[23:16]	—	—	I/O	EVDD	B11, A11, D10, C10, B10, A10, D9, C9	L2, L3, M1–4, N1–2
FB_AD[15:8]	PFBADML[7:0] ⁴	FB_D[15:8]	—		I/O	EVDD	B9, A9, D8, C8, B8, A8, D7, C7	P1–2, R1–3, P4, T1–2
FB_AD[7:0]	PFBADL[7:0] ⁴	FB_D[7:0]	—	—	I/O	EVDD	B7, A7, D6, C6, B6, A6, D5, C5	T3–4, U1–3, V1–2, W1
FB_BE/BWE[3:2]	PBE[3:2]	FB_TSIZ[1:0]	_	—	0	EVDD	B5, A5	Y1, W2
FB_BE/BWE[1:0]	PBE[1:0]	_	_	_	0	EVDD	B4, A4	W3, Y2
FB_CLK	—	—	—	_	0	EVDD	B13	J3
FB_CS[3:1]	PCS[3:1]	—	—	—	0	EVDD	C2, D4, C3	W5, AA4, AB3
FB_CS0	—	—		—	0	EVDD	C4	Y4
FB_OE	PFBCTL3			—	0	EVDD	A2	AA1
FB_R/W	PFBCTL2			—	0	EVDD	B2	AA3
FB_TA	PFBCTL1	_		U	I	EVDD	B1	AB2

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
FB_TS	PFBCTL0	FB_ALE	FB_TBST	_	0	EVDD	A3	Y3
		PC	Cl Controller ⁵					
PCI_AD[31:0]	_	FB_A[31:0]			I/O	EVDD	_	C11, D11, A10, B10, J4, G2, G3, F1, D12, C12, B12, A11, B11, B9, D9, D10, A8, B8, A5, B5, A4, A3, B3, D4, D3, E3–E1, F3, C2, D2, C1
_	_	FB_A[23:0]	_	_	I/O	EVDD	K14–13, J15–13, H13–15, G15–13, F14–13, E15–13, D16, B16, C15, B15, C14, D15, C16, D14	_
PCI_CBE[3:0]	—	—	_	_	I/O	EVDD	—	G4, E4, D1, B1
PCI_DEVSEL	—	—	—	_	0	EVDD	—	F2
PCI_FRAME	—	_	_	—	I/O	EVDD	—	B2
PCI_GNT3	PPCI7	ATA_DMACK	_	—	0	EVDD	_	B7
PCI_GNT[2:1]	PPCI[6:5]	_	_	_	0	EVDD	—	C8, C9
PCI_GNT0/ PCI_EXTREQ	PPCI4		_	—	0	EVDD	—	A9
PCI_IDSEL	—	_	_	—	I	EVDD	_	D5
PCI_IRDY	—	_	_	—	I/O	EVDD	_	C3
PCI_PAR	—	_	_	—	I/O	EVDD	_	C4
PCI_PERR	—	_	_	_	I/O	EVDD	—	B4
PCI_REQ3	PPCI3	ATA_INTRQ	_	_	I	EVDD	—	C7
PCI_REQ[2:1]	PPCI[2:1]	_	_	—	I	EVDD	_	D7, C5
PCI_REQ0/ PCI_EXTGNT	PPCI0		_	—	I	EVDD	—	A2
PCI_RST	_	_	_	—	0	EVDD	_	B6
PCI_SERR	—	_	_	—	I/O	EVDD	_	A6
PCI_STOP	—		—	—	I/O	EVDD	—	A7
PCI_TRDY	—	_	_	—	I/O	EVDD	—	C10
		SDR	AM Controller					
SD_A[13:0]					0	SDVDD	R1, P1, N2, P2, R2, T2, M4, N3, P3, R3, T3, T4, R4, N4	V22, U20–22, T19–22, R20–22, N19, P20–21

Table 4. MCF5445*x* Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
FEC0_TXCLK	PFEC0H7	FEC0_RMII_ REF_CLK		_	I	EVDD	H4	Y10
FEC0_TXD[3:2]	PFEC0L[7:6]	—	ULPI_DATA[3:2]	_	0	EVDD	J1, J2	W10, AB11
FEC0_TXD1	PFEC0L5	FEC0_RMII_TXD1	_		0	EVDD	J3	AA11
FEC0_TXD0	PFEC0H5	FEC0_RMII_TXD0	_		0	EVDD	J4	Y11
FEC0_TXEN	PFEC0H6	FEC0_RMII_TXEN	_		0	EVDD	K1	W11
FEC0_TXER	PFEC0L4	_	ULPI_DATA0		0	EVDD	K2	AB12
FEC1								
FEC1_MDC	PFECI2C5	—	ATA_DIOR	—	0	EVDD	—	W20
FEC1_MDIO	PFECI2C4	—	ATA_DIOW	_	I/O	EVDD	—	Y22
FEC1_COL	PFEC1H4	_	ATA_DATA7	_	I	EVDD	_	AB18
FEC1_CRS	PFEC1H0	_	ATA_DATA6		I	EVDD	_	AA18
FEC1_RXCLK	PFEC1H3	_	ATA_DATA5	_	I	EVDD	_	W14
FEC1_RXDV	PFEC1H2	FEC1_RMII_ CRS_DV	ATA_DATA15	_	I	EVDD	_	AB15
FEC1_RXD[3:2]	PFEC1L[3:2]	_	ATA_DATA[4:3]	_	I	EVDD	_	AA15, Y15
FEC1_RXD1	PFEC1L1	FEC1_RMII_RXD1	ATA_DATA14		I	EVDD	—	AA17
FEC1_RXD0	PFEC1H1	FEC1_RMII_RXD0	ATA_DATA13		I	EVDD	—	Y17
FEC1_RXER	PFEC1L0	FEC1_RMII_RXER	ATA_DATA12		I	EVDD	—	W17
FEC1_TXCLK	PFEC1H7	FEC1_RMII_ REF_CLK	ATA_DATA11	_	I	EVDD	—	AB19
FEC1_TXD[3:2]	PFEC1L[7:6]	_	ATA_DATA[2:1]	_	0	EVDD	_	Y19, W18
FEC1_TXD1	PFEC1L5	FEC1_RMII_TXD1	ATA_DATA10		0	EVDD	—	AA19
FEC1_TXD0	PFEC1H5	FEC1_RMII_TXD0	ATA_DATA9		0	EVDD	—	Y20
FEC1_TXEN	PFEC1H6	FEC1_RMII_TXEN	ATA_DATA8		0	EVDD	—	AA21
FEC1_TXER	PFEC1L4	—	ATA_DATA0		0	EVDD	—	AA22
		US	B On-the-Go					
USB_DM	—	—	—	—	0	USB VDD	F16	A14
USB_DP	_	_	_	_	0	USB VDD	E16	A15
USB_VBUS_EN	PUSB1	USB_PULLUP	ULPI_NXT	_	0	USB VDD	E5	AA2
USB_VBUS_OC	PUSB0	—	ULPI_STP	UD ⁷	Ι	USB VDD	B3	V4

Table 4. MCF5445x Signal Information	n and Muxing (continued)
--------------------------------------	--------------------------

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
			ΑΤΑ					
ATA_BUFFER_EN	PATAH5			—	0	EVDD	_	Y13
ATA_CS[1:0]	PATAH[4:3]	_	_	—	0	EVDD	—	W21, W22
ATA_DA[2:0]	PATAH[2:0]	_	_	—	0	EVDD	_	V19–21
ATA_RESET	PATAL2	_		—	0	EVDD	_	W13
ATA_DMARQ	PATAL1	_	_	—	Ι	EVDD	_	AA14
ATA_IORDY	PATALO		_	—	I	EVDD	—	Y14
		Rea	al Time Clock					
EXTAL32K	_	_	_	—	I	EVDD	J16	A13
XTAL32K	_			—	0	EVDD	H16	A12
			SSI			1		
SSI_MCLK	PSSI4	_	_	_	0	EVDD	T13	D20
SSI_BCLK	PSSI3	U1CTS	_	—	I/O	EVDD	R13	E19
SSI_FS	PSSI2	U1RTS		—	I/O	EVDD	P12	E20
SSI_RXD	PSSI1	U1RXD	_	UD	I	EVDD	T12	D21
SSI_TXD	PSSI0	U1TXD	_	UD	0	EVDD	R12	D22
			l ² C	•				
I2C_SCL	PFECI2C1	—	U2TXD	U	I/O	EVDD	К3	AA12
I2C_SDA	PFECI2C0	_	U2RXD	U	I/O	EVDD	K4	Y12
			DMA		•			
DACK1	PDMA3		ULPI_DIR	_	0	EVDD	M14	C17
DREQ1	PDMA2	_	USB_CLKIN	U	I	EVDD	P16	C18
DACK0	PDMA1	DSPI_PCS3	_	—	0	EVDD	N15	A18
DREQ0	PDMA0	_	_	U	I	EVDD	N16	B18
			DSPI	-	•			
DSPI_PCS5/PCSS	PDSPI6	—	_	—	0	EVDD	N14	D18
DSPI_PCS2	PDSPI5	—	_	—	0	EVDD	L13	A19
DSPI_PCS1	PDSPI4	SBF_CS	—	—	0	EVDD	P14	B20
DSPI_PCS0/SS	PDSPI3			U	I/O	EVDD	R16	D17
DSPI_SCK	PDSPI2	SBF_CK		—	I/O	EVDD	R15	A20

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA		
DSPI_SIN	PDSPI1	SBF_DI	_	8	I	EVDD	P15	B19		
DSPI_SOUT	PDSPI0	SBF_DO	—		0	EVDD	N13	C20		
	UARTs									
U1CTS	PUART7	—	_	—	Ι	EVDD	—	V3		
U1RTS	PUART6	_	_	—	0	EVDD	—	U4		
U1RXD	PUART5			—	Ι	EVDD	_	P3		
U1TXD	PUART4			—	0	EVDD	_	N3		
UOCTS	PUART3	_			I	EVDD	M3	Y16		
UORTS	PUART2	_	_		0	EVDD	M2	AA16		
UORXD	PUART1	_	_		I	EVDD	N1	AB16		
U0TXD	PUART0	_	—	—	0	EVDD	M1	W15		
Note: The UART1 and	d UART 2 signals	are multiplexed on the	e DMA timers and I	2C pins.						
		Ľ	OMA Timers							
DT3IN	PTIMER3	DT3OUT	U2RXD		Ι	EVDD	C13	H2		
DT2IN	PTIMER2	DT2OUT	U2TXD	—	Ι	EVDD	D13	H1		
DT1IN	PTIMER1	DT1OUT	U2CTS	—	Ι	EVDD	B14	H3		
DT0IN	PTIMER0	DTOOUT	U2RTS	_	Ι	EVDD	A15	G1		
		E	BDM/JTAG ⁹							
PSTDDATA[7:0]	_	_	—	—	0	EVDD	E2, D1, F4, E3, D2, C1, E4, D3	AA6, AB6, AB5, W6, Y6, AA5, AB4, Y5		
JTAG_EN		_		D	I	EVDD	M11	C21		
PSTCLK	_	TCLK	_		I	EVDD	P13	C22		
DSI	_	TDI	—	U	I	EVDD	T15	C19		
DSO	_	TDO	—	—	0	EVDD	T14	A21		
BKPT	—	TMS	—	U	Ι	EVDD	R14	B21		
DSCLK		TRST	—	U	Ι	EVDD	M13	B22		
			Test							
TEST	_	_	_	D	Ι	EVDD	M6	AB20		
PLLTEST	_		—	_	0	EVDD	K16	D15		

Table 4. MCF5445x Signal Information and Muxing (continued)

5.2 Thermal Characteristics

Characteristic	Symbol	256 MAPBGA	360 TEPBGA	Unit	
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	29 ^{1,2}	24 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	25 ^{1,2}	21 ^{1,2}	°C/W
Junction to board		θ_{JB}	18 ³	15 ³	°C/W
Junction to case		θ_{JC}	10 ⁴	11 ⁴	°C/W
Junction to top of package		Ψ_{jt}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		Тj	105	105	°C

Table 6. Thermal Characteristics

 θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-6 with the board horizontal.
- ³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
 Eqn. 1

Where:

T_A	=	Ambient Temperature, °C
Q_{JMA}	=	Package Thermal Resistance, Junction-to-Ambient, $^{\circ}C/W$
P _D	=	$P_{INT} + P_{I/O}$
P_{INT}	=	I_{DD} $ imes$ IV _{DD} , Watts - Chip Internal Power
P _{I/O}	=	Power Dissipation on Input and Output Pins - User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A \times 273^{\circ}C) + Q_{JMA} \times P_D^2$$
 Eqn. 3

5.8 SDRAM AC Timing Characteristics

The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing numbers are relative to the four DQS byte lanes.

Num	Characteristic	Symbol	Min	Max	Unit	Notes
	Frequency of Operation		60	133.33	MHz	1
DD1	Clock Period	t _{SDCK}	7.5	16.67	ns	
DD2	Pulse Width High	t _{SDCKH}	0.45	0.55	t _{SDCK}	2
DD3	Pulse Width Low	t _{SDCKL}	0.45	0.55	t _{SDCK}	3
DD4	Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] — Output Valid	t _{CMV}		(0.5 x t _{SDCK}) + 1.0ns	ns	3
DD5	Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> , <u>SD_CS</u> [1:0] — Output Hold	t _{СМН}	2.0	_	ns	
DD6	Write Command to first DQS Latching Transition	t _{DQSS}	(1.0 x t _{SDCK}) - 0.6ns	(1.0 x t _{SDCK}) + 0.6ns	ns	
DD7	Data and Data Mask Output Setup (DQ>DQS) Relative to DQS (DDR Write Mode)	t _{QS}	1.0	—	ns	4 5
DD8	Data and Data Mask Output Hold (DQS>DQ) Relative to DQS (DDR Write Mode)	t _{QH}	1.0		ns	6
DD9	Input Data Skew Relative to DQS (Input Setup)	t _{IS}	—	1.0	ns	7
DD10	Input Data Hold Relative to DQS.	t _{IH}	(0.25 x t _{SDCK}) + 0.5ns		ns	8

Table 13. SDRAM Timing Specifications

¹ The SDRAM interface operates at the same frequency as the internal system bus.

² Pulse width high plus pulse width low cannot exceed min and max clock period.

- ³ Command output valid should be 1/2 the memory bus clock (t_{SDCK}) plus some minor adjustments for process, temperature, and voltage variations.
- ⁴ This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁵ The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.
- ⁶ This specification relates to the required hold time of DDR memories. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁷ Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- ⁸ Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

Figure 14. Overshoot and Undershoot Limits

5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5445*x*. The ULPI PHY is the source of the 60MHz clock.

NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

Num	Characteristic	Min	Nominal	Max	Units
	USB_CLKIN operating frequency	—	60	_	MHz
	USB_CLKIN duty cycle	—	50	_	%
U1	USB_CLKIN clock period	—	16.67	_	ns
U2	Input Setup (control and data)	5.0	—	_	ns
U3	Input Hold (control and data)	1.0	—	_	ns
U4	Output Valid (control and data)	—	—	9.5	ns
U5	Output Hold (control and data)	1.0	—	_	

Table 15. ULPI Interface Timing

Num	Description	Symbol	Min	Max	Units	Notes
S11	SSI_BCLK cycle time	t _{BCLK}	$8 imes t_{SYS}$	_	ns	
S12	SSI_BCLK pulse width high / low		45%	55%	t _{BCLK}	
S13	SSI_FS input setup before SSI_BCLK		10		ns	
S14	SSI_FS input hold after SSI_BCLK		2	_	ns	
S15	SSI_BCLK to SSI_TXD / SSI_FS output valid		—	15	ns	
S16	SSI_BCLK to SSI_TXD / SSI_FS output invalid / high impedence		0	_	ns	
S17	SSI_RXD setup before SSI_BCLK		10		ns	
S18	SSI_RXD hold after SSI_BCLK		2	_	ns	

¹ All timings specified with a capactive load of 25pF.

Figure 16. SSI Timing—Master Modes

Figure 17. SSI Timing—Slave Modes

5.12 I²C Timing Specifications

Table 18 lists specifications for the I^2C input timing parameters shown in Figure 18.

Table 18. I-C input Timing Specifications between SCL and SDA	Table 18. I ² C Inpu	t Timing	Specifications	between	SCL	and SDA
---	---------------------------------	----------	----------------	---------	-----	---------

Num	Characteristic	Min	Max	Units
11	Start condition hold time	2	—	t _{SYS}
12	Clock low period	8	_	t _{SYS}
13	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	1	ms
14	Data hold time	0	—	ns
15	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	1	ms
16	Clock high time	4	—	t _{SYS}
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2	—	t _{SYS}
19	Stop condition setup time	2	—	t _{SYS}

Table 19 lists specifications for the I^2C output timing parameters shown in Figure 18.

able	19. I ² C	Output	Timing	Specifications	between	SCL	and SDA
------	----------------------	--------	--------	----------------	---------	-----	---------

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	6	_	t _{SYS}
12 ¹	Clock low period	10	_	t _{SYS}
13 ²	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	_	μs
14 ¹	Data hold time	7	_	t _{SYS}
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	3	ns

1

Num	Characteristic	Min	Max	Units
16 ¹	Clock high time	10		t _{SYS}
17 ¹	Data setup time	2		t _{SYS}
18 ¹	Start condition setup time (for repeated start condition only)	20		t _{SYS}
19 ¹	Stop condition setup time	10		t _{SYS}

Table 19. I²C Output Timing Specifications between SCL and SDA (continued)

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 19. The I^2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR. However, the numbers given in Table 19 are minimum values.

² Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

Figure 18. I²C Input/Output Timings

5.13 Fast Ethernet Timing Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

5.13.1 Receive Signal Timing Specifications

The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.

Num	Characteristic	MII Mode		RMII	Mode	Unit	
		Min	Мах	Min	Max	Onit	
_	RXCLK frequency		25	_	50	MHz	
E1	RXD[n:0], RXDV, RXER to RXCLK setup ¹	5	_	4	_	ns	
E2	RXCLK to RXD[n:0], RXDV, RXER hold ¹	5	_	2	_	ns	
E3	RXCLK pulse width high	35%	65%	35%	65%	RXCLK period	
E4	RXCLK pulse width low	35%	65%	35%	65%	RXCLK period	

 Table 20. Receive Signal Timing

In MII mode, n = 3; In RMII mode, n = 1

5.15 ATA Interface Timing Specifications

The ATA controller is compatible with the ATA/ATAPI-6 industry standard. Refer to the *ATA/ATAPI-6 Specficiation* and the ATA controller chapter of the *MCF54455 Reference Manual* for timing diagrams of the various modes of operation.

The timings of the various ATA data transfer modes are determined by a set of timing equations described in the ATA section of the *MCF54455 Reference Manual*. These timing equations must be fulfilled for the ATA host to meet timing. Table 25 provides implementation specific timing parameters necessary to complete the timing equations.

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
A1	Setup time — ATA_IORDY to SYSCLK falling	t _{SUI}	4.0		ns	
A2	Hold time — ATA_IORDY from SYSCLK falling	t _{HI}	3.0		ns	
A3	Setup time — ATA_DATA[15:0] to SYSCLK rising	t _{SU}	4.0		ns	
A4	Propagation delay — SYSCLK rising to all outputs	t _{CO}	—	7.0	ns	3
A5	Output skew	t _{SKEW1}		1.5	ns	3
A6	Setup time — ATA_DATA[15:0] valid to ATA_IORDY	t _{I_DS}	2.0	_	ns	4
A7	Hold time — ATA_IORDY to ATA_DATA[15:0] invalid	t _{I_DH}	3.5	_	ns	4

Table 25. ATA Interface Timing Specifications^{1,2}

¹ These parameters are guaranteed by design and not testable.

² All timings specified with a capacitive load of 40pF.

³ Applies to ATA_CS[1:0], ATA_DA[2:0], ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA[15:0]

⁴ Applies to Ultra DMA data-in burst only

5.16 DSPI Timing Specifications

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the *MCF54455 Reference Manual* for information on the modified transfer formats used for communicating with slower peripheral devices.

Name	Characteristic	Symbol	Min	Мах	Unit	Notes	
DS1	DSPI_SCK Cycle Time	t _{SCK}	4 x t _{SYS}	—	ns	2	
DS2	DSPI_SCK Duty Cycle	$ (t_{sck} \div 2) - 2.0 (t_{sck} \div 2) + 2.0$		ns	3		
Master M	Master Mode						
DS3	DSPI_PCS <i>n</i> to DSPI_SCK delay	t _{CSC}	$(2 \times t_{SYS})$ - 1.5	—	ns	4	
DS4	DSPI_SCK to DSPI_PCS <i>n</i> delay	t _{ASC}	$(2 \times t_{SYS})$ - 3.0	—	ns	5	
DS5	DSPI_SCK to DSPI_SOUT valid	—	—	5	ns		
DS6	DSPI_SCK to DSPI_SOUT invalid	—	-5	—	ns		
DS7	DSPI_SIN to DSPI_SCK input setup	—	9	—	ns		
DS8	DSPI_SCK to DSPI_SIN input hold	—	0	—	ns		
Slave Mode							
DS9	DSPI_SCK to DSPI_SOUT valid	—	—	10	ns		

Table 26. DSPI Module AC Timing Specifications¹

5.19 JTAG and Boundary Scan Timing

Table 29. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Min	Max	Unit
J1	TCLK Frequency of Operation	DC	20	MHz
J2	TCLK Cycle Period	50	_	ns
J3	TCLK Clock Pulse Width	20	30	ns
J4	TCLK Rise and Fall Times		3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	5	_	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	20	—	ns
J7	TCLK Low to Boundary Scan Output Data Valid		33	ns
J8	TCLK Low to Boundary Scan Output High Z	—	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise		—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	10	—	ns
J11	TCLK Low to TDO Data Valid		11	ns
J12	TCLK Low to TDO High Z		11	ns
J13	TRST Assert Time	50	—	ns
J14	TRST Setup Time (Negation) to TCLK High	10	—	ns

¹ JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

Figure 27. Test Clock Input Timing

6 **Power Consumption**

All power consumption data is lab data measured on an M54455EVB running the Freescale Linux BSP.

Core Freq.		Idle	MP3 Playback	TFTP Download	USB HS File Copy	Units
	IV _{DD}	215.6	288.8	274.4	263.7	
	EV _{DD}	27.6	33.6	32.6	32.4	mA
266 MHZ	SDV _{DD}	142.9	158.2	161.1	158.0	
	Total Power	672	829	809	787	mW
200 MHz	IV _{DD}	163.8	228.0	213.8	207.9	
	EV _{DD}	29.9	34.7	34.3	33.8	mA
	SDV _{DD}	142.2	158.5	160.0	153.4	
	Total Power	601	742	722	699	mW

Table 31. MCF4455 Application Power Consumption¹

¹ All voltage rails at nominal values: IV_{DD} = 1.5 V, EV_{DD} = 3.3 V, and SDV_{DD} = 1.8 V.

Figure 33. Power Consumption in Various Applications

Package Information

7 Package Information

The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire. Table 33 lists the case outline numbers per device. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

Device	Package Type	Case Outline Numbers	
MCF54450		08APH08210A	
MCF54451	200 MIAI DOA	304111302134	
MCF54452			
MCF54453	360 TEPBGA 98ARE10605D		
MCF54454		30ARE 10003D	
MCF54455			

Table	33.	Package	Informa	ation
10010	•••	. aonago		

8 **Product Documentation**

Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.

Revision History

9 Revision History

Table 34 summarizes revisions to this document.

Table 34. Revision History

Rev. No.	Date	Summary of Changes
0	Sept 17, 2007	Initial public release.
1	Feb 15, 2008	Corrected VSS pin locations in MCF5445 <i>x</i> signal information and muxing table for the 360 TEPBGA package: changed "M9, M16, M17" to "M9–M14, M16" Updated FlexBus read and write timing diagrams and added two notes before them. Change FB_A[23:0] to FB_A[31:0] in FlexBus read and write timing diagrams. Added power consumption section.
2	May 1, 2008	 In Family Configurations table, added PCI as feature on 256-pin devices. On these devices the PCI_AD bus is limited to 24-bits. In Absolute Maximum Ratings table, changed RTCV_{DD} specification from "-0.3 to +4.0" to "-0.5 to +2.0". In DC Electrical Specifications table: Changed RTCV_{DD} specification from 3.0–3.6 to 1.35–1.65. Changed High Impedance (Off-State) Leakage Current (I_{OZ}) specification from ±1 to ±10µA, and added footnote to this spec: "Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 µA min/max."
3	Dec 1, 2008	 Changed "360PBGA" heading to "360 TEPBGA" in Table 6. Changed the following specs in Table 13: Minimum frequency of operation from — to 60MHz. Maximum clock period from — to 16.67 ns.
4	Apr 12, 2009	 Rescinded previous errata, the 256-pin devices do not contain the PCI bus controller: In Table 4, in PCI_AD<i>n</i> signal section, added a separate row for each package, with PCI_AD<i>n</i> signals shown as — for 256-pin devices. In Figure 5, changed the PCI_AD<i>n</i> pins to their alternative function, FB_A<i>n</i>.
5	Apr 27, 2009	In Table 2 changed MCF54450VM180 to MCF54450CVM180 and changed it's temperature entry from "0° to +70° C" to "-40° to +85° C".
6	Oct 15, 2009	In Table 8 changed Input Leakage Current (I_{in}) from ±1.0 to ±2.5µA.
7	Oct 18, 2011	In Table 2, added MCF54452YVR200 part number, with temperature range from -40° to $+105^{\circ}$ C. In Table 8, added Input Leakage Current (I _{in}) values for MCF54452YVR200 part number.
8	Jan 18, 2012	In Table 4, added pin N7 in the VSS pin list for the 360 TEPBGA.

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF54455 Rev. 8 02/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2012. All rights reserved.

