



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                      |
|----------------------------|-------------------------------------------------------------|
| Core Processor             | Coldfire V4                                                 |
| Core Size                  | 32-Bit Single-Core                                          |
| Speed                      | 240MHz                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, SSI, UART/USART, USB OTG             |
| Peripherals                | DMA, WDT                                                    |
| Number of I/O              | 132                                                         |
| Program Memory Size        | -                                                           |
| Program Memory Type        | ROMIess                                                     |
| EEPROM Size                | -                                                           |
| RAM Size                   | 32K x 8                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.35V ~ 3.6V                                                |
| Data Converters            | -                                                           |
| Oscillator Type            | Internal                                                    |
| Operating Temperature      | 0°C ~ 70°C (TA)                                             |
| Mounting Type              | Surface Mount                                               |
| Package / Case             | 256-LBGA                                                    |
| Supplier Device Package    | 256-MAPBGA (17x17)                                          |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf54450avm240 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 2 Ordering Information

**Table 2. Orderable Part Numbers** 

| Freescale Part<br>Number | Description               | Package     | Speed   | Temperature                      |
|--------------------------|---------------------------|-------------|---------|----------------------------------|
| MCF54450CVM180           |                           |             | 180 MHz | –40° to +85° C                   |
| MCF54450VM240            | MCF54450 Microprocessor   |             | 240 MHz | 0° to +70° C                     |
| MCF54451CVM180           | MCE54451 Microprocessor   | 230 WAF DOA | 180 MHz | $-40^{\circ}$ to $+85^{\circ}$ C |
| MCF54451VM240            | 1001 54451 Microprocessor |             | 240 MHz | 0° to +70° C                     |
| MCF54452CVR200           |                           |             | 200 MHz | $-40^{\circ}$ to $+85^{\circ}$ C |
| MCF54452YVR200           | MCF54452 Microprocessor   |             | 200 MHz | –40° to +105° C                  |
| MCF54452VR266            |                           |             | 266 MHz | 0° to +70° C                     |
| MCF54453CVR200           | MCE54453 Microprocessor   |             | 200 MHz | $-40^{\circ}$ to $+85^{\circ}$ C |
| MCF54453VR266            | 1001 04400 Microprocessor | 360 TEPBGA  | 266 MHz | 0° to +70° C                     |
| MCF54454CVR200           | MCE54454 Microprocessor   |             | 200 MHz | $-40^{\circ}$ to $+85^{\circ}$ C |
| MCF54454VR266            | Mor 34434 Microprocessor  |             | 266 MHz | 0° to +70° C                     |
| MCF54455CVR200           | MCE54455 Microprocessor   |             | 200 MHz | $-40^{\circ}$ to $+85^{\circ}$ C |
| MCF54455VR266            | Wor 34433 Wicroprocessor  |             | 266 MHz | 0° to +70° C                     |

# 3 Hardware Design Considerations

### 3.1 Analog Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for the analog  $V_{DD}$  pins (VDD\_A\_PLL, VDD\_RTC). The filter shown in Figure 2 should be connected between the board  $IV_{DD}$  and the analog pins. The resistor and capacitors should be placed as close to the dedicated analog  $V_{DD}$  pin as possible. The 10- $\Omega$  resistor in the given filter is required. Do not implement the filter circuit using only capacitors. The analog power pins draw very little current. Concerns regarding voltage loss across the 10-ohm resistor are not valid.



Figure 2. System Analog V<sub>DD</sub> Power Filter



### Pin Assignments and Reset States

| Table 3. Sr | oecial-Case | Default | Signal | Functionality | v   | (continued) |
|-------------|-------------|---------|--------|---------------|-----|-------------|
| 14610 01 01 |             | Donadit | e.g    | . anotionant  | , , | (           |

| Pin          | 256 MAPBGA | 360 TEPBGA                           |
|--------------|------------|--------------------------------------|
| PCI_GNT[3:0] | GPIO       | PCI_GNT[3:0]                         |
| PCI_REQ[3:0] | GPIO       | PCI_REQ[3:0]                         |
| IRQ1         | GPIO       | PCI_INTA and configured as an agent. |
| ATA_RESET    | GPIO       | ATA reset                            |

| Table 4. MCF5445x Signal Infor | rmation and Muxing |
|--------------------------------|--------------------|
|--------------------------------|--------------------|

| Signal Name    | GPIO                      | Alternate 1  | Alternate 2   | Pull-up (U) <sup>1</sup><br>Pull-down (D) | Direction <sup>2</sup> | Voltage Domain | MCF54450<br>MCF54451<br>256 MAPBGA           | MCF54452<br>MCF54453<br>MCF54454<br>MCF54455<br>360 TEPBGA |  |
|----------------|---------------------------|--------------|---------------|-------------------------------------------|------------------------|----------------|----------------------------------------------|------------------------------------------------------------|--|
| Reset          |                           |              |               |                                           |                        |                |                                              |                                                            |  |
| RESET          | —                         | _            | _             | U                                         | I                      | EVDD           | L4                                           | Y18                                                        |  |
| RSTOUT         | —                         | _            | —             | —                                         | 0                      | EVDD           | M15                                          | B17                                                        |  |
|                |                           |              | Clock         |                                           |                        |                |                                              |                                                            |  |
| EXTAL/PCI_CLK  | —                         | _            | _             | —                                         | I                      | EVDD           | M16                                          | A16                                                        |  |
| XTAL           | —                         | _            | —             | U <sup>3</sup>                            | 0                      | EVDD           | L16                                          | A17                                                        |  |
|                |                           | Mo           | ode Selection |                                           |                        |                |                                              |                                                            |  |
| BOOTMOD[1:0]   | —                         | _            |               | —                                         | I                      | EVDD           | M5, M7                                       | AB17, AB21                                                 |  |
|                |                           |              | FlexBus       |                                           |                        |                |                                              |                                                            |  |
| FB_AD[31:24]   | PFBADH[7:0] <sup>4</sup>  | FB_D[31:24]  |               | _                                         | I/O                    | EVDD           | A14, A13, D12,<br>C12, B12, A12,<br>D11, C11 | J2, K4, J1, K1–3,<br>L1, L4                                |  |
| FB_AD[23:16]   | PFBADMH[7:0] <sup>4</sup> | FB_D[23:16]  | —             | —                                         | I/O                    | EVDD           | B11, A11, D10,<br>C10, B10, A10, D9,<br>C9   | L2, L3, M1–4,<br>N1–2                                      |  |
| FB_AD[15:8]    | PFBADML[7:0] <sup>4</sup> | FB_D[15:8]   | —             |                                           | I/O                    | EVDD           | B9, A9, D8, C8, B8,<br>A8, D7, C7            | P1–2, R1–3, P4,<br>T1–2                                    |  |
| FB_AD[7:0]     | PFBADL[7:0] <sup>4</sup>  | FB_D[7:0]    | —             | —                                         | I/O                    | EVDD           | B7, A7, D6, C6, B6,<br>A6, D5, C5            | T3–4, U1–3, V1–2,<br>W1                                    |  |
| FB_BE/BWE[3:2] | PBE[3:2]                  | FB_TSIZ[1:0] | _             | —                                         | 0                      | EVDD           | B5, A5                                       | Y1, W2                                                     |  |
| FB_BE/BWE[1:0] | PBE[1:0]                  | _            | _             | _                                         | 0                      | EVDD           | B4, A4                                       | W3, Y2                                                     |  |
| FB_CLK         | —                         | —            | —             | _                                         | 0                      | EVDD           | B13                                          | J3                                                         |  |
| FB_CS[3:1]     | PCS[3:1]                  | —            | —             | —                                         | 0                      | EVDD           | C2, D4, C3                                   | W5, AA4, AB3                                               |  |
| FB_CS0         | —                         | —            |               | —                                         | 0                      | EVDD           | C4                                           | Y4                                                         |  |
| FB_OE          | PFBCTL3                   |              |               | —                                         | 0                      | EVDD           | A2                                           | AA1                                                        |  |
| FB_R/W         | PFBCTL2                   |              |               | —                                         | 0                      | EVDD           | B2                                           | AA3                                                        |  |
| FB_TA          | PFBCTL1                   | _            |               | U                                         | I                      | EVDD           | B1                                           | AB2                                                        |  |

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8



**Pin Assignments and Reset States** 

| Signal Name         | GPIO             | Alternate 1            | Alternate 2           | Pull-up (U) <sup>1</sup><br>Pull-down (D) | Direction <sup>2</sup> | Voltage Domain | MCF54450<br>MCF54451<br>256 MAPBGA | MCF54452<br>MCF54453<br>MCF54454<br>MCF54455<br>360 TEPBGA |
|---------------------|------------------|------------------------|-----------------------|-------------------------------------------|------------------------|----------------|------------------------------------|------------------------------------------------------------|
| DSPI_SIN            | PDSPI1           | SBF_DI                 | _                     | 8                                         | I                      | EVDD           | P15                                | B19                                                        |
| DSPI_SOUT           | PDSPI0           | SBF_DO                 | —                     |                                           | 0                      | EVDD           | N13                                | C20                                                        |
|                     |                  |                        | UARTs                 |                                           |                        |                |                                    |                                                            |
| U1CTS               | PUART7           | —                      | _                     | —                                         | Ι                      | EVDD           | —                                  | V3                                                         |
| U1RTS               | PUART6           | _                      | _                     | —                                         | 0                      | EVDD           | —                                  | U4                                                         |
| U1RXD               | PUART5           |                        |                       | —                                         | Ι                      | EVDD           | _                                  | P3                                                         |
| U1TXD               | PUART4           |                        |                       | —                                         | 0                      | EVDD           | _                                  | N3                                                         |
| UOCTS               | PUART3           | _                      |                       |                                           | I                      | EVDD           | M3                                 | Y16                                                        |
| UORTS               | PUART2           | _                      | _                     |                                           | 0                      | EVDD           | M2                                 | AA16                                                       |
| UORXD               | PUART1           | _                      | _                     |                                           | I                      | EVDD           | N1                                 | AB16                                                       |
| U0TXD               | PUART0           | _                      | —                     | —                                         | 0                      | EVDD           | M1                                 | W15                                                        |
| Note: The UART1 and | d UART 2 signals | are multiplexed on the | e DMA timers and I    | 2C pins.                                  |                        |                |                                    |                                                            |
|                     |                  | Ľ                      | OMA Timers            |                                           |                        |                |                                    |                                                            |
| DT3IN               | PTIMER3          | DT3OUT                 | U2RXD                 |                                           | Ι                      | EVDD           | C13                                | H2                                                         |
| DT2IN               | PTIMER2          | DT2OUT                 | U2TXD                 | —                                         | Ι                      | EVDD           | D13                                | H1                                                         |
| DT1IN               | PTIMER1          | DT1OUT                 | U2CTS                 | —                                         | Ι                      | EVDD           | B14                                | H3                                                         |
| DT0IN               | PTIMER0          | DTOOUT                 | U2RTS                 | _                                         | Ι                      | EVDD           | A15                                | G1                                                         |
|                     |                  | E                      | BDM/JTAG <sup>9</sup> |                                           |                        |                |                                    |                                                            |
| PSTDDATA[7:0]       | _                | _                      | —                     | —                                         | 0                      | EVDD           | E2, D1, F4, E3, D2,<br>C1, E4, D3  | AA6, AB6, AB5,<br>W6, Y6, AA5, AB4,<br>Y5                  |
| JTAG_EN             |                  | _                      |                       | D                                         | I                      | EVDD           | M11                                | C21                                                        |
| PSTCLK              | _                | TCLK                   | _                     |                                           | I                      | EVDD           | P13                                | C22                                                        |
| DSI                 | _                | TDI                    | —                     | U                                         | I                      | EVDD           | T15                                | C19                                                        |
| DSO                 | _                | TDO                    | —                     | —                                         | 0                      | EVDD           | T14                                | A21                                                        |
| BKPT                | —                | TMS                    | —                     | U                                         | Ι                      | EVDD           | R14                                | B21                                                        |
| DSCLK               |                  | TRST                   | —                     | U                                         | Ι                      | EVDD           | M13                                | B22                                                        |
|                     |                  |                        | Test                  |                                           |                        |                |                                    |                                                            |
| TEST                | _                | _                      | _                     | D                                         | Ι                      | EVDD           | M6                                 | AB20                                                       |
| PLLTEST             | _                |                        | —                     | _                                         | 0                      | EVDD           | K16                                | D15                                                        |
|                     |                  |                        |                       |                                           |                        |                |                                    |                                                            |

### Table 4. MCF5445x Signal Information and Muxing (continued)



| Signal Name | GPIO | Alternate 1 | Alternate 2  | Pull-up (U) <sup>1</sup><br>Pull-down (D) | Direction <sup>2</sup> | Voltage Domain | MCF54450<br>MCF54451<br>256 MAPBGA                           | MCF54452<br>MCF54453<br>MCF54454<br>MCF54455<br>360 TEPBGA                                                                                                                         |
|-------------|------|-------------|--------------|-------------------------------------------|------------------------|----------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      | Ро          | wer Supplies |                                           |                        |                |                                                              |                                                                                                                                                                                    |
| IVDD        | _    | _           | _            | _                                         | —                      |                | E6–12, F5, F12                                               | D6, D8, D14, F4,<br>H4, N4, R4, W4,<br>W7, W8, W12,<br>W16, W19                                                                                                                    |
| EVDD        | _    | _           | _            | _                                         | _                      | _              | G5, G12, H5, H12,<br>J5, J12, K5, K12,<br>L5–6, L12          | D13, D19, G8,<br>G11, G14, G16, J7,<br>J16, L7, L16, N16,<br>P7, R16, T8, T12,<br>T14, T16                                                                                         |
| SD_VDD      | —    | _           | —            | —                                         | —                      | —              | L7–11, M9, M10                                               | F19, H19, K19,<br>M19, R19, U19                                                                                                                                                    |
| VDD_OSC     | —    | —           | —            | _                                         | _                      | —              | L14                                                          | B16                                                                                                                                                                                |
| VDD_A_PLL   | —    | —           | —            | _                                         | _                      | —              | K15                                                          | C14                                                                                                                                                                                |
| VDD_RTC     | —    | —           | —            | _                                         | _                      | —              | M12                                                          | C13                                                                                                                                                                                |
| VSS         | _    | _           |              | _                                         |                        |                | A1, A16, F6–11,<br>G6–11, H6–11,<br>J6–11, K6–11, T1,<br>T16 | A1, A22, B14, G7,<br>G9–10, G12–13,<br>G15, H7, H16,<br>J9–14, K7, K9–14,<br>K16, L9–14, M7,<br>M9–M14, M16, N7,<br>N9–14, P9–14,<br>P16, R7, T7,<br>T9–11, T13, T15,<br>AB1, AB22 |
| VSS_OSC     | —    | _           |              | —                                         | —                      | —              | L15                                                          | C16                                                                                                                                                                                |

### Table 4. MCF5445*x* Signal Information and Muxing (continued)

<sup>1</sup> Pull-ups are generally only enabled on pins with their primary function, except as noted.

<sup>2</sup> Refers to pin's primary function.

- <sup>3</sup> Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).
- <sup>4</sup> Serial boot must select 0-bit boot port size to enable the GPIO mode on these pins.
- <sup>5</sup> When the PCI is enabled, all PCI bus pins come up configured as such. This includes the PCI\_GNT and PCI\_REQ lines, which have GPIO. The IRQ1/PCI\_INTA signal is a special case. It comes up as PCI\_INTA when booting as a PCI agent and as GPIO when booting as a PCI host.

For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI\_GNT and PCI\_REQ lines and IRQ1/PCI\_INTA come up as GPIO.

- <sup>6</sup> GPIO functionality is determined by the edge port module. The pin multiplexing and control module is only responsible for assigning the alternate functions.
- <sup>7</sup> Depends on programmed polarity of the USB\_VBUS\_OC signal.
- <sup>8</sup> Pull-up when the serial boot facility (SBF) controls the pin
- <sup>9</sup> If JTAG\_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not responsible for assigning these pins.



**Pin Assignments and Reset States** 

## 4.3 Pinout—360 TEPBGA

The pinout for the MCF54452, MCF54453, MCF54454, and MCF54455 packages are shown below.



Figure 6. MCF54452, MCF54453, MCF54454, and MCF54455 Pinout (360 TEPBGA)



where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  $P_D$  (at equilibrium) for a known  $T_A$ . Using this value of K, the values of  $P_D$  and  $T_J$  can be obtained by solving Equation 1 and Equation 2 iteratively for any value of  $T_A$ .

### 5.3 ESD Protection

| Characteristics                 | Symbol | Value | Units |
|---------------------------------|--------|-------|-------|
| ESD Target for Human Body Model | HBM    | 2000  | V     |

<sup>1</sup> All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

<sup>2</sup> A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

## 5.4 DC Electrical Specifications

#### Characteristic Symbol Min Max Units Internal logic supply voltage<sup>1</sup> IV<sub>DD</sub> 1.35 1.65 V PLL analog operation voltage range PV<sub>DD</sub> V 1.35 1.65 External I/O pad supply voltage V **EV**<sub>DD</sub> 3.0 3.6 V Internal oscillator supply voltage OSCV<sub>DD</sub> 3.0 3.6 Real-time clock supply voltage **RTCV**<sub>DD</sub> V 1.35 1.65 SDRAM I/O pad supply voltage - DDR mode V 2.25 2.75 SDV<sub>DD</sub> SDRAM I/O pad supply voltage - DDR2 mode SDVDD 1.7 1.9 V SDRAM I/O pad supply voltage - Mobile DDR mode 1.7 1.9 V SDV<sub>DD</sub> V **SDV**<sub>REF</sub> 0.51 x SDV<sub>DD</sub> SDRAM input reference voltage 0.49 x SDV<sub>DD</sub> 0.7 x EV<sub>DD</sub> V Input High Voltage VIH 3.65 $V_{SS} - 0.3$ V Input Low Voltage 0.35 x EV<sub>DD</sub> VII Input Hysteresis V<sub>HYS</sub> 0.06 x EV<sub>DD</sub> mV Input Leakage Current<sup>2</sup> -2.5 2.5 μΑ l<sub>in</sub> $V_{in} = V_{DD}$ or $V_{SS}$ , Input-only pins Input Leakage Current<sup>3</sup> l<sub>in</sub> -5 5 μΑ $V_{in} = V_{DD}$ or $V_{SS}$ , Input-only pins High Impedance (Off-State) Leakage Current<sup>4</sup> -10.0 10.0 μΑ loz V<sub>in</sub> = V<sub>DD</sub> or V<sub>SS</sub>, All input/output and output pins Output High Voltage (All input/output and all output pins) VOH $0.85 \times EV_{DD}$ V $I_{OH} = -5.0 \text{ mA}$ Output Low Voltage (All input/output and all output pins) $0.15 \times EV_{DD}$ V VOL $I_{OI} = 5.0 \text{mA}$

### Table 8. DC Electrical Specifications

| Characteristic                                                                                                                                                                                                        | Symbol           | Min         | Max       | Units |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-----------|-------|
| Weak Internal Pull Up Device Current, tested at V <sub>IL</sub> Max. <sup>5</sup>                                                                                                                                     | I <sub>APU</sub> | -10         | -130      | μΑ    |
| Input Capacitance <sup>6</sup><br>All input-only pins<br>All input/output (three-state) pins                                                                                                                          | C <sub>in</sub>  |             | 7<br>7    | pF    |
| Load Capacitance<br>Low drive strength<br>High drive strength                                                                                                                                                         | CL               |             | 25<br>50  | pF    |
| DC Injection Current <sup>3, 7, 8, 9</sup><br>V <sub>NEGCLAMP</sub> =V <sub>SS</sub> - 0.3 V, V <sub>POSCLAMP</sub> = V <sub>DD</sub> + 0.3<br>Single Pin Limit<br>Total MCU Limit, Includes sum of all stressed pins | IIC              | -1.0<br>-10 | 1.0<br>10 | mA    |

### **Table 8. DC Electrical Specifications**

 $IV_{DD}$  and  $PV_{DD}$  should be at the same voltage.  $PV_{DD}$  should have a filtered input. Please see the PLL section of this specification for an example circuit. There are three  $PV_{DD}$  inputs, one for each PLL. A filter circuit should used on each  $PV_{DD}$  input.

- <sup>2</sup> Valid for all parts, EXCEPT the MCF54452YVR200.
- <sup>3</sup> Valid just the MCF54452YVR200 part number.
- <sup>4</sup> Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 μA min/max.
- <sup>5</sup> Refer to the *MCF54455 Reference Manual* signals description chapter for pins having weak internal pull-up devices.
- <sup>6</sup> This parameter is characterized before qualification rather than 100% tested.
- <sup>7</sup> All functional non-supply pins are internally clamped to  $V_{SS}$  and their respective  $V_{DD}$ .
- <sup>8</sup> Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- <sup>9</sup> Power supply must maintain regulation within operating V<sub>DD</sub> range during instantaneous and operating maximum current conditions. If positive injection current (V<sub>in</sub> > V<sub>DD</sub>) is greater than I<sub>DD</sub>, the injection current may flow out of V<sub>DD</sub> and could result in external power supply going out of regulation. Ensure the external V<sub>DD</sub> load shunts current greater than the maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, the system clock is not present during the power-up sequence until the PLL has attained lock.

## 5.5 Clock Timing Specifications

The clock module configures the device for one of several clocking methods. Clocking modes include internal phase-locked loop (PLL) clocking with an external clock reference or an external crystal reference supported by an internal crystal amplifier. The PLL can also be disabled, and an external oscillator can directly clock the device.

The specifications in Table 9 are for the CLKIN input pin (EXTAL input driven by an external clock reference). The duty cycle specification is based on an acceptable tolerance for the PLL, which yields 50% duty-cycle internal clocks to all on-chip peripherals. The MCF5445*x* devices use the input clock signal as its synchronous bus clock for PCI. A poor duty cycle on the input clock, may affect the overall timing margin to external devices. If negative edge logic is used to interface to PCI, providing a 50% duty-cycle input clock aids in simplifying overall system design.

| Num | Characteristic                                                                                                                                  | Symbol                                      | Min.<br>Value | Max.<br>Value                                                                                   | Unit                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|-------------------------------------------------------------------------------------------------|----------------------|
| 11  | Total on-chip stray capacitance on EXTAL                                                                                                        | C <sub>S_EXTAL</sub>                        | _             | 1.5                                                                                             | pF                   |
| 12  | Crystal capacitive load                                                                                                                         | CL                                          | See cry       | See crystal spec                                                                                |                      |
| 13  | Discrete load capacitance for XTAL<br>Discrete load capacitance for EXTAL                                                                       | C <sub>L_XTAL</sub><br>C <sub>L_EXTAL</sub> | _             | $\begin{array}{c} 2\times (C_L - \\ C_{S_XTAL} - \\ C_{S_EXTAL} - \\ C_{S_PCB} )^6 \end{array}$ | pF                   |
| 14  | Frequency un-LOCK Range                                                                                                                         | f <sub>UL</sub>                             | -4.0          | 4.0                                                                                             | % f <sub>sys</sub>   |
| 15  | Frequency LOCK Range                                                                                                                            | f <sub>LCK</sub>                            | -2.0          | 2.0                                                                                             | % f <sub>sys</sub>   |
| 17  | CLKOUT Period Jitter, <sup>3, 4, 7</sup> Measured at f <sub>SYS</sub> Max<br>Peak-to-peak Jitter (Clock edge to clock edge)<br>Long Term Jitter | C <sub>jitter</sub>                         | _             | 10<br>TBD                                                                                       | % FB_CLK<br>% FB_CLK |

### Table 10. PLL Electrical Characteristics (continued)

<sup>1</sup> The minimum system frequency is the minimum input clock divided by the maximum low-power divider (16 MHz  $\div$  32,768). When the PLL is enabled, the minimum system frequency (f<sub>sys</sub>) is 150 MHz.

<sup>2</sup> This parameter is guaranteed by characterization before qualification rather than 100% tested. Applies to external clock reference only.

- <sup>3</sup> Proper PC board layout procedures must be followed to achieve specifications.
- <sup>4</sup> This parameter is guaranteed by design rather than 100% tested.
- <sup>5</sup> This specification is the PLL lock time only and does not include oscillator start-up time.
- <sup>6</sup> C<sub>S PCB</sub> is the measured PCB stray capacitance on EXTAL and XTAL.

<sup>7</sup> Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f<sub>sys</sub>. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V<sub>DD</sub>, EV<sub>DD</sub>, and V<sub>SS</sub> and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

## 5.6 Reset Timing Specifications

Table 11 lists specifications for the reset timing parameters shown in Figure 8.

Table 11. Reset and Configuration Override Timing

| Num             | Characteristic                                                    | Min | Мах | Unit         |
|-----------------|-------------------------------------------------------------------|-----|-----|--------------|
| R1 <sup>1</sup> | RESET valid to CLKIN (setup)                                      | 9   | —   | ns           |
| R2              | CLKIN to RESET invalid (hold)                                     | 1.5 | —   | ns           |
| R3              | RESET valid time <sup>2</sup>                                     | 5   | —   | CLKIN cycles |
| R4              | CLKIN to RSTOUT valid                                             | —   | 10  | ns           |
| R5              | RSTOUT valid to Configuration Override inputs valid               | 0   | —   | ns           |
| R6              | Configuration Override inputs valid to RSTOUT invalid (setup)     | 20  | —   | CLKIN cycles |
| R7              | Configuration Override inputs invalid after RSTOUT invalid (hold) | 0   | —   | ns           |
| R8              | RSTOUT invalid to Configuration Override inputs High Impedance    | —   | 1   | CLKIN cycles |

<sup>1</sup> RESET and Configuration Override data lines are synchronized internally. Setup and hold times must be met only if recognition on a particular clock is required.

<sup>2</sup> During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

#### MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8



### 5.8 SDRAM AC Timing Characteristics

The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing numbers are relative to the four DQS byte lanes.

| Num  | Characteristic                                                                                      | Symbol             | Min                                    | Max                                   | Unit              | Notes  |
|------|-----------------------------------------------------------------------------------------------------|--------------------|----------------------------------------|---------------------------------------|-------------------|--------|
|      | Frequency of Operation                                                                              |                    | 60                                     | 133.33                                | MHz               | 1      |
| DD1  | Clock Period                                                                                        | t <sub>SDCK</sub>  | 7.5                                    | 16.67                                 | ns                |        |
| DD2  | Pulse Width High                                                                                    | t <sub>SDCKH</sub> | 0.45                                   | 0.55                                  | t <sub>SDCK</sub> | 2      |
| DD3  | Pulse Width Low                                                                                     | t <sub>SDCKL</sub> | 0.45                                   | 0.55                                  | t <sub>SDCK</sub> | 3      |
| DD4  | Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,<br>SD_CS[1:0] — Output Valid                                | t <sub>CMV</sub>   |                                        | (0.5 x t <sub>SDCK</sub> )<br>+ 1.0ns | ns                | 3      |
| DD5  | Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> ,<br><u>SD_CS</u> [1:0] — Output Hold | t <sub>СМН</sub>   | 2.0                                    | _                                     | ns                |        |
| DD6  | Write Command to first DQS Latching Transition                                                      | t <sub>DQSS</sub>  | (1.0 x t <sub>SDCK</sub> )<br>- 0.6ns  | (1.0 x t <sub>SDCK</sub> )<br>+ 0.6ns | ns                |        |
| DD7  | Data and Data Mask Output Setup (DQ>DQS)<br>Relative to DQS (DDR Write Mode)                        | t <sub>QS</sub>    | 1.0                                    | —                                     | ns                | 4<br>5 |
| DD8  | Data and Data Mask Output Hold (DQS>DQ)<br>Relative to DQS (DDR Write Mode)                         | t <sub>QH</sub>    | 1.0                                    |                                       | ns                | 6      |
| DD9  | Input Data Skew Relative to DQS (Input Setup)                                                       | t <sub>IS</sub>    | —                                      | 1.0                                   | ns                | 7      |
| DD10 | Input Data Hold Relative to DQS.                                                                    | t <sub>IH</sub>    | (0.25 x t <sub>SDCK</sub> )<br>+ 0.5ns |                                       | ns                | 8      |

#### Table 13. SDRAM Timing Specifications

<sup>1</sup> The SDRAM interface operates at the same frequency as the internal system bus.

<sup>2</sup> Pulse width high plus pulse width low cannot exceed min and max clock period.

- <sup>3</sup> Command output valid should be 1/2 the memory bus clock (t<sub>SDCK</sub>) plus some minor adjustments for process, temperature, and voltage variations.
- <sup>4</sup> This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. SD\_D[31:24] is relative to SD\_DQS[3]; SD\_D[23:16] is relative to SD\_DQS[2]
- <sup>5</sup> The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.
- <sup>6</sup> This specification relates to the required hold time of DDR memories. SD\_D[31:24] is relative to SD\_DQS[3]; SD\_D[23:16] is relative to SD\_DQS[2]
- <sup>7</sup> Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- <sup>8</sup> Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.







| Num | um Characteristic                        | 33 MHz <sup>3</sup> |      | 66 MHz <sup>3</sup> |     |      |
|-----|------------------------------------------|---------------------|------|---------------------|-----|------|
| Num |                                          | Min                 | Max  | Min                 | Max | Unit |
| P6  | PCI_REQ[3:0]/PCI_GNT[3:0] — output valid | —                   | 12.0 |                     | 6.0 | ns   |
| P7  | All PCI signals — output hold            | 2.0                 | —    | 1.0                 | —   | ns   |

| Table 14. | . PCI Timi | g Specification | s <sup>1,2</sup> (continued) |
|-----------|------------|-----------------|------------------------------|
|-----------|------------|-----------------|------------------------------|

<sup>1</sup> The PCI bus operates at the CLKIN frequency. All timings are relative to the input clock, CLKIN.

<sup>2</sup> All PCI signals are bused signals except for PCI\_GNT[3:0] and PCI\_REQ[3:0]. These signals are defined as point-to-point signals by the PCI Specification.

<sup>3</sup> The 66-MHz parameters are only guaranteed when the 66-MHz PCI pad slew rates are selected. Likewise, the 33-MHz parameters are only guaranteed when the 33-MHz PCI pad slew rates are selected.



Figure 13. PCI Timing

### 5.9.1 Overshoot and Undershoot

Figure 14 shows the specification limits for overshoot and undershoot for PCI I/O. To guarantee long term reliability, the specification limits shown must be followed. Good transmission line design practices should be observed to guarantee the specification limits.





Figure 14. Overshoot and Undershoot Limits

### 5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB\_CLKIN pin on the MCF5445*x*. The ULPI PHY is the source of the 60MHz clock.

### NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB\_CLKIN pin.

| Num | Characteristic                  | Min | Nominal | Max | Units |
|-----|---------------------------------|-----|---------|-----|-------|
|     | USB_CLKIN operating frequency   |     | 60      |     | MHz   |
|     | USB_CLKIN duty cycle            |     | 50      |     | %     |
| U1  | USB_CLKIN clock period          |     | 16.67   |     | ns    |
| U2  | Input Setup (control and data)  | 5.0 | —       | _   | ns    |
| U3  | Input Hold (control and data)   | 1.0 | —       | _   | ns    |
| U4  | Output Valid (control and data) | _   | —       | 9.5 | ns    |
| U5  | Output Hold (control and data)  | 1.0 | —       | _   |       |

Table 15. ULPI Interface Timing







## 5.11 SSI Timing Specifications

This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SSI\_TCR[TSCKP] = 0, SSI\_RCR[RSCKP] = 0) and a non-inverted frame sync (SSI\_TCR[TFSI] = 0, SSI\_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SSI\_BCLK) and/or the frame sync (SSI\_FS) shown in the figures below.

| Num | Description                                  | Symbol            | Min               | Max | Units             | Notes |
|-----|----------------------------------------------|-------------------|-------------------|-----|-------------------|-------|
| S1  | SSI_MCLK cycle time                          | t <sub>MCLK</sub> | $2 	imes t_{SYS}$ | _   | ns                | 2     |
| S2  | SSI_MCLK pulse width high / low              |                   | 45%               | 55% | t <sub>MCLK</sub> |       |
| S3  | SSI_BCLK cycle time                          | t <sub>BCLK</sub> | $8 	imes t_{SYS}$ |     | ns                | 3     |
| S4  | SSI_BCLK pulse width                         |                   | 45%               | 55% | t <sub>BCLK</sub> |       |
| S5  | SSI_BCLK to SSI_FS output valid              |                   | —                 | 15  | ns                |       |
| S6  | SSI_BCLK to SSI_FS output invalid            |                   | 0                 |     | ns                |       |
| S7  | SSI_BCLK to SSI_TXD valid                    |                   | —                 | 15  | ns                |       |
| S8  | SSI_BCLK to SSI_TXD invalid / high impedence |                   | -2                |     | ns                |       |
| S9  | SSI_RXD / SSI_FS input setup before SSI_BCLK |                   | 10                | _   | ns                |       |
| S10 | SSI_RXD / SSI_FS input hold after SSI_BCLK   |                   | 0                 | _   | ns                |       |

Table 16. SSI Timing — Master Modes<sup>1</sup>

<sup>1</sup> All timings specified with a capactive load of 25pF.

 $^2$  SSI\_MCLK can be generated from SSI\_CLKIN or a divided version of the internal system clock (f<sub>sys</sub>).

<sup>3</sup> SSI\_BCLK can be derived from SSI\_CLKIN or a divided version of the internal system clock (f<sub>svs</sub>).



| Num | Description                                                  | Symbol            | Min               | Max | Units             | Notes |
|-----|--------------------------------------------------------------|-------------------|-------------------|-----|-------------------|-------|
| S11 | SSI_BCLK cycle time                                          | t <sub>BCLK</sub> | $8 	imes t_{SYS}$ | _   | ns                |       |
| S12 | SSI_BCLK pulse width high / low                              |                   | 45%               | 55% | t <sub>BCLK</sub> |       |
| S13 | SSI_FS input setup before SSI_BCLK                           |                   | 10                |     | ns                |       |
| S14 | SSI_FS input hold after SSI_BCLK                             |                   | 2                 | _   | ns                |       |
| S15 | SSI_BCLK to SSI_TXD / SSI_FS output valid                    |                   | —                 | 15  | ns                |       |
| S16 | SSI_BCLK to SSI_TXD / SSI_FS output invalid / high impedence |                   | 0                 | _   | ns                |       |
| S17 | SSI_RXD setup before SSI_BCLK                                |                   | 10                |     | ns                |       |
| S18 | SSI_RXD hold after SSI_BCLK                                  |                   | 2                 | _   | ns                |       |



<sup>1</sup> All timings specified with a capactive load of 25pF.



Figure 16. SSI Timing—Master Modes





Figure 19. MII Receive Signal Timing Diagram

### 5.13.2 Transmit Signal Timing Specifications

Table 21. Transmit Signal Timing

| Num    | Characteristic                                     | MII Mode |     | RMII Mode |     | Unit               |  |
|--------|----------------------------------------------------|----------|-----|-----------|-----|--------------------|--|
| ittain |                                                    | Min      | Мах | Min       | Мах | Onit               |  |
| —      | TXCLK frequency                                    | —        | 25  | _         | 50  | MHz                |  |
| E5     | TXCLK to TXD[n:0], TXEN, TXER invalid <sup>1</sup> | 5        | _   | 5         | _   | ns                 |  |
| E6     | TXCLK to TXD[n:0], TXEN, TXER valid <sup>1</sup>   | —        | 25  | _         | 14  | ns                 |  |
| E7     | TXCLK pulse width high                             | 35%      | 65% | 35%       | 65% | t <sub>TXCLK</sub> |  |
| E8     | TXCLK pulse width low                              | 35%      | 65% | 35%       | 65% | t <sub>TXCLK</sub> |  |

<sup>1</sup> In MII mode, n = 3; In RMII mode, n = 1



Figure 20. MII Transmit Signal Timing Diagram

### 5.13.3 Asynchronous Input Signal Timing Specifications

### Table 22. MII Transmit Signal Timing

| Num | Characteristic               | Min | Max | Unit         |
|-----|------------------------------|-----|-----|--------------|
| E9  | CRS, COL minimum pulse width | 1.5 |     | TXCLK period |





Figure 21. MII Async Inputs Timing Diagram

### 5.13.4 MII Serial Management Timing Specifications

### Table 23. MII Serial Management Channel Signal Timing

| Num | Characteristic             | Symbol           | Min | Мах | Unit               |
|-----|----------------------------|------------------|-----|-----|--------------------|
| E10 | MDC cycle time             | t <sub>MDC</sub> | 400 | _   | ns                 |
| E11 | MDC pulse width            |                  | 40  | 60  | % t <sub>MDC</sub> |
| E12 | MDC to MDIO output valid   |                  | _   | 375 | ns                 |
| E13 | MDC to MDIO output invalid |                  | 25  | _   | ns                 |
| E14 | MDIO input to MDC setup    |                  | 10  |     | ns                 |
| E15 | MDIO input to MDC hold     |                  | 0   | _   | ns                 |



Figure 22. MII Serial Management Channel Timing Diagram

## 5.14 32-Bit Timer Module Timing Specifications

Table 24 lists timer module AC timings.

| Table 24. Timer Module AC Timing Specification | <b>Table 24.</b> ] | Timer Mod | dule AC T | Timing S | pecification |
|------------------------------------------------|--------------------|-----------|-----------|----------|--------------|
|------------------------------------------------|--------------------|-----------|-----------|----------|--------------|

| Name | Characteristic                  | Min | Мах | Unit               |
|------|---------------------------------|-----|-----|--------------------|
| T1   | DTnIN cycle time ( $n = 0.3$ )  | 3   | —   | t <sub>sys/2</sub> |
| T2   | DTnIN pulse width ( $n = 0.3$ ) | 1   | —   | t <sub>sys/2</sub> |



## 5.19 JTAG and Boundary Scan Timing

Table 29. JTAG and Boundary Scan Timing

| Num | Characteristics <sup>1</sup>                       |    | Max | Unit |
|-----|----------------------------------------------------|----|-----|------|
| J1  | TCLK Frequency of Operation                        | DC | 20  | MHz  |
| J2  | TCLK Cycle Period                                  | 50 | _   | ns   |
| J3  | TCLK Clock Pulse Width                             | 20 | 30  | ns   |
| J4  | TCLK Rise and Fall Times                           |    | 3   | ns   |
| J5  | Boundary Scan Input Data Setup Time to TCLK Rise   | 5  | _   | ns   |
| J6  | Boundary Scan Input Data Hold Time after TCLK Rise | 20 | —   | ns   |
| J7  | TCLK Low to Boundary Scan Output Data Valid        | —  | 33  | ns   |
| J8  | TCLK Low to Boundary Scan Output High Z            | —  | 33  | ns   |
| J9  | TMS, TDI Input Data Setup Time to TCLK Rise        | 4  | —   | ns   |
| J10 | TMS, TDI Input Data Hold Time after TCLK Rise      | 10 | —   | ns   |
| J11 | TCLK Low to TDO Data Valid                         |    | 11  | ns   |
| J12 | TCLK Low to TDO High Z                             |    | 11  | ns   |
| J13 | TRST Assert Time                                   | 50 | —   | ns   |
| J14 | TRST Setup Time (Negation) to TCLK High            | 10 | —   | ns   |

<sup>1</sup> JTAG\_EN is expected to be a static signal. Hence, specific timing is not associated with it.



Figure 27. Test Clock Input Timing



## 6 **Power Consumption**

All power consumption data is lab data measured on an M54455EVB running the Freescale Linux BSP.

| Core<br>Freq. |                   | ldle  | MP3<br>Playback | TFTP<br>Download | USB HS<br>File Copy | Units |
|---------------|-------------------|-------|-----------------|------------------|---------------------|-------|
| 266 MHz       | IV <sub>DD</sub>  | 215.6 | 288.8           | 274.4            | 263.7               |       |
|               | EV <sub>DD</sub>  | 27.6  | 33.6            | 32.6             | 32.4                | mA    |
|               | SDV <sub>DD</sub> | 142.9 | 158.2           | 161.1            | 158.0               |       |
|               | Total Power       | 672   | 829             | 809              | 787                 | mW    |
| 200 MHz       | IV <sub>DD</sub>  | 163.8 | 228.0           | 213.8            | 207.9               |       |
|               | EV <sub>DD</sub>  | 29.9  | 34.7            | 34.3             | 33.8                | mA    |
|               | SDV <sub>DD</sub> | 142.2 | 158.5           | 160.0            | 153.4               |       |
|               | Total Power       | 601   | 742             | 722              | 699                 | mW    |

### Table 31. MCF4455 Application Power Consumption<sup>1</sup>

<sup>1</sup> All voltage rails at nominal values:  $IV_{DD}$  = 1.5 V,  $EV_{DD}$  = 3.3 V, and  $SDV_{DD}$  = 1.8 V.



Figure 33. Power Consumption in Various Applications



#### **Power Consumption**

All current consumption data is lab data measured on a single device using an evaluation board. Table 32 shows the typical power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.

| Mada      | Voltage Supply        | System Frequency       |                        |                        |                        |                         |  |
|-----------|-----------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|--|
| Mode      |                       | 166 (Typ) <sup>3</sup> | 200 (Typ) <sup>3</sup> | 233 (Typ) <sup>3</sup> | 266 (Typ) <sup>3</sup> | 266 (Peak) <sup>4</sup> |  |
| RUN       | IV <sub>DD</sub> (mA) | 93.4                   | 110.9                  | 128.2                  | 145.4                  | 202.1                   |  |
| KON       | Power (mW)            | 140.1                  | 166.3                  | 192.4                  | 218.1                  | 303.2                   |  |
|           | IV <sub>DD</sub> (mA) | 28.0                   | 32.7                   | 37.5                   | 41.1                   | 100.2                   |  |
| WAII/DOZE | Power (mW)            | 42.0                   | 49.1                   | 56.2                   | 61.7                   | 150.3                   |  |
| STOP 0    | IV <sub>DD</sub> (mA) | 17.1                   | 19.8                   | 22.5                   | 25.2                   | 25.2                    |  |
| 0101 0    | Power (mW)            | 25.7                   | 29.7                   | 33.7                   | 37.8                   | 37.8                    |  |
| STOP 1    | IV <sub>DD</sub> (mA) | 17.9                   | 19.8                   | 22.4                   | 25.1                   | 25.1                    |  |
| 01011     | Power (mW)            | 26.8                   | 29.6                   | 33.6                   | 37.6                   | 37.6                    |  |
| STOP 2    | IV <sub>DD</sub> (mA) | 5.7                    | 5.7                    | 5.7                    | 5.7                    | 5.7                     |  |
| 01012     | Power (mW)            | 8.6                    | 8.6                    | 8.6                    | 8.6                    | 8.6                     |  |
| STOP 3    | IV <sub>DD</sub> (mA) | 1.8                    | 1.8                    | 1.8                    | 1.8                    | 1.8                     |  |
| 0101 3    | Power (mW)            | 2.6                    | 2.6                    | 2.6                    | 2.6                    | 2.6                     |  |

Table 32. Current Consumption in Low-Power Modes<sup>1,2</sup>

<sup>1</sup> All values are measured on an M54455EVB with 1.5V IV<sub>DD</sub> power supply. Tests performed at room temperature.

<sup>2</sup> Refer to the Power Management chapter in the *MCF54455 Reference Manual* for more information on low-power modes.

<sup>3</sup> All peripheral clocks are off except UART0, INTC0, IACK, edge port, reset controller, CCM, PLL, and FlexBus prior to entering low-power mode.

<sup>4</sup> All peripheral clocks on prior to entering low-power mode.



#### How to Reach Us:

Home Page: www.freescale.com

#### Web Support:

http://www.freescale.com/support

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF54455 Rev. 8 02/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale<sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2012. All rights reserved.

