

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	Coldfire V4
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	I ² C, SPI, SSI, UART/USART, USB OTG
Peripherals	DMA, WDT
Number of I/O	132
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf54450cvm180

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF5445x Family Comparison

1 MCF5445*x* Family Comparison

The following table compares the various device derivatives available within the MCF5445*x* family.

Table 1. MCF5445*x* Family Configurations

Module	MCF54450	MCF54451	MCF54452	MCF54453	MCF54454	MCF54455
ColdFire Version 4 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•	•	•
Core (System) Clock	up to 2	40 MHz		up to 2	66 MHz	
Peripheral Bus Clock (Core clock ÷ 2)	up to 1	up to 120 MHz up to 133 MHz				
External Bus Clock (Core clock ÷ 4)	up to 6	60 MHz		up to 6	6 MHz	
Performance (Dhrystone/2.1 MIPS)	up to	370		up to	o 410	
Independent Data/Instruction Cache			16 Kbyt	es each		
Static RAM (SRAM)			32 K	bytes		
PCI Controller		—	•	•	•	•
Cryptography Acceleration Unit (CAU)		•	—	•		•
ATA Controller	_	—	—	—	•	•
DDR SDRAM Controller	•	•	•	•	•	•
FlexBus External Interface	•	•	•	•	•	•
USB 2.0 On-the-Go	•	•	•	•	•	•
UTMI+ Low Pin Interface (ULPI)	•	•	•	•	•	•
Synchronous Serial Interface (SSI)	•	•	•	•	•	•
Fast Ethernet Controller (FEC)	1	1	2	2	2	2
UARTs	3	3	3	3	3	3
I ² C	•	•	•	•	•	•
DSPI	•	•	•	•	•	•
Real Time Clock	•	•	•	•	•	•
32-bit DMA Timers	4	4	4	4	4	4
Watchdog Timer (WDT)	•	•	•	•	•	•
Periodic Interrupt Timers (PIT)	4	4	4	4	4	4
Edge Port Module (EPORT)	•	•	•	•	•	•
Interrupt Controllers (INTC)	2	2	2	2	2	2
16-channel Direct Memory Access (DMA)	•	•	•	•	•	•
General Purpose I/O (GPIO)	•	•	•	•	•	•
JTAG - IEEE [®] 1149.1 Test Access Port	•	•	•	•	•	•
Package	256 M/	APBGA		360 TE	EPBGA	1

2 Ordering Information

Table 2. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF54450CVM180	MCF54450 Microprocessor		180 MHz	-40° to +85 $^{\circ}$ C
MCF54450VM240		256 MAPBGA	240 MHz	0° to +70° C
MCF54451CVM180	MCF54451 Microprocessor		180 MHz	-40° to +85 $^{\circ}$ C
MCF54451VM240	MCF34431 Microprocessor		240 MHz	0° to +70° C
MCF54452CVR200	MCF54452 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54452YVR200			200 MHz	–40° to +105° C
MCF54452VR266			266 MHz	0° to +70° C
MCF54453CVR200	MCF54453 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54453VR266	WCI 34433 WICIOPIOCE330	360 TEPBGA	266 MHz	0° to +70° C
MCF54454CVR200	MCF54454 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54454VR266	MCF54454 MICroprocessor		266 MHz	0° to +70° C
MCF54455CVR200	MCF54455 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54455VR266			266 MHz	0° to +70° C

3 Hardware Design Considerations

3.1 Analog Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for the analog V_{DD} pins (VDD_A_PLL, VDD_RTC). The filter shown in Figure 2 should be connected between the board IV_{DD} and the analog pins. The resistor and capacitors should be placed as close to the dedicated analog V_{DD} pin as possible. The 10- Ω resistor in the given filter is required. Do not implement the filter circuit using only capacitors. The analog power pins draw very little current. Concerns regarding voltage loss across the 10-ohm resistor are not valid.

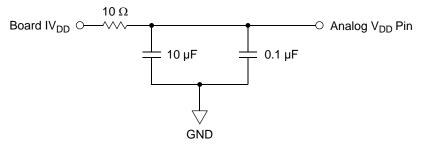


Figure 2. System Analog V_{DD} Power Filter

3.3.1 Power-Up Sequence

If EV_{DD}/SDV_{DD} are powered up with the IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must power up. The rise times on the power supplies should be slower than 50 V/millisecond to avoid turning on the internal ESD protection clamp diodes.

3.3.2 Power-Down Sequence

If IV_{DD}/PV_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PV_{DD} power down before EV_{DD} or SDV_{DD} must power down. There are no requirements for the fall times of the power supplies.

4 Pin Assignments and Reset States

4.1 Signal Multiplexing

The following table lists all the MCF5445*x* pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 4, "Pin Assignments and Reset States," for package diagrams. For a more detailed discussion of the MCF5445*x* signals, consult the *MCF54455 Reference Manual* (MCF54455RM).

NOTE

In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., FB_AD23), while designations for multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO default to their GPIO functionality. See Table 3 for a list of the exceptions.

Pin	256 MAPBGA 360 TEPBGA							
FB_AD[31:0]		FB_AD[31:0] except when serial boot selects 0-bit boot port size.						
FB_BE/BWE[3:0]	FB_BE/BWE[3:0]							
FB_CS[3:1]	FB_CS[3:1]							
FB_OE	FB_	OE						
FB_R/W	FB_	R/W						
FB_TA	FB_TA							
FB_TS	FB_TS							

Table 3. Special-Case Default Signal Functionality

Pin Assignments and Reset States

Pin	256 MAPBGA	360 TEPBGA
PCI_GNT[3:0]	GPIO	PCI_GNT[3:0]
PCI_REQ[3:0]	GPIO	PCI_REQ[3:0]
IRQ1	GPIO	PCI_INTA and configured as an agent.
ATA_RESET	GPIO	ATA reset

						c		
Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
			Reset					
RESET	—	_	_	U	I	EVDD	L4	Y18
RSTOUT	—	_	—	—	0	EVDD	M15	B17
			Clock					
EXTAL/PCI_CLK	—	_		—	I	EVDD	M16	A16
XTAL	—	_	—	U ³	0	EVDD	L16	A17
		Мс	ode Selection					
BOOTMOD[1:0]	—	—		—	I	EVDD	M5, M7	AB17, AB21
			FlexBus		•			
FB_AD[31:24]	PFBADH[7:0] ⁴	FB_D[31:24]		_	I/O	EVDD	A14, A13, D12, C12, B12, A12, D11, C11	J2, K4, J1, K1–3, L1, L4
FB_AD[23:16]	PFBADMH[7:0] ⁴	FB_D[23:16]		-	I/O	EVDD	B11, A11, D10, C10, B10, A10, D9, C9	L2, L3, M1–4, N1–2
FB_AD[15:8]	PFBADML[7:0] ⁴	FB_D[15:8]	—	_	I/O	EVDD	B9, A9, D8, C8, B8, A8, D7, C7	P1–2, R1–3, P4, T1–2
FB_AD[7:0]	PFBADL[7:0] ⁴	FB_D[7:0]	—	-	I/O	EVDD	B7, A7, D6, C6, B6, A6, D5, C5	T3–4, U1–3, V1–2, W1
FB_BE/BWE[3:2]	PBE[3:2]	FB_TSIZ[1:0]	_	—	0	EVDD	B5, A5	Y1, W2
FB_BE/BWE[1:0]	PBE[1:0]	_	—	—	0	EVDD	B4, A4	W3, Y2
FB_CLK	—	—	—	—	0	EVDD	B13	J3
FB_CS[3:1]	PCS[3:1]			_	0	EVDD	C2, D4, C3	W5, AA4, AB3
FB_CS0					0	EVDD	C4	Y4
FB_OE	PFBCTL3			—	0	EVDD	A2	AA1
FB_R/W	PFBCTL2				0	EVDD	B2	AA3
FB_TA	PFBCTL1			U	Ι	EVDD	B1	AB2

4.2 Pinout—256 MAPBGA

The pinout for the MCF54450 and MCF54451 packages are shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	_
A		FB_OE	FB_TS	FB_BE/ BWE0	FB_BE/ BWE2	FB_AD 2	FB_AD 6	FB_AD 10	FB_AD 14	FB_AD 18	FB_AD 22	FB_AD 26	FB_AD 30	FB_AD 31	TOIN		A
в	FB_TA	FB_R/W	USB_ VBUS_ OC	F <u>B_BE</u> / BWE1	FB_BE/ BWE3	FB_AD 3	FB_AD 7	FB_AD 11	FB_AD 15	FB_AD 19	FB_AD 23	FB_AD 27	FB_CLK	T1IN	FB_A 4	FB_A 6	в
С	PST DDATA2	FB_CS3	FB_CS1	FB_CS0	FB_AD 0	FB_AD 4	FB_AD 8	FB_AD 12	FB_AD 16	FB_AD 20	FB_AD 24	FB_AD 28	T3IN	FB_A 3	FB_A 5	FB_A 1	с
D	PST DDATA6	PST DDATA3	PST DDATA0	FB_CS2	FB_AD 1	FB_AD 5	FB_AD 9	FB_AD 13	FB_AD 17	FB_AD 21	FB_AD 25	FB_AD 29	T2IN	FB_A 0	FB_A 2	FB_A 7	D
E	FEC0_ COL	PST DDATA7	PST DDATA4	PST DDATA1	USB_ VBUS_ EN	IVDD	IVDD	IVDD	IVDD	IVDD	IVDD	IVDD	FB_A 8	FB_A 9	FB_A 10	USB_ DP	Е
F	FEC0_ CRS	FEC0_ MDIO	FEC0_ MDC	PST DDATA5	IVDD							IVDD	FB_A 11	FB_A 12	IRQ_1	USB_ DM	F
G	FEC0_ RXCLK	FEC0_ RXDV	FEC0_ RXD3	FEC0_ RXD2	EVDD							EVDD	FB_A 13	FB_A 14	FB_A 15	NC	G
н	FEC0_ RXD1	FEC0_ RXD0	FEC0_ RXER	FEC0_ TXCLK	EVDD							EVDD	FB_A 18	FB_A 17	FB_A 16	XTAL 32K	н
J	FEC0_ TXD3	FEC0_ TXD2	FEC0_ TXD1	FEC0_ TXD0	EVDD							EVDD	FB_A 19	FB_A 20	FB_A 21	EXTAL 32K	J
к	FEC0_ TXEN	FEC0_ TXER	I2C_ SCL	I2C_ SDA	EVDD							EVDD	FB_A 22	FB_A 23	VDD_A _PLL	PLL TEST	к
L	IRQ_7	IRQ_4	IRQ_3	RESET	EVDD	EVDD						EVDD	DSPI_ PCS2	VDD_ OSC	VSS_ OSC	XTAL	L
М	U0TXD	UORTS	UOCTS	SD_A7	BOOT MOD1	TEST	BOOT MOD0	SD_ VREF			JTAG_ EN	VDD_ RTC	TRST	DACK1	RST OUT	EXTAL	м
N	U0RXD	SD_A11	SD_A6	SD_A0	SD_ CKE	SD_D31	SD_D29	SD_D24	SD_D23	SD_D19	SD_ DQS2	SD_DM2	DSPI_ SOUT	DSPI_ PCS5	DACK0	DREQ0	N
Ρ	SD_A12	SD_A10	SD_A5	SD_BA1	SD_ RAS	SD_ CS1	SD_D28	SD_D25	SD_ DM3	SD_D20	SD_D16	SSI_FS	TCLK	DSPI_ PCS1	DSPI_ SIN	DREQ1	Р
R	SD_A13	SD_A9	SD_A4	SD_A1	SD_WE	SD_ CS0	SD_D27	SD_D26	SD_ DQS3	SD_D21	SD_D17	SSI_TXD	SSI_ BCLK	TMS	DSPI_ SCK	DSPI_ PCS0	R
т		SD_A8	SD_A3	SD_A2	SD_BA0	SD_ CAS	SD_D30	SD_ CLK	SD_ CLK	SD_D22	SD_D18	SSI_RXD	SSI_ MCLK	TDO	TDI		т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 5. MCF54450 and MCF54451 Pinout (256 MAPBGA)

Pin Assignments and Reset States

4.3 Pinout—360 TEPBGA

The pinout for the MCF54452, MCF54453, MCF54454, and MCF54455 packages are shown below.

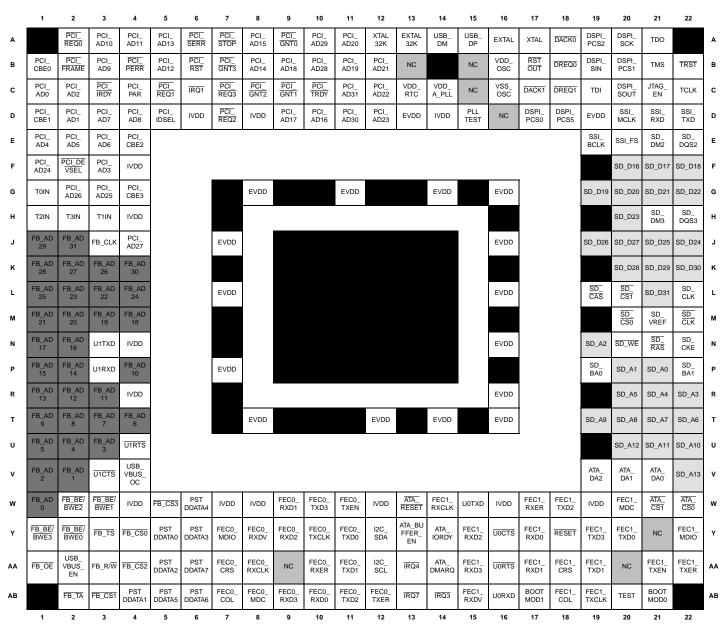
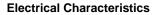



Figure 6. MCF54452, MCF54453, MCF54454, and MCF54455 Pinout (360 TEPBGA)

This document contains electrical specification tables and reference timing diagrams for the MCF54455 microprocessor. This section contains detailed information on DC/AC electrical characteristics and AC timing specifications.

The electrical specifications are preliminary and from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this MCU document supersede any values found in the module specifications.

5.1 Absolute Maximum Ratings

Rating	Symbol	Pin Name	Value	Units
External I/O pad supply voltage	EV _{DD}	EVDD	-0.3 to +4.0	V
Internal oscillator supply voltage	OSCV _{DD}	VDD_OSC	-0.3 to +4.0	V
Real-time clock supply voltage	RTCV _{DD}	VDD_RTC	-0.5 to +2.0	V
Internal logic supply voltage	IV _{DD}	IVDD	-0.5 to +2.0	V
SDRAM I/O pad supply voltage	SDV _{DD}	SD_VDD	-0.3 to +4.0	V
PLL supply voltage	PV _{DD}	VDD_A_PLL	-0.5 to +2.0	V
Digital input voltage ³	V _{IN}	_	-0.3 to +3.6	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{3, 4, 5}	I _{DD}	_	25	mA
Operating temperature range (packaged)	T _A (T _L - T _H)	_	-40 to +85	°C
Storage temperature range	T _{stg}	_	-55 to +150	°C

Table 5. Absolute Maximum Ratings^{1, 2}

Functional operating conditions are given in Table 8. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or EV_{DD}).

³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.

⁴ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD}.

⁵ Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > EV_{DD}$) is greater than I_{DD} , the injection current may flow out of EV_{DD} and could result in external power supply going out of regulation. Ensure the external EV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MPU is not consuming power (ex; no clock). The power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions.

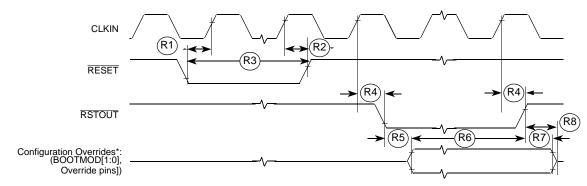
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

5.3 ESD Protection

Table 7. ESD	Protection	Characteristics ^{1, 2}
--------------	------------	---------------------------------

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.


² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

5.4 DC Electrical Specifications

Characteristic Symbol Min Max Units Internal logic supply voltage¹ IV_{DD} 1.35 1.65 V PLL analog operation voltage range PVnn V 1.35 1.65 External I/O pad supply voltage V **EV**_{DD} 3.0 3.6 V Internal oscillator supply voltage OSCV_{DD} 3.0 3.6 Real-time clock supply voltage **RTCV**_{DD} V 1.35 1.65 SDRAM I/O pad supply voltage - DDR mode V 2.25 2.75 SDV_{DD} SDRAM I/O pad supply voltage - DDR2 mode SDVDD 1.7 1.9 V SDRAM I/O pad supply voltage - Mobile DDR mode 1.7 1.9 V SDV_{DD} V **SDV**_{REF} 0.51 x SDV_{DD} SDRAM input reference voltage 0.49 x SDV_{DD} 0.7 x EV_{DD} V Input High Voltage VIH 3.65 $V_{SS} - 0.3$ V Input Low Voltage 0.35 x EV_{DD} VII Input Hysteresis V_{HYS} 0.06 x EV_{DD} mV Input Leakage Current² -2.5 2.5 μΑ l_{in} $V_{in} = V_{DD}$ or V_{SS} , Input-only pins Input Leakage Current³ l_{in} -5 5 μΑ $V_{in} = V_{DD}$ or V_{SS} , Input-only pins High Impedance (Off-State) Leakage Current⁴ -10.0 10.0 μΑ loz V_{in} = V_{DD} or V_{SS}, All input/output and output pins Output High Voltage (All input/output and all output pins) VOH $0.85 \times EV_{DD}$ V $I_{OH} = -5.0 \text{ mA}$ Output Low Voltage (All input/output and all output pins) $0.15 \times EV_{DD}$ V VOL $I_{OI} = 5.0 mA$

Table 8. DC Electrical Specifications

5.7 FlexBus Timing Specifications

A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used.

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Characteristic	Min	Мах	Unit	Notes
	Frequency of Operation	25	66.66	MHz	
FB1	Clock Period	15	40	ns	
FB2	Output Valid	—	7.0	ns	1
FB3	Output Hold	1.0	—	ns	1
FB4	Input Setup	3.0		ns	2
FB5	Input Hold	0		ns	2

Table 12. FlexBus AC Timing Specifications

¹ Specification is valid for all FB_AD[31:0], FB_BS[3:0], FB_CS[3:0], FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], and FB_TS.

² Specification is valid for all FB_AD[31:0] and FB_TA.

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and PCI controller. At the end of the read and write bus cycles the address signals are indeterminate.

5.8 SDRAM AC Timing Characteristics

The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing numbers are relative to the four DQS byte lanes.

Num	Characteristic	Symbol	Min	Мах	Unit	Notes
	Frequency of Operation		60	133.33	MHz	1
DD1	Clock Period	t _{SDCK}	7.5	16.67	ns	
DD2	Pulse Width High	t _{SDCKH}	0.45	0.55	t _{SDCK}	2
DD3	Pulse Width Low	t _{SDCKL}	0.45	0.55	t _{SDCK}	3
DD4	Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] — Output Valid	t _{CMV}	_	(0.5 x t _{SDCK}) + 1.0ns	ns	3
DD5	Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> , <u>SD_CS</u> [1:0] — Output Hold	t _{СМН}	2.0	_	ns	
DD6	Write Command to first DQS Latching Transition	t _{DQSS}	(1.0 x t _{SDCK}) - 0.6ns	(1.0 x t _{SDCK}) + 0.6ns	ns	
DD7	Data and Data Mask Output Setup (DQ>DQS) Relative to DQS (DDR Write Mode)	t _{QS}	1.0	_	ns	4 5
DD8	Data and Data Mask Output Hold (DQS>DQ) Relative to DQS (DDR Write Mode)	t _{QH}	1.0		ns	6
DD9	Input Data Skew Relative to DQS (Input Setup)	t _{IS}		1.0	ns	7
DD10	Input Data Hold Relative to DQS.	t _{IH}	(0.25 x t _{SDCK}) + 0.5ns	_	ns	8

Table 13. SDRAM Timing Specifications

¹ The SDRAM interface operates at the same frequency as the internal system bus.

² Pulse width high plus pulse width low cannot exceed min and max clock period.

- ³ Command output valid should be 1/2 the memory bus clock (t_{SDCK}) plus some minor adjustments for process, temperature, and voltage variations.
- ⁴ This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁵ The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.
- ⁶ This specification relates to the required hold time of DDR memories. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁷ Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- ⁸ Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

Num	Characteristic	33 N	lHz ³	66 N	1Hz ³	
		Min Max Min Max — 12.0 — 6.0	Unit			
P6	PCI_REQ[3:0]/PCI_GNT[3:0] — output valid	_	12.0	_	6.0	ns
P7	All PCI signals — output hold	2.0	_	1.0	_	ns

Table 14. PC	I Timing	Specifications ^{1,2}	(continued)
--------------	----------	-------------------------------	-------------

¹ The PCI bus operates at the CLKIN frequency. All timings are relative to the input clock, CLKIN.

² All PCI signals are bused signals except for PCI_GNT[3:0] and PCI_REQ[3:0]. These signals are defined as point-to-point signals by the PCI Specification.

³ The 66-MHz parameters are only guaranteed when the 66-MHz PCI pad slew rates are selected. Likewise, the 33-MHz parameters are only guaranteed when the 33-MHz PCI pad slew rates are selected.

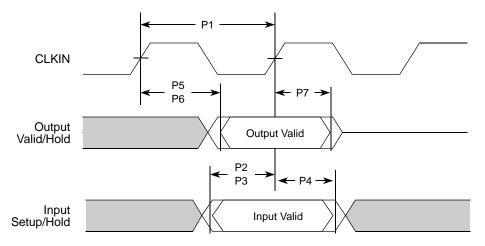


Figure 13. PCI Timing

5.9.1 Overshoot and Undershoot

Figure 14 shows the specification limits for overshoot and undershoot for PCI I/O. To guarantee long term reliability, the specification limits shown must be followed. Good transmission line design practices should be observed to guarantee the specification limits.

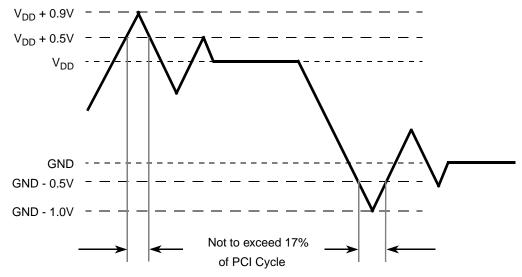


Figure 14. Overshoot and Undershoot Limits

5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5445*x*. The ULPI PHY is the source of the 60MHz clock.

NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

Num	Characteristic	Min	Nominal	Max	Units
	USB_CLKIN operating frequency	_	60	_	MHz
	USB_CLKIN duty cycle	_	50		%
U1	USB_CLKIN clock period	_	16.67	_	ns
U2	Input Setup (control and data)	5.0	_	_	ns
U3	Input Hold (control and data)	1.0	—		ns
U4	Output Valid (control and data)	_	_	9.5	ns
U5	Output Hold (control and data)	1.0	—	-	

Table 15. ULPI Interface Timing

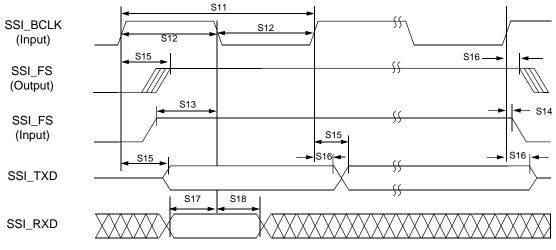


Figure 17. SSI Timing—Slave Modes

5.12 I²C Timing Specifications

Table 18 lists specifications for the I^2C input timing parameters shown in Figure 18.

Num	Characteristic	Min	Max	Units
11	Start condition hold time	2	—	t _{SYS}
12	Clock low period	8	—	t _{SYS}
13	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	1	ms
14	Data hold time	0	_	ns
15	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$)		1	ms
16	Clock high time	4	—	t _{SYS}
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2	_	t _{SYS}
19	Stop condition setup time	2	_	t _{SYS}

Table 19 lists specifications for the I^2C output timing parameters shown in Figure 18.

Table 19. I ² C Output	Timing Specifications	between SCL and SDA
-----------------------------------	------------------------------	---------------------

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	6		t _{SYS}
12 ¹	Clock low period	10	_	t _{SYS}
13 ²	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	_	μs
I4 ¹	Data hold time	7		t _{SYS}
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)		3	ns

1

Num	Characteristic	Min	Max	Units
16 ¹	Clock high time	10	_	t _{SYS}
17 ¹	Data setup time	2	_	t _{SYS}
18 ¹	Start condition setup time (for repeated start condition only)	20	_	t _{SYS}
19 ¹	Stop condition setup time	10	_	t _{SYS}

Table 19. I²C Output Timing Specifications between SCL and SDA (continued)

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 19. The I^2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR. However, the numbers given in Table 19 are minimum values.

² Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

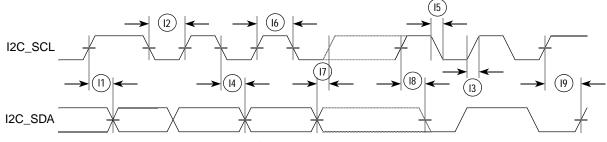


Figure 18. I²C Input/Output Timings

5.13 Fast Ethernet Timing Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

5.13.1 Receive Signal Timing Specifications

The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.

Num	Characteristic		MII Mode		Mode	Unit	
Nulli	onardotensito	Min	Мах	Min	Мах	Unit	
_	RXCLK frequency	_	25	_	50	MHz	
E1	RXD[n:0], RXDV, RXER to RXCLK setup ¹	5	_	4	_	ns	
E2	RXCLK to RXD[n:0], RXDV, RXER hold ¹	5	_	2	_	ns	
E3	RXCLK pulse width high	35%	65%	35%	65%	RXCLK period	
E4	RXCLK pulse width low	35%	65%	35%	65%	RXCLK period	

 Table 20. Receive Signal Timing

In MII mode, n = 3; In RMII mode, n = 1

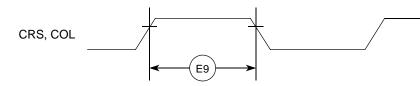


Figure 21. MII Async Inputs Timing Diagram

5.13.4 MII Serial Management Timing Specifications

Table 23. MII Serial Management Channel Signal Timing

Num	Characteristic	Symbol	Min	Мах	Unit
E10	MDC cycle time	t _{MDC}	400	_	ns
E11	MDC pulse width		40	60	% t _{MDC}
E12	MDC to MDIO output valid		_	375	ns
E13	MDC to MDIO output invalid		25	_	ns
E14	MDIO input to MDC setup		10	_	ns
E15	MDIO input to MDC hold		0	_	ns

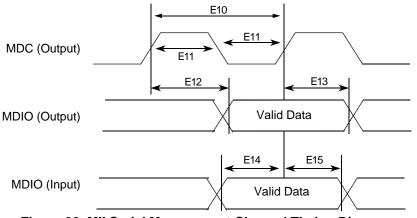


Figure 22. MII Serial Management Channel Timing Diagram

5.14 32-Bit Timer Module Timing Specifications

Table 24 lists timer module AC timings.

Table 24	. Timer	Module	AC	Timing	S	pecifications
----------	---------	--------	----	--------	---	---------------

Name	Characteristic		Мах	Unit
T1	DTnIN cycle time ($n = 0.3$)		—	t _{sys/2}
T2	DTnIN pulse width ($n = 0.3$)	1	—	t _{sys/2}

DS14

Electrical Characteristics

ns

10

Table 26. DSPI Module AC Timing Specifications ¹ (continued)							
Name	Characteristic	Symbol	Min	Max	Unit	Notes	
DS10	DSPI_SCK to DSPI_SOUT invalid	—	0	_	ns		
DS11	DSPI_SIN to DSPI_SCK input setup	—	2	—	ns		
DS12	DSPI_SCK to DSPI_SIN input hold	_	7	—	ns		
DS13	DSPI_SS active to DSPI_SOUT driven	_		10	ns		

¹ Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTAR*n*[CPHA] = 0. Data is sampled on the DSPI_SIN pin on the odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges.

² When in master mode, the baud rate is programmable in DCTAR*n*[DBR], DCTAR*n*[PBR], and DCTAR*n*[BR].

³ This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTAR*n*[DBR], DCTAR*n*[CPHA], and DCTAR*n*[PBR].

⁴ The DSPI_PCS*n* to DSPI_SCK delay is programmable in DCTAR*n*[PCSSCK] and DCTAR*n*[CSSCK].

⁵ The DSPI_SCK to DSPI_PCS*n* delay is programmable in DCTAR*n*[PASC] and DCTAR*n*[ASC].

DSPI_SS inactive to DSPI_SOUT not driven

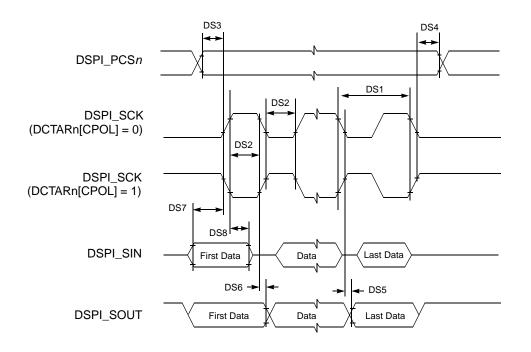


Figure 23. DSPI Classic SPI Timing—Master Mode

5.19 JTAG and Boundary Scan Timing

Table 29. JTAG and Boundary Scan Timing

Num	Characteristics ¹		Max	Unit
J1	TCLK Frequency of Operation	DC	20	MHz
J2	TCLK Cycle Period	50	_	ns
J3	TCLK Clock Pulse Width	20	30	ns
J4	TCLK Rise and Fall Times	_	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise		—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise		—	ns
J7	TCLK Low to Boundary Scan Output Data Valid		33	ns
J8	TCLK Low to Boundary Scan Output High Z		33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise		—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise		—	ns
J11	TCLK Low to TDO Data Valid		11	ns
J12	TCLK Low to TDO High Z		11	ns
J13	TRST Assert Time		_	ns
J14	TRST Setup Time (Negation) to TCLK High		—	ns

¹ JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

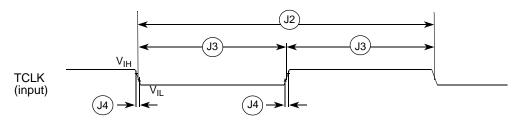


Figure 27. Test Clock Input Timing

6 Power Consumption

All power consumption data is lab data measured on an M54455EVB running the Freescale Linux BSP.

Core Freq.		ldle	MP3 Playback	TFTP Download	USB HS File Copy	Units	
	IV _{DD}	215.6	288.8	274.4	263.7		
000 1411	EV _{DD}	27.6	33.6	32.6	32.4	mA	
266 MHz	SDV _{DD}	142.9	158.2	161.1	158.0		
	Total Power	672	829	809	787	mW	
	IV _{DD}	163.8	228.0	213.8	207.9		
200 MHz	EV _{DD}	29.9	34.7	34.3	33.8	mA	
	SDV _{DD}	142.2	158.5	160.0	153.4		
	Total Power	601	742	722	699	mW	

Table 31. MCF4455 Application Power Consumption¹

¹ All voltage rails at nominal values: IV_{DD} = 1.5 V, EV_{DD} = 3.3 V, and SDV_{DD} = 1.8 V.

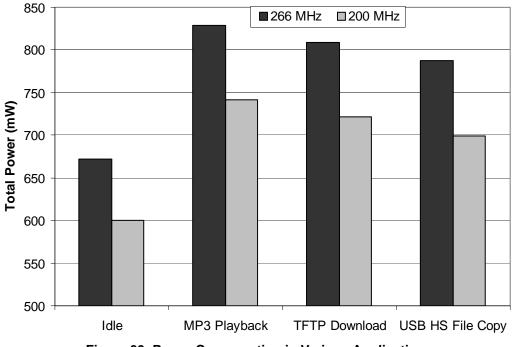
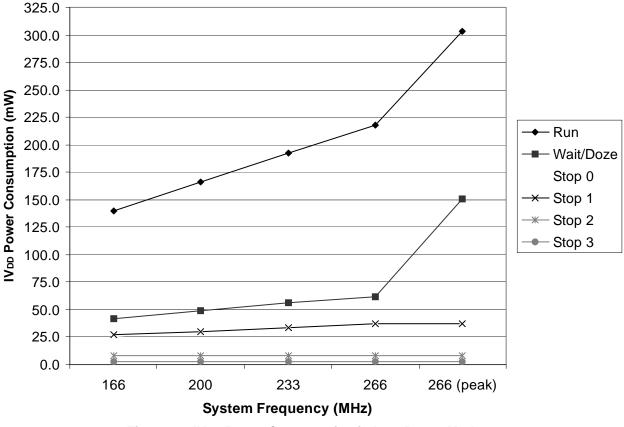



Figure 33. Power Consumption in Various Applications

Package Information

7 Package Information

The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire. Table 33 lists the case outline numbers per device. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

Device	Package Type	Case Outline Numbers		
MCF54450	256 MAPBGA	98ARH98219A		
MCF54451	200 MIAI DOA	304111302134		
MCF54452				
MCF54453	360 TEPBGA	98ARE10605D		
MCF54454	JUVIEFDGA	30ARE 10003D		
MCF54455				

8 **Product Documentation**

Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.

Revision History

9 Revision History

Table 34 summarizes revisions to this document.

Table 34. Revision History

Rev. No.	Date	Summary of Changes
0	Sept 17, 2007	Initial public release.
1	Feb 15, 2008	Corrected VSS pin locations in MCF5445 <i>x</i> signal information and muxing table for the 360 TEPBGA package: changed "M9, M16, M17" to "M9–M14, M16" Updated FlexBus read and write timing diagrams and added two notes before them. Change FB_A[23:0] to FB_A[31:0] in FlexBus read and write timing diagrams. Added power consumption section.
2	May 1, 2008	 In Family Configurations table, added PCI as feature on 256-pin devices. On these devices the PCI_AD bus is limited to 24-bits. In Absolute Maximum Ratings table, changed RTCV_{DD} specification from "-0.3 to +4.0" to "-0.5 to +2.0". In DC Electrical Specifications table: Changed RTCV_{DD} specification from 3.0–3.6 to 1.35–1.65. Changed High Impedance (Off-State) Leakage Current (I_{OZ}) specification from ±1 to ±10µA, and added footnote to this spec: "Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 µA min/max."
3	Dec 1, 2008	 Changed "360PBGA" heading to "360 TEPBGA" in Table 6. Changed the following specs in Table 13: Minimum frequency of operation from — to 60MHz. Maximum clock period from — to 16.67 ns.
4	Apr 12, 2009	 Rescinded previous errata, the 256-pin devices do not contain the PCI bus controller: In Table 4, in PCI_AD<i>n</i> signal section, added a separate row for each package, with PCI_AD<i>n</i> signals shown as — for 256-pin devices. In Figure 5, changed the PCI_AD<i>n</i> pins to their alternative function, FB_A<i>n</i>.
5	Apr 27, 2009	In Table 2 changed MCF54450VM180 to MCF54450CVM180 and changed it's temperature entry from "0° to +70° C" to " -40° to +85° C".
6	Oct 15, 2009	In Table 8 changed Input Leakage Current (I_{in}) from ±1.0 to ±2.5µA.
7	Oct 18, 2011	In Table 2, added MCF54452YVR200 part number, with temperature range from -40° to $+105^{\circ}$ C. In Table 8, added Input Leakage Current (I _{in}) values for MCF54452YVR200 part number.
8	Jan 18, 2012	In Table 4, added pin N7 in the VSS pin list for the 360 TEPBGA.