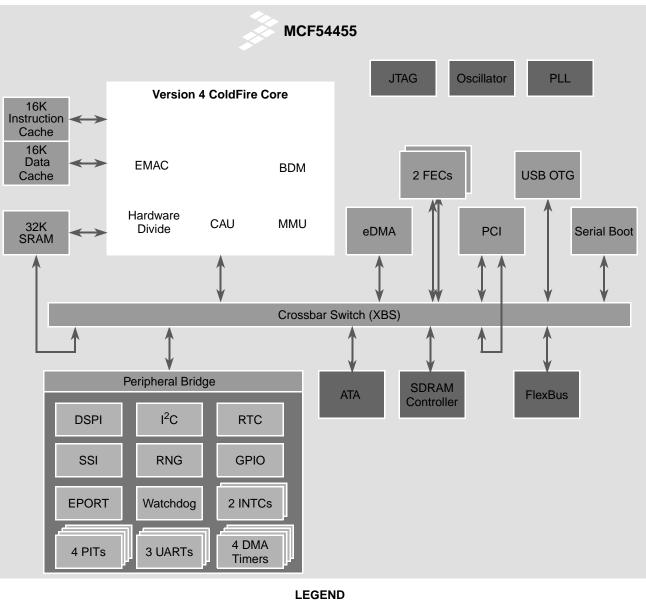


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf54450vm240j
Supplier Device Package	256-MAPBGA (17x17)
Package / Case	256-LBGA
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Oscillator Type	Internal
Data Converters	-
Voltage - Supply (Vcc/Vdd)	1.35V ~ 3.6V
RAM Size	32K x 8
EEPROM Size	-
Program Memory Type	ROMIess
Program Memory Size	-
Number of I/O	132
Peripherals	DMA, WDT
Connectivity	I²C, SPI, SSI, UART/USART, USB OTG
Speed	240MHz
Core Size	32-Bit Single-Core
Core Processor	Coldfire V4
Product Status	Obsolete

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ATA	 Advanced Technology Attachment Controller 	INTC	 Interrupt controller
BDM	 Background debug module 	JTAG	 Joint Test Action Group interface
CAU	 Cryptography acceleration unit 	MMU	 Memory management unit
DSPI	 DMA serial peripheral interface 	PCI	 Peripheral Component Interconnect
eDMA	 Enhanced direct memory access 	PIT	 Programmable interrupt timers
EMAC	 Enchance multiply-accumulate unit 	PLL	 Phase locked loop module
EPORT	 Edge port module 	RNG	 Random Number Generator
FEC	 Fast Ethernet controller 	RTC	 Real time clock
GPIO	 General Purpose Input/Output 	SSI	 Synchronous Serial Interface
l ² C	 Inter-Intergrated Circuit 	USB OTG	- Universal Serial Bus On-the-Go controller

Figure 1. MCF54455 Block Diagram

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

2 Ordering Information

Table 2. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF54450CVM180	MCF54450 Microprocessor		180 MHz	-40° to +85 $^{\circ}$ C
MCF54450VM240		256 MAPBGA	240 MHz	0° to +70° C
MCF54451CVM180	MCF54451 Microprocessor		180 MHz	-40° to +85 $^{\circ}$ C
MCF54451VM240			240 MHz	0° to +70° C
MCF54452CVR200	MCF54452 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54452YVR200			200 MHz	–40° to +105° C
MCF54452VR266			266 MHz	0° to +70° C
MCF54453CVR200			200 MHz	-40° to +85 $^{\circ}$ C
MCF54453VR266	MCF54453 Microprocessor	360 TEPBGA	266 MHz	0° to +70° C
MCF54454CVR200	MCF54454 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54454VR266		-	266 MHz	0° to +70° C
MCF54455CVR200	MCF54455 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54455VR266			266 MHz	0° to +70° C

3 Hardware Design Considerations

3.1 Analog Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for the analog V_{DD} pins (VDD_A_PLL, VDD_RTC). The filter shown in Figure 2 should be connected between the board IV_{DD} and the analog pins. The resistor and capacitors should be placed as close to the dedicated analog V_{DD} pin as possible. The 10- Ω resistor in the given filter is required. Do not implement the filter circuit using only capacitors. The analog power pins draw very little current. Concerns regarding voltage loss across the 10-ohm resistor are not valid.

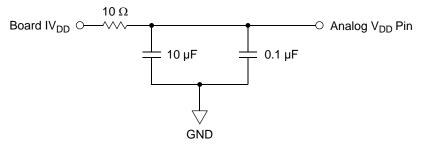


Figure 2. System Analog V_{DD} Power Filter

Hardware Design Considerations

3.2 Oscillator Power Filtering

Figure 3 shows an example for isolating the oscillator power supply from the I/O supply (EVDD) and ground.

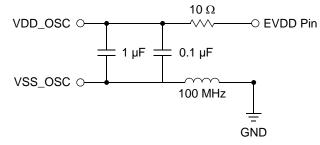
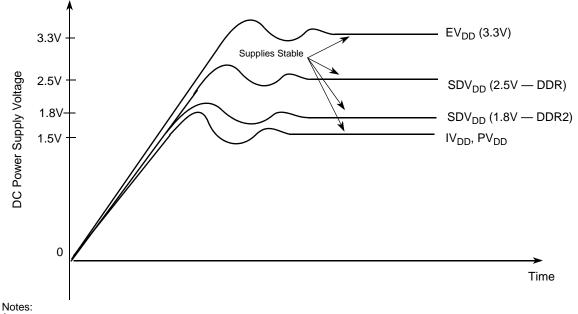



Figure 3. Oscillator Power Filter

3.3 Supply Voltage Sequencing

Figure 4 shows situations in sequencing the I/O V_{DD} (EV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (PV_{DD}), and internal logic/core V_{DD} (IV_{DD}).

¹ Input voltage must not be greater than the supply voltage (EV_{DD}, SDV_{DD}, IV_{DD}, or PV_{DD}) by more than 0.5V at any time, including during power-up.

² Use 50 V/millisecond or slower rise time for all supplies.

Figure 4. Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD}.

3.3.1 Power-Up Sequence

If EV_{DD}/SDV_{DD} are powered up with the IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must power up. The rise times on the power supplies should be slower than 50 V/millisecond to avoid turning on the internal ESD protection clamp diodes.

3.3.2 Power-Down Sequence

If IV_{DD}/PV_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PV_{DD} power down before EV_{DD} or SDV_{DD} must power down. There are no requirements for the fall times of the power supplies.

4 Pin Assignments and Reset States

4.1 Signal Multiplexing

The following table lists all the MCF5445*x* pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 4, "Pin Assignments and Reset States," for package diagrams. For a more detailed discussion of the MCF5445*x* signals, consult the *MCF54455 Reference Manual* (MCF54455RM).

NOTE

In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., FB_AD23), while designations for multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO default to their GPIO functionality. See Table 3 for a list of the exceptions.

Pin	256 MAPBGA	360 TEPBGA				
FB_AD[31:0]		B_AD[31:0] except when serial boot selects 0-bit boot port size.				
FB_BE/BWE[3:0]	FB_BE/BWE[3:0]					
FB_CS[3:1]	FB_CS[3:1]					
FB_OE	FB_	OE				
FB_R/W	FB_	R/W				
FB_TA	FB_TA					
FB_TS	FB_	TS				

Table 3. Special-Case Default Signal Functionality

Pin Assignments and Reset States

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
FB_TS	PFBCTL0	FB_ALE	FB_TBST	—	0	EVDD	A3	Y3
		PC	CI Controller ⁵					
PCI_AD[31:0]	_	FB_A[31:0]	_		I/O	EVDD	_	C11, D11, A10, B10, J4, G2, G3, F1, D12, C12, B12, A11, B11, B9, D9, D10, A8, B8, A5, B5, A4, A3, B3, D4, D3, E3–E1, F3, C2, D2, C1
_	_	FB_A[23:0]	_	_	I/O	EVDD	K14–13, J15–13, H13–15, G15–13, F14–13, E15–13, D16, B16, C15, B15, C14, D15, C16, D14	_
PCI_CBE[3:0]	_	_		—	I/O	EVDD	_	G4, E4, D1, B1
PCI_DEVSEL	—	_	—	—	0	EVDD	_	F2
PCI_FRAME	—	_	—	—	I/O	EVDD	_	B2
PCI_GNT3	PPCI7	ATA_DMACK	—	—	0	EVDD	—	B7
PCI_GNT[2:1]	PPCI[6:5]	_	—	—	0	EVDD	_	C8, C9
PCI_GNT0/ PCI_EXTREQ	PPCI4		—	—	0	EVDD	—	A9
PCI_IDSEL	—	_	—	—	I	EVDD	_	D5
PCI_IRDY	—	_	—	—	I/O	EVDD	_	C3
PCI_PAR	—	_		—	I/O	EVDD	_	C4
PCI_PERR	—	_	—	—	I/O	EVDD	_	B4
PCI_REQ3	PPCI3	ATA_INTRQ	—	—	I	EVDD	—	C7
PCI_REQ[2:1]	PPCI[2:1]	_	—	—	I	EVDD	—	D7, C5
PCI_REQ0/ PCI_EXTGNT	PPCI0		—	-	I	EVDD	—	A2
PCI_RST	—	_		—	0	EVDD	_	B6
PCI_SERR	—	—	—	—	I/O	EVDD	_	A6
PCI_STOP	—		—	—	I/O	EVDD	_	A7
PCI_TRDY	—		—	-	I/O	EVDD	_	C10
		SDR	AM Controller	·		•		
SD_A[13:0]	_		_	-	0	SDVDD	R1, P1, N2, P2, R2, T2, M4, N3, P3, R3, T3, T4, R4, N4	V22, U20–22, T19–22, R20–22, N19, P20–21

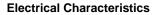
Table 4. MCF5445*x* Signal Information and Muxing (continued)

	r						-	
Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
FEC0_TXCLK	PFEC0H7	FEC0_RMII_ REF_CLK	_	—	I	EVDD	H4	Y10
FEC0_TXD[3:2]	PFEC0L[7:6]	—	ULPI_DATA[3:2]	—	0	EVDD	J1, J2	W10, AB11
FEC0_TXD1	PFEC0L5	FEC0_RMII_TXD1	_	—	0	EVDD	J3	AA11
FEC0_TXD0	PFEC0H5	FEC0_RMII_TXD0	_	—	0	EVDD	J4	Y11
FEC0_TXEN	PFEC0H6	FEC0_RMII_TXEN		—	0	EVDD	K1	W11
FEC0_TXER	PFEC0L4	_	ULPI_DATA0	—	0	EVDD	K2	AB12
			FEC1	1		1		
FEC1_MDC	PFECI2C5	_	ATA_DIOR	—	0	EVDD	—	W20
FEC1_MDIO	PFECI2C4	_	ATA_DIOW	_	I/O	EVDD	_	Y22
FEC1_COL	PFEC1H4	_	ATA_DATA7	_	I	EVDD	_	AB18
FEC1_CRS	PFEC1H0	_	ATA_DATA6	—	I	EVDD	_	AA18
FEC1_RXCLK	PFEC1H3		ATA_DATA5	—	I	EVDD	_	W14
FEC1_RXDV	PFEC1H2	FEC1_RMII_ CRS_DV	ATA_DATA15	—	I	EVDD	_	AB15
FEC1_RXD[3:2]	PFEC1L[3:2]	—	ATA_DATA[4:3]	—	I	EVDD	—	AA15, Y15
FEC1_RXD1	PFEC1L1	FEC1_RMII_RXD1	ATA_DATA14	—	I	EVDD	—	AA17
FEC1_RXD0	PFEC1H1	FEC1_RMII_RXD0	ATA_DATA13	—	I	EVDD	—	Y17
FEC1_RXER	PFEC1L0	FEC1_RMII_RXER	ATA_DATA12	—	I	EVDD	—	W17
FEC1_TXCLK	PFEC1H7	FEC1_RMII_ REF_CLK	ATA_DATA11	—	I	EVDD		AB19
FEC1_TXD[3:2]	PFEC1L[7:6]	—	ATA_DATA[2:1]	—	0	EVDD	—	Y19, W18
FEC1_TXD1	PFEC1L5	FEC1_RMII_TXD1	ATA_DATA10	—	0	EVDD	—	AA19
FEC1_TXD0	PFEC1H5	FEC1_RMII_TXD0	ATA_DATA9	—	0	EVDD	—	Y20
FEC1_TXEN	PFEC1H6	FEC1_RMII_TXEN	ATA_DATA8	—	0	EVDD	—	AA21
FEC1_TXER	PFEC1L4	—	ATA_DATA0	—	0	EVDD	_	AA22
		US	B On-the-Go					
USB_DM	—	—	—	_	0	USB VDD	F16	A14
USB_DP	_	—		—	0	USB VDD	E16	A15
USB_VBUS_EN	PUSB1	USB_PULLUP	ULPI_NXT	_	0	USB VDD	E5	AA2
USB_VBUS_OC	PUSB0		ULPI_STP	UD ⁷	I	USB VDD	В3	V4

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
		Ро	wer Supplies					
IVDD		_	_	—	_		E6–12, F5, F12	D6, D8, D14, F4, H4, N4, R4, W4, W7, W8, W12, W16, W19
EVDD	_	_	_	—	—	_	G5, G12, H5, H12, J5, J12, K5, K12, L5–6, L12	D13, D19, G8, G11, G14, G16, J7, J16, L7, L16, N16, P7, R16, T8, T12, T14, T16
SD_VDD	—	—	_	—	—	_	L7–11, M9, M10	F19, H19, K19, M19, R19, U19
VDD_OSC	—	_	—	—	—	_	L14	B16
VDD_A_PLL	—	_	—	—	—	_	K15	C14
VDD_RTC	—	_	—	—	—	_	M12	C13
VSS	_	_	_	_			A1, A16, F6–11, G6–11, H6–11, J6–11, K6–11, T1, T16	A1, A22, B14, G7, G9–10, G12–13, G15, H7, H16, J9–14, K7, K9–14, K16, L9–14, M7, M9–M14, M16, N7, N9–14, P9–14, P16, R7, T7, T9–11, T13, T15, AB1, AB22
VSS_OSC	—	—	—	—	—	_	L15	C16

Table 4. MCF5445*x* Signal Information and Muxing (continued)


¹ Pull-ups are generally only enabled on pins with their primary function, except as noted.

² Refers to pin's primary function.

- ³ Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).
- ⁴ Serial boot must select 0-bit boot port size to enable the GPIO mode on these pins.
- ⁵ When the PCI is enabled, all PCI bus pins come up configured as such. This includes the PCI_GNT and PCI_REQ lines, which have GPIO. The IRQ1/PCI_INTA signal is a special case. It comes up as PCI_INTA when booting as a PCI agent and as GPIO when booting as a PCI host.

For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI_GNT and PCI_REQ lines and IRQ1/PCI_INTA come up as GPIO.

- ⁶ GPIO functionality is determined by the edge port module. The pin multiplexing and control module is only responsible for assigning the alternate functions.
- ⁷ Depends on programmed polarity of the USB_VBUS_OC signal.
- ⁸ Pull-up when the serial boot facility (SBF) controls the pin
- ⁹ If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not responsible for assigning these pins.

This document contains electrical specification tables and reference timing diagrams for the MCF54455 microprocessor. This section contains detailed information on DC/AC electrical characteristics and AC timing specifications.

The electrical specifications are preliminary and from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this MCU document supersede any values found in the module specifications.

5.1 Absolute Maximum Ratings

Rating	Symbol	Pin Name	Value	Units
External I/O pad supply voltage	EV _{DD}	EVDD	-0.3 to +4.0	V
Internal oscillator supply voltage	OSCV _{DD}	VDD_OSC	-0.3 to +4.0	V
Real-time clock supply voltage	RTCV _{DD}	VDD_RTC	-0.5 to +2.0	V
Internal logic supply voltage	IV _{DD}	IVDD	-0.5 to +2.0	V
SDRAM I/O pad supply voltage	SDV _{DD}	SD_VDD	-0.3 to +4.0	V
PLL supply voltage	PV _{DD}	VDD_A_PLL	-0.5 to +2.0	V
Digital input voltage ³	V _{IN}	_	-0.3 to +3.6	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{3, 4, 5}	I _{DD}	_	25	mA
Operating temperature range (packaged)	T _A (T _L - T _H)	_	-40 to +85	°C
Storage temperature range	T _{stg}	_	-55 to +150	°C

Table 5. Absolute Maximum Ratings^{1, 2}

Functional operating conditions are given in Table 8. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or EV_{DD}).

³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.

⁴ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD}.

⁵ Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > EV_{DD}$) is greater than I_{DD} , the injection current may flow out of EV_{DD} and could result in external power supply going out of regulation. Ensure the external EV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MPU is not consuming power (ex; no clock). The power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions.

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

5.3 ESD Protection

Table 7. ESD	Protection	Characteristics ^{1, 2}
--------------	------------	---------------------------------

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

5.4 DC Electrical Specifications

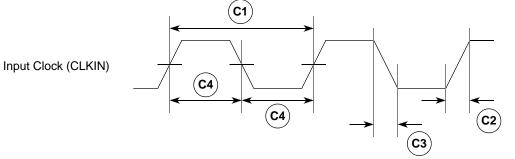

Characteristic Symbol Min Max Units Internal logic supply voltage¹ IV_{DD} 1.35 1.65 V PLL analog operation voltage range PVnn V 1.35 1.65 External I/O pad supply voltage V **EV**_{DD} 3.0 3.6 V Internal oscillator supply voltage OSCV_{DD} 3.0 3.6 Real-time clock supply voltage **RTCV**_{DD} V 1.35 1.65 SDRAM I/O pad supply voltage - DDR mode V 2.25 2.75 SDV_{DD} SDRAM I/O pad supply voltage - DDR2 mode SDVDD 1.7 1.9 V SDRAM I/O pad supply voltage - Mobile DDR mode 1.7 1.9 V SDV_{DD} V **SDV**_{REF} 0.51 x SDV_{DD} SDRAM input reference voltage 0.49 x SDV_{DD} 0.7 x EV_{DD} V Input High Voltage VIH 3.65 $V_{SS} - 0.3$ V Input Low Voltage 0.35 x EV_{DD} VII Input Hysteresis V_{HYS} 0.06 x EV_{DD} mV Input Leakage Current² -2.5 2.5 μΑ l_{in} $V_{in} = V_{DD}$ or V_{SS} , Input-only pins Input Leakage Current³ l_{in} -5 5 μΑ $V_{in} = V_{DD}$ or V_{SS} , Input-only pins High Impedance (Off-State) Leakage Current⁴ -10.0 10.0 μΑ loz V_{in} = V_{DD} or V_{SS}, All input/output and output pins Output High Voltage (All input/output and all output pins) VOH $0.85 \times EV_{DD}$ V $I_{OH} = -5.0 \text{ mA}$ Output Low Voltage (All input/output and all output pins) $0.15 \times EV_{DD}$ V VOL $I_{OI} = 5.0 \text{mA}$

Table 8. DC Electrical Specifications

Item	Specification	Min	Max	Unit
C1	Cycle time	15	40	ns
1 / C1	Frequency	25	66.66	MHz
C2	Rise time (20% of vdd to 80% of vdd)	-	2	ns
C3	Fall time (80% of vdd to 20% of vdd)	-	2	ns
C4	Duty cycle (at 50% of vdd)	40	60	%

Table 9. Input Clock Timing Requirements

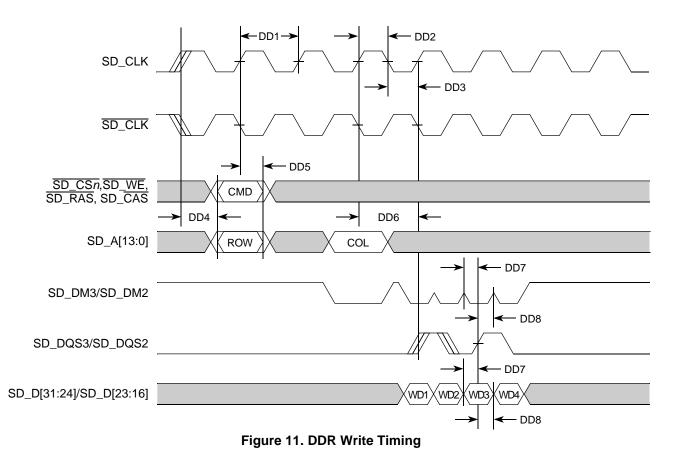


Figure 7. Input Clock Timing Diagram

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	PLL Reference Frequency Range Crystal reference External reference	f _{ref_crystal} f _{ref_ext}	16 16	40 66.66	MHz MHz
2	Core/System Frequency	f _{sys}	512 Hz ¹	266.67 MHz	_
	Core/System Clock Period	t _{sys}	—	1/f _{sys}	ns
19	VCO Frequency ($f_{vco} = f_{ref} \times PFDR$)	f _{vco}	300	540	MHz
3	Crystal Start-up Time ^{2, 3}	t _{cst}	—	10	ms
4	EXTAL Input High Voltage Crystal Mode ⁴ All other modes (External, Limp)	V _{IHEXT} V _{IHEXT}	V _{XTAL} + 0.4 E _{VDD} /2 + 0.4	_	V V
5	EXTAL Input Low Voltage Crystal Mode ⁴ All other modes (External, Limp)	V _{ILEXT} V _{ILEXT}		V _{XTAL} - 0.4 E _{VDD} /2 - 0.4	V V
6	EXTAL Input Rise & Fall Time (20% to 80% E _{VDD}) (External, Limp)		1	2	ns
7	PLL Lock Time ^{3, 5}	t _{ipil}	—	50000	CLKIN
8	Duty Cycle of reference ³ (External, Limp)	t _{dc}	40	60	%
9	XTAL Current	I _{XTAL}	1	3	mA
10	Total on-chip stray capacitance on XTAL	C _{S_XTAL}	_	1.5	pF

Table 10. PLL Electrical Characteristics

Num Characteristic	Characteristic	33 N	1Hz ³	66 N	1Hz ³	
		Min Max Min Max — 12.0 — 6.0			Unit	
P6	PCI_REQ[3:0]/PCI_GNT[3:0] — output valid	_	12.0	_	6.0	ns
P7	All PCI signals — output hold	2.0	_	1.0	_	ns

Table 14. PC	I Timing	Specifications ^{1,2}	(continued)
--------------	----------	-------------------------------	-------------

¹ The PCI bus operates at the CLKIN frequency. All timings are relative to the input clock, CLKIN.

² All PCI signals are bused signals except for PCI_GNT[3:0] and PCI_REQ[3:0]. These signals are defined as point-to-point signals by the PCI Specification.

³ The 66-MHz parameters are only guaranteed when the 66-MHz PCI pad slew rates are selected. Likewise, the 33-MHz parameters are only guaranteed when the 33-MHz PCI pad slew rates are selected.

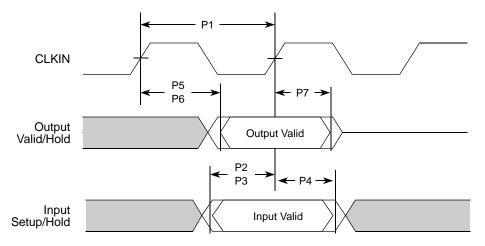


Figure 13. PCI Timing

5.9.1 Overshoot and Undershoot

Figure 14 shows the specification limits for overshoot and undershoot for PCI I/O. To guarantee long term reliability, the specification limits shown must be followed. Good transmission line design practices should be observed to guarantee the specification limits.

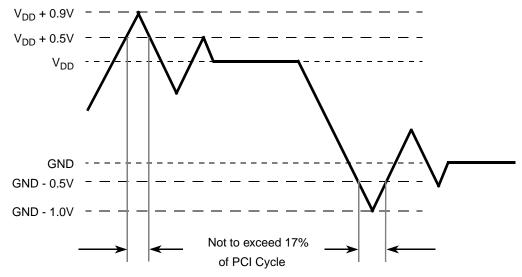


Figure 14. Overshoot and Undershoot Limits

5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5445*x*. The ULPI PHY is the source of the 60MHz clock.

NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

Num	Characteristic	Min	Nominal	Max	Units
	USB_CLKIN operating frequency	_	60	_	MHz
	USB_CLKIN duty cycle	_	50		%
U1	USB_CLKIN clock period	_	16.67	_	ns
U2	Input Setup (control and data)	5.0	_	_	ns
U3	Input Hold (control and data)	1.0	—		ns
U4	Output Valid (control and data)	_	_	9.5	ns
U5	Output Hold (control and data)	1.0	—	-	

Table 15. ULPI Interface Timing

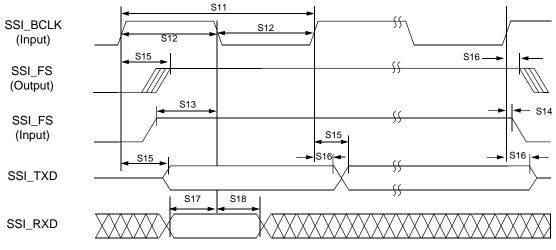


Figure 17. SSI Timing—Slave Modes

5.12 I²C Timing Specifications

Table 18 lists specifications for the I^2C input timing parameters shown in Figure 18.

Num	Characteristic		Max	Units
11	Start condition hold time	2	—	t _{SYS}
12	Clock low period	8	—	t _{SYS}
13	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	1	ms
14	Data hold time	0	_	ns
15	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$)		1	ms
16	Clock high time	4	—	t _{SYS}
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2	_	t _{SYS}
19	Stop condition setup time	2	_	t _{SYS}

Table 19 lists specifications for the I^2C output timing parameters shown in Figure 18.

Table 19. I ² C Output	Timing Specifications	between SCL and SDA
-----------------------------------	------------------------------	---------------------

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	6		t _{SYS}
12 ¹	Clock low period	10	_	t _{SYS}
13 ²	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	_	μs
I4 ¹	Data hold time	7		t _{SYS}
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)		3	ns

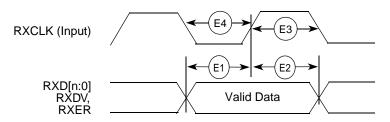


Figure 19. MII Receive Signal Timing Diagram

5.13.2 Transmit Signal Timing Specifications

Table 21. Transmit Signal Timing

Num	Characteristic	MII Mode		RMII Mode		Unit
	Characteristic	Min	Мах	Min	Мах	
	TXCLK frequency		25	_	50	MHz
E5	TXCLK to TXD[n:0], TXEN, TXER invalid ¹	5	_	5	_	ns
E6	TXCLK to TXD[n:0], TXEN, TXER valid ¹	_	25	_	14	ns
E7	TXCLK pulse width high	35%	65%	35%	65%	t _{TXCLK}
E8	TXCLK pulse width low	35%	65%	35%	65%	t _{TXCLK}

¹ In MII mode, n = 3; In RMII mode, n = 1

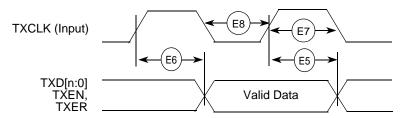


Figure 20. MII Transmit Signal Timing Diagram

5.13.3 Asynchronous Input Signal Timing Specifications

Table 22. MII Transmit Signal Timing

Num	Characteristic	Min	Мах	Unit
E9	CRS, COL minimum pulse width	1.5		TXCLK period

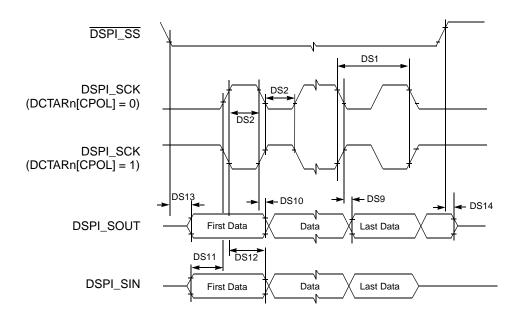


Figure 24. DSPI Classic SPI Timing—Slave Mode

5.17 SBF Timing Specifications

The Serial Boot Facility (SBF) provides a means to read configuration information and system boot code from a broad array of SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 27 provides the AC timing specifications for the SBF.

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
SB1	SBF_CK Cycle Time	t _{SBFCK}	40	_	ns	1
SB2	SBF_CK High/Low Time	—	30%	_	t _{SBFCK}	
SB3	SBF_CS to SBF_CK delay	_	t _{SBFCK} - 2.0	_	ns	
SB4	SBF_CK to SBF_CS delay	—	t _{SBFCK} - 2.0	_	ns	
SB5	SBF_CK to SBF_DO valid	—	-5	_	ns	
SB6	SBF_CK to SBF_DO invalid	_	5	_	ns	
SB7	SBF_DI to SBF_SCK input setup	—	10		ns	
SB8	SBF_CK to SBF_DI input hold	—	0	_	ns	

At reset, the SBF_CK cycle time is $t_{REF} \times 67$. The first byte of data read from the serial memory contains a divider value that is used to set the SBF_CK cycle time for the duration of the serial boot process.

5.19 JTAG and Boundary Scan Timing

Table 29. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Min	Max	Unit
J1	TCLK Frequency of Operation	DC	20	MHz
J2	TCLK Cycle Period	50	_	ns
J3	TCLK Clock Pulse Width		30	ns
J4	TCLK Rise and Fall Times	_	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	5	—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise		—	ns
J7	TCLK Low to Boundary Scan Output Data Valid	_	33	ns
J8	TCLK Low to Boundary Scan Output High Z		33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise		—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise		—	ns
J11	TCLK Low to TDO Data Valid		11	ns
J12	TCLK Low to TDO High Z		11	ns
J13	TRST Assert Time		_	ns
J14	TRST Setup Time (Negation) to TCLK High		—	ns

¹ JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

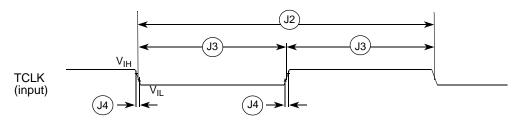


Figure 27. Test Clock Input Timing

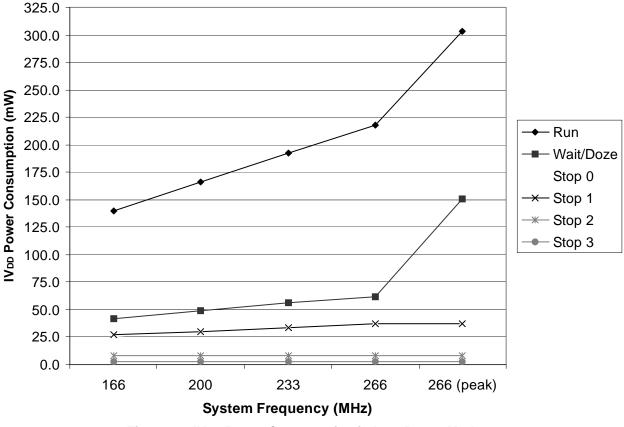
Power Consumption

All current consumption data is lab data measured on a single device using an evaluation board. Table 32 shows the typical power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.

Mode	Voltage Supply	System Frequency				
Mode		166 (Typ) ³	200 (Typ) ³	233 (Typ) ³	266 (Typ) ³	266 (Peak) ⁴
RUN	IV _{DD} (mA)	93.4	110.9	128.2	145.4	202.1
KUN	Power (mW)	140.1	166.3	192.4	218.1	303.2
WAIT/DOZE	IV _{DD} (mA)	28.0	32.7	37.5	41.1	100.2
WAII/DOZE	Power (mW)	42.0	49.1	56.2	61.7	150.3
STOP 0	IV _{DD} (mA)	17.1	19.8	22.5	25.2	25.2
5101 0	Power (mW)	25.7	29.7	33.7	37.8	37.8
STOP 1	IV _{DD} (mA)	17.9	19.8	22.4	25.1	25.1
5101 1	Power (mW)	26.8	29.6	33.6	37.6	37.6
STOP 2	IV _{DD} (mA)	5.7	5.7	5.7	5.7	5.7
01012	Power (mW)	8.6	8.6	8.6	8.6	8.6
STOP 3	IV _{DD} (mA)	1.8	1.8	1.8	1.8	1.8
0101 3	Power (mW)	2.6	2.6	2.6	2.6	2.6

Table 32. Current Consumption in Low-Power Modes^{1,2}

¹ All values are measured on an M54455EVB with 1.5V IV_{DD} power supply. Tests performed at room temperature.


² Refer to the Power Management chapter in the *MCF54455 Reference Manual* for more information on low-power modes.

³ All peripheral clocks are off except UART0, INTC0, IACK, edge port, reset controller, CCM, PLL, and FlexBus prior to entering low-power mode.

⁴ All peripheral clocks on prior to entering low-power mode.

Package Information

7 Package Information

The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire. Table 33 lists the case outline numbers per device. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

Device	Package Type	Case Outline Numbers		
MCF54450	256 MAPBGA	98ARH98219A		
MCF54451	200 MIAI DOA	304111302134		
MCF54452				
MCF54453	360 TEPBGA	98ARE10605D		
MCF54454	JUVIEFDGA	30ARE 10003D		
MCF54455				

8 **Product Documentation**

Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF54455 Rev. 8 02/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2012. All rights reserved.

