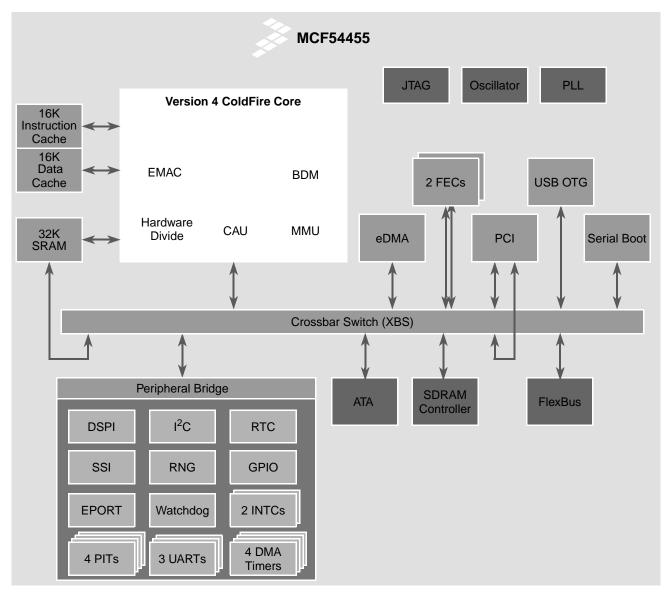


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Coldfire V4
Core Size	32-Bit Single-Core
Speed	240MHz
Connectivity	I ² C, SPI, SSI, UART/USART, USB OTG
Peripherals	DMA, WDT
Number of I/O	132
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf54451vm240j

LEGEND

ATA	 Advanced Technology Attachment Controller 	INTC	 Interrupt controller
BDM	 Background debug module 	JTAG	 Joint Test Action Group interface
CAU	 Cryptography acceleration unit 	MMU	 Memory management unit
DSPI	 DMA serial peripheral interface 	PCI	 Peripheral Component Interconnect
eDMA	 Enhanced direct memory access 	PIT	 Programmable interrupt timers
EMAC	 Enchance multiply-accumulate unit 	PLL	 Phase locked loop module
EPORT	 Edge port module 	RNG	 Random Number Generator
FEC	 Fast Ethernet controller 	RTC	 Real time clock
GPIO	 General Purpose Input/Output 	SSI	 Synchronous Serial Interface
I ² C	 Inter-Intergrated Circuit 	USB OTG	- Universal Serial Bus On-the-Go controller

Figure 1. MCF54455 Block Diagram

Pin Assignments and Reset States

Table 3. Special-Case Default Signal Functionality (continued)

Pin	256 MAPBGA	360 TEPBGA
PCI_GNT[3:0]	GPIO	PCI_GNT[3:0]
PCI_REQ[3:0]	GPIO	PCI_REQ[3:0]
ĪRQ1	GPIO	PCI_INTA and configured as an agent.
ATA_RESET	GPIO	ATA reset

Table 4. MCF5445x Signal Information and Muxing

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA	
			Reset		•	•			
RESET	_	_	_	U	I	EVDD	L4	Y18	
RSTOUT	_	_	_	_	0	EVDD	M15	B17	
			Clock						
EXTAL/PCI_CLK	_	_	_	_	I	EVDD	M16	A16	
XTAL	_	_	_	U ³	0	EVDD	L16	A17	
	Mode Selection								
BOOTMOD[1:0]	_	_	_	_	I	EVDD	M5, M7	AB17, AB21	
			FlexBus						
FB_AD[31:24]	PFBADH[7:0] ⁴	FB_D[31:24]	_	_	I/O	EVDD	A14, A13, D12, C12, B12, A12, D11, C11	J2, K4, J1, K1–3, L1, L4	
FB_AD[23:16]	PFBADMH[7:0] ⁴	FB_D[23:16]	_	_	I/O	EVDD	B11, A11, D10, C10, B10, A10, D9, C9	L2, L3, M1–4, N1–2	
FB_AD[15:8]	PFBADML[7:0] ⁴	FB_D[15:8]	_	_	I/O	EVDD	B9, A9, D8, C8, B8, A8, D7, C7	P1-2, R1-3, P4, T1-2	
FB_AD[7:0]	PFBADL[7:0] ⁴	FB_D[7:0]	_	_	I/O	EVDD	B7, A7, D6, C6, B6, A6, D5, C5	T3-4, U1-3, V1-2, W1	
FB_BE/BWE[3:2]	PBE[3:2]	FB_TSIZ[1:0]	_	_	0	EVDD	B5, A5	Y1, W2	
FB_BE/BWE[1:0]	PBE[1:0]	_	_	_	0	EVDD	B4, A4	W3, Y2	
FB_CLK	_	_	_	_	0	EVDD	B13	J3	
FB_CS[3:1]	PCS[3:1]		_	_	0	EVDD	C2, D4, C3	W5, AA4, AB3	
FB_CS0	_	_	_	_	0	EVDD	C4	Y4	
FB_OE	PFBCTL3	_	_		0	EVDD	A2	AA1	
FB_R/W	PFBCTL2		_	_	0	EVDD	B2	AA3	
FB_TA	PFBCTL1	_	_	U	I	EVDD	B1	AB2	

Pin Assignments and Reset States

Table 4. MCF5445x Signal Information and Muxing (continued)

						_	I	I
Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
DSPI_SIN	PDSPI1	SBF_DI	_	8	I	EVDD	P15	B19
DSPI_SOUT	PDSPI0	SBF_DO	_	_	0	EVDD	N13	C20
			UARTS					
U1CTS	PUART7	_	_	_	I	EVDD	_	V3
U1RTS	PUART6	_	_	_	0	EVDD	_	U4
U1RXD	PUART5	_	_	_	I	EVDD	_	P3
U1TXD	PUART4	_	_	_	0	EVDD	_	N3
U0CTS	PUART3	_	_	_	I	EVDD	М3	Y16
U0RTS	PUART2	_	_	_	0	EVDD	M2	AA16
U0RXD	PUART1	_	_	_	I	EVDD	N1	AB16
U0TXD	PUART0	_	_	_	0	EVDD	M1	W15
Note: The UART1 an	d UART 2 signals	are multiplexed on the	e DMA timers and I	2C pins.	ı	•		
		[OMA Timers					
DT3IN	PTIMER3	DT3OUT	U2RXD	_	I	EVDD	C13	H2
DT2IN	PTIMER2	DT2OUT	U2TXD	_	I	EVDD	D13	H1
DT1IN	PTIMER1	DT1OUT	U2CTS	_	I	EVDD	B14	H3
DT0IN	PTIMER0	DT0OUT	U2RTS	_	I	EVDD	A15	G1
		ı	BDM/JTAG ⁹					
PSTDDATA[7:0]	_	_	_	_	0	EVDD	E2, D1, F4, E3, D2, C1, E4, D3	AA6, AB6, AB5, W6, Y6, AA5, AB4, Y5
JTAG_EN	_	_	_	D	I	EVDD	M11	C21
PSTCLK	_	TCLK	_	_	I	EVDD	P13	C22
DSI	_	TDI	_	U	I	EVDD	T15	C19
DSO	_	TDO	_	_	0	EVDD	T14	A21
BKPT	_	TMS	_	U	I	EVDD	R14	B21
DSCLK	_	TRST	_	U	I	EVDD	M13	B22
			Test					
TEST	_	_	_	D	I	EVDD	M6	AB20
PLLTEST	_	_	_	_	0	EVDD	K16	D15

Pin Assignments and Reset States

4.3 Pinout—360 TEPBGA

The pinout for the MCF54452, MCF54453, MCF54454, and MCF54455 packages are shown below.

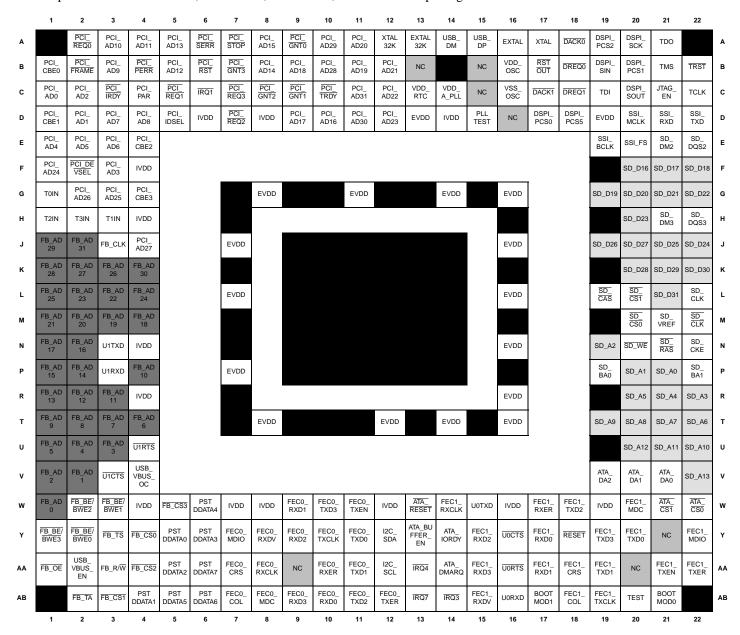


Figure 6. MCF54452, MCF54453, MCF54454, and MCF54455 Pinout (360 TEPBGA)

This document contains electrical specification tables and reference timing diagrams for the MCF54455 microprocessor. This section contains detailed information on DC/AC electrical characteristics and AC timing specifications.

The electrical specifications are preliminary and from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this MCU document supersede any values found in the module specifications.

5.1 Absolute Maximum Ratings

Table 5. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Pin Name	Value	Units
External I/O pad supply voltage	EV _{DD}	EVDD	-0.3 to +4.0	V
Internal oscillator supply voltage	OSCV _{DD}	VDD_OSC	-0.3 to +4.0	V
Real-time clock supply voltage	RTCV _{DD}	VDD_RTC	-0.5 to +2.0	V
Internal logic supply voltage	IV _{DD}	IVDD	-0.5 to +2.0	V
SDRAM I/O pad supply voltage	SDV _{DD}	SD_VDD	-0.3 to +4.0	V
PLL supply voltage	PV _{DD}	VDD_A_PLL	-0.5 to +2.0	V
Digital input voltage ³	V _{IN}	_	-0.3 to +3.6	V
Instantaneous maximum current Single pin limit (applies to all pins) 3, 4, 5	I _{DD}	_	25	mA
Operating temperature range (packaged)	T _A (T _L - T _H)	_	-40 to +85	°C
Storage temperature range	T _{stg}	_	-55 to +150	°C

Functional operating conditions are given in Table 8. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or EV_{DD}).

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.

⁴ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD}.

Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > EV_{DD}) is greater than I_{DD}, the injection current may flow out of EV_{DD} and could result in external power supply going out of regulation. Ensure the external EV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MPU is not consuming power (ex; no clock). The power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions.

5.2 Thermal Characteristics

Table 6. Thermal Characteristics

Characteristic		Symbol	256 MAPBGA	360 TEPBGA	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	29 ^{1,2}	24 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	25 ^{1,2}	21 ^{1,2}	°C/W
Junction to board		$\theta_{\sf JB}$	18 ³	15 ³	°C/W
Junction to case		θJC	10 ⁴	11 ⁴	°C/W
Junction to top of package		Ψ_{jt}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		T _j	105	105	°C

 $[\]theta_{JMA}$ and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-6 with the board horizontal.
- ³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
 Eqn. 1

Where:

 T_A = Ambient Temperature, °C

Q_{IMA} = Package Thermal Resistance, Junction-to-Ambient, °C/W

 $P_D = P_{INT} + P_{I/O}$

 P_{INT} = $I_{DD} \times IV_{DD}$, Watts - Chip Internal Power

 $P_{I/O}$ = Power Dissipation on Input and Output Pins - User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_{D} = \frac{K}{(T_{J} + 273^{\circ}C)}$$
 Eqn. 2

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A \times 273 \degree C) + Q_{JMA} \times P_D^2$$
 Eqn. 3

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

5.3 ESD Protection

Table 7. ESD Protection Characteristics 1, 2

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

5.4 DC Electrical Specifications

Table 8. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Units
Internal logic supply voltage ¹	IV _{DD}	1.35	1.65	V
PLL analog operation voltage range ¹	PV_{DD}	1.35	1.65	V
External I/O pad supply voltage	EV _{DD}	3.0	3.6	V
Internal oscillator supply voltage	OSCV _{DD}	3.0	3.6	V
Real-time clock supply voltage	RTCV _{DD}	1.35	1.65	V
SDRAM I/O pad supply voltage — DDR mode	SDV _{DD}	2.25	2.75	V
SDRAM I/O pad supply voltage — DDR2 mode	SDV _{DD}	1.7	1.9	V
SDRAM I/O pad supply voltage — Mobile DDR mode	SDV _{DD}	1.7	1.9	V
SDRAM input reference voltage	SDV _{REF}	0.49 x SDV _{DD}	0.51 x SDV _{DD}	V
Input High Voltage	V _{IH}	0.7 x EV _{DD}	3.65	V
Input Low Voltage	V _{IL}	V _{SS} - 0.3	0.35 x EV _{DD}	V
Input Hysteresis	V _{HYS}	0.06 x EV _{DD}	_	mV
Input Leakage Current ² V _{in} = V _{DD} or V _{SS} , Input-only pins	I _{in}	-2.5	2.5	μА
Input Leakage Current ³ V _{in} = V _{DD} or V _{SS} , Input-only pins	I _{in}	-5	5	μА
High Impedance (Off-State) Leakage Current ⁴ $V_{in} = V_{DD} \text{ or } V_{SS}, \text{ All input/output and output pins}$	l _{OZ}	-10.0	10.0	μА
Output High Voltage (All input/output and all output pins) $I_{OH} = -5.0 \text{ mA}$	V _{OH}	$0.85 \times \text{EV}_{\text{DD}}$		V
Output Low Voltage (All input/output and all output pins) I _{OL} = 5.0mA	V _{OL}		0.15 × EV _{DD}	V

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 8. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Units
Weak Internal Pull Up Device Current, tested at V _{IL} Max. ⁵	I _{APU}	-10	-130	μΑ
Input Capacitance ⁶ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF
Load Capacitance Low drive strength High drive strength	C _L		25 50	pF
DC Injection Current ^{3, 7, 8, 9} V _{NEGCLAMP} = V _{SS} – 0.3 V, V _{POSCLAMP} = V _{DD} + 0.3 Single Pin Limit Total MCU Limit, Includes sum of all stressed pins	I _{IC}	-1.0 -10	1.0 10	mA

IV_{DD} and PV_{DD} should be at the same voltage. PV_{DD} should have a filtered input. Please see the PLL section of this specification for an example circuit. There are three PV_{DD} inputs, one for each PLL. A filter circuit should used on each PV_{DD} input.

5.5 Clock Timing Specifications

The clock module configures the device for one of several clocking methods. Clocking modes include internal phase-locked loop (PLL) clocking with an external clock reference or an external crystal reference supported by an internal crystal amplifier. The PLL can also be disabled, and an external oscillator can directly clock the device.

The specifications in Table 9 are for the CLKIN input pin (EXTAL input driven by an external clock reference). The duty cycle specification is based on an acceptable tolerance for the PLL, which yields 50% duty-cycle internal clocks to all on-chip peripherals. The MCF5445x devices use the input clock signal as its synchronous bus clock for PCI. A poor duty cycle on the input clock, may affect the overall timing margin to external devices. If negative edge logic is used to interface to PCI, providing a 50% duty-cycle input clock aids in simplifying overall system design.

² Valid for all parts, EXCEPT the MCF54452YVR200.

³ Valid just the MCF54452YVR200 part number.

Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 μA min/max.

⁵ Refer to the *MCF54455 Reference Manual* signals description chapter for pins having weak internal pull-up devices.

⁶ This parameter is characterized before qualification rather than 100% tested.

⁷ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure the external V_{DD} load shunts current greater than the maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, the system clock is not present during the power-up sequence until the PLL has attained lock.

Table 10. PLL Electrical Characteristics (continued)

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
11	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}	_	1.5	pF
12	Crystal capacitive load	C _L	See crystal spec		
13	Discrete load capacitance for XTAL Discrete load capacitance for EXTAL	C _{L_XTAL} C _{L_EXTAL}	_	$\begin{array}{c} 2\times (C_L - \\ C_{S_XTAL} - \\ C_{S_EXTAL} - \\ C_{S_PCB})^6 \end{array}$	pF
14	Frequency un-LOCK Range	f _{UL}	-4.0	4.0	% f _{sys}
15	Frequency LOCK Range	f _{LCK}	-2.0	2.0	% f _{sys}
17	CLKOUT Period Jitter, ^{3, 4, 7} Measured at f _{SYS} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter	C _{jitter}		10 TBD	% FB_CLK % FB_CLK

The minimum system frequency is the minimum input clock divided by the maximum low-power divider (16 MHz ÷ 32,768). When the PLL is enabled, the minimum system frequency (f_{sys}) is 150 MHz.

⁶ C_{S PCB} is the measured PCB stray capacitance on EXTAL and XTAL.

5.6 Reset Timing Specifications

Table 11 lists specifications for the reset timing parameters shown in Figure 8.

Table 11. Reset and Configuration Override Timing

Num	Characteristic	Min	Max	Unit
R1 ¹	RESET valid to CLKIN (setup)	9	_	ns
R2	CLKIN to RESET invalid (hold)	1.5	_	ns
R3	RESET valid time ²	5	_	CLKIN cycles
R4	CLKIN to RSTOUT valid	_	10	ns
R5	RSTOUT valid to Configuration Override inputs valid	0	_	ns
R6	Configuration Override inputs valid to RSTOUT invalid (setup)	20	_	CLKIN cycles
R7	Configuration Override inputs invalid after RSTOUT invalid (hold)	0	_	ns
R8	RSTOUT invalid to Configuration Override inputs High Impedance	_	1	CLKIN cycles

RESET and Configuration Override data lines are synchronized internally. Setup and hold times must be met only if recognition on a particular clock is required.

² This parameter is guaranteed by characterization before qualification rather than 100% tested. Applies to external clock reference only.

Proper PC board layout procedures must be followed to achieve specifications.

⁴ This parameter is guaranteed by design rather than 100% tested.

⁵ This specification is the PLL lock time only and does not include oscillator start-up time.

Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

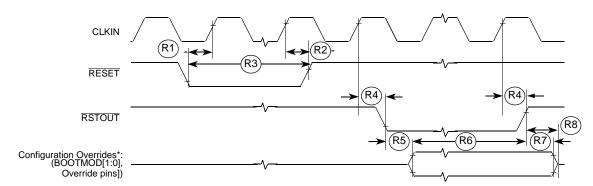


Figure 8. RESET and Configuration Override Timing

5.7 FlexBus Timing Specifications

A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used.

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Characteristic	Min	Max	Unit	Notes
	Frequency of Operation	25	66.66	MHz	
FB1	Clock Period	15	40	ns	
FB2	Output Valid	_	7.0	ns	1
FB3	Output Hold	1.0	_	ns	1
FB4	Input Setup	3.0	_	ns	2
FB5	Input Hold	0	_	ns	2

Table 12. FlexBus AC Timing Specifications

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

The address and data busses are muxed between the FlexBus and PCI controller. At the end of the read and write bus cycles the address signals are indeterminate.

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Specification is valid for all FB_AD[31:0], FB_BS[3:0], FB_CS[3:0], FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], and FB_TS.

² Specification is valid for all FB_AD[31:0] and FB_TA.

5.8 SDRAM AC Timing Characteristics

The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing numbers are relative to the four DQS byte lanes.

Table 13. SDRAM Timing Specifications

Num	Characteristic	Symbol	Min	Max	Unit	Notes
	Frequency of Operation		60	133.33	MHz	1
DD1	Clock Period	t _{SDCK}	7.5	16.67	ns	
DD2	Pulse Width High	t _{SDCKH}	0.45	0.55	t _{SDCK}	2
DD3	Pulse Width Low	t _{SDCKL}	0.45	0.55	t _{SDCK}	3
DD4	Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] — Output Valid	t _{CMV}	_	(0.5 x t _{SDCK}) + 1.0ns	ns	3
DD5	Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_CS[1:0] — Output Hold	t _{CMH}	2.0	_	ns	
DD6	Write Command to first DQS Latching Transition	t _{DQSS}	(1.0 x t _{SDCK}) - 0.6ns	(1.0 x t _{SDCK}) + 0.6ns	ns	
DD7	Data and Data Mask Output Setup (DQ>DQS) Relative to DQS (DDR Write Mode)	t _{QS}	1.0	_	ns	4 5
DD8	Data and Data Mask Output Hold (DQS>DQ) Relative to DQS (DDR Write Mode)	t _{QH}	1.0	_	ns	6
DD9	Input Data Skew Relative to DQS (Input Setup)	t _{IS}	_	1.0	ns	7
DD10	Input Data Hold Relative to DQS.	t _{IH}	(0.25 x t _{SDCK}) + 0.5ns	_	ns	8

¹ The SDRAM interface operates at the same frequency as the internal system bus.

² Pulse width high plus pulse width low cannot exceed min and max clock period.

Command output valid should be 1/2 the memory bus clock (t_{SDCK}) plus some minor adjustments for process, temperature, and voltage variations.

⁴ This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]

The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.

This specification relates to the required hold time of DDR memories. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]

Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).

Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

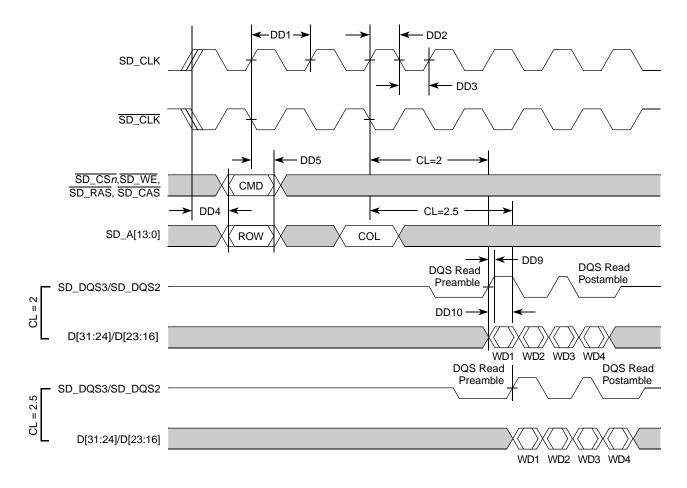


Figure 12. DDR Read Timing

5.9 PCI Bus Timing Specifications

The PCI bus on the device is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Refer to the PCI 2.2 spec for a more detailed timing analysis.

Num	Characteristic	33 MHz ³		66 MHz ³		
		Min	Max	Min	Max	Unit
	Frequency of Operation	_	33.33	33.33	66.66	MHz
P1	Clock Period	30	_	15	30	ns
P2	Bused PCI signals — input setup	7.0	_	3.0	_	ns
P3	PCI_GNT[3:0]/PCI_REQ[3:0] — input setup	10.0	_	5.0	_	ns
P4	All PCI signals — input hold	0	_	0	_	ns
P5	Bused PCI signals — output valid	_	11.0	_	6.0	ns

Table 14. PCI Timing Specifications^{1,2}

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Table 14. PCI Timing Specifications^{1,2} (continued)

Num	Characteristic		33 MHz ³		66 MHz ³	
	Gilaracteristic	Min	Max	Min	Max	Unit
P6	PCI_REQ[3:0]/PCI_GNT[3:0] — output valid		12.0	_	6.0	ns
P7	All PCI signals — output hold	2.0	_	1.0	_	ns

The PCI bus operates at the CLKIN frequency. All timings are relative to the input clock, CLKIN.

³ The 66-MHz parameters are only guaranteed when the 66-MHz PCI pad slew rates are selected. Likewise, the 33-MHz parameters are only guaranteed when the 33-MHz PCI pad slew rates are selected.

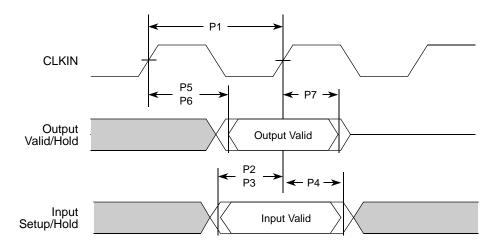


Figure 13. PCI Timing

5.9.1 Overshoot and Undershoot

Figure 14 shows the specification limits for overshoot and undershoot for PCI I/O. To guarantee long term reliability, the specification limits shown must be followed. Good transmission line design practices should be observed to guarantee the specification limits.

² All PCI signals are bused signals except for PCI_GNT[3:0] and PCI_REQ[3:0]. These signals are defined as point-to-point signals by the PCI Specification.

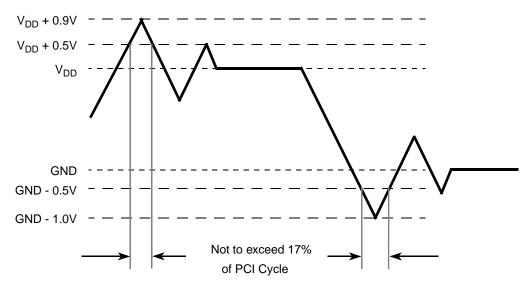


Figure 14. Overshoot and Undershoot Limits

5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5445x. The ULPI PHY is the source of the 60MHz clock.

NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

Num	Characteristic	Min	Nominal	Max	Units
	USB_CLKIN operating frequency	_	60	_	MHz
	USB_CLKIN duty cycle	_	50	_	%
U1	USB_CLKIN clock period	_	16.67	_	ns
U2	Input Setup (control and data)	5.0	_	_	ns
U3	Input Hold (control and data)	1.0	_	_	ns
U4	Output Valid (control and data)	_	_	9.5	ns
U5	Output Hold (control and data)	1.0	_	_	

Table 15. ULPI Interface Timing

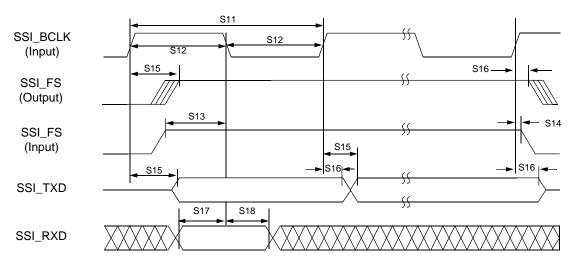


Figure 17. SSI Timing—Slave Modes

5.12 I²C Timing Specifications

Table 18 lists specifications for the I²C input timing parameters shown in Figure 18.

Table 18. I²C Input Timing Specifications between SCL and SDA

Num	Characteristic	Min	Max	Units
I1	Start condition hold time	2	_	t _{SYS}
12	Clock low period	8	_	t _{SYS}
13	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)		1	ms
14	Data hold time	0	_	ns
15	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$)		1	ms
16	Clock high time	4	_	t _{SYS}
17	Data setup time	0	_	ns
18	Start condition setup time (for repeated start condition only)	2	_	t _{SYS}
19	Stop condition setup time	2	_	t _{SYS}

Table 19 lists specifications for the I²C output timing parameters shown in Figure 18.

Table 19. I²C Output Timing Specifications between SCL and SDA

Num	Characteristic		Max	Units
I1 ¹	Start condition hold time	6	_	t _{SYS}
I2 ¹	Clock low period	10	_	t _{SYS}
13 ²	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	_	μs
I4 ¹	Data hold time	7	_	t _{SYS}
15 ³	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$)	_	3	ns

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

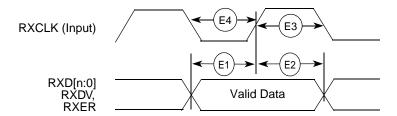


Figure 19. MII Receive Signal Timing Diagram

5.13.2 Transmit Signal Timing Specifications

Table 21. Transmit Signal Timing

Num	Characteristic	MII Mode RMII M		MII Mode		Unit
Num	Gilaracteristic	Min	Max	Min	Max	Onit
	TXCLK frequency	_	25	_	50	MHz
E5	TXCLK to TXD[n:0], TXEN, TXER invalid ¹	5	_	5	_	ns
E6	TXCLK to TXD[n:0], TXEN, TXER valid ¹	_	25	_	14	ns
E7	TXCLK pulse width high	35%	65%	35%	65%	t _{TXCLK}
E8	TXCLK pulse width low	35%	65%	35%	65%	t _{TXCLK}

¹ In MII mode, n = 3; In RMII mode, n = 1

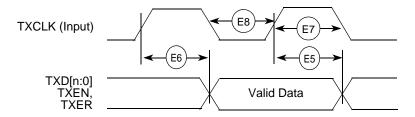


Figure 20. MII Transmit Signal Timing Diagram

5.13.3 Asynchronous Input Signal Timing Specifications

Table 22. MII Transmit Signal Timing

Num	Characteristic	Min	Max	Unit
E9	CRS, COL minimum pulse width	1.5		TXCLK period

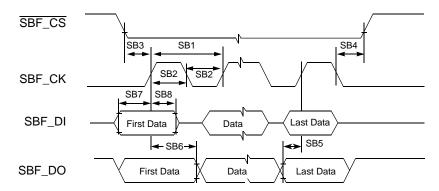


Figure 25. SBF Timing

5.18 General Purpose I/O Timing Specifications

Table 28. GPIO Timing¹

Num	Characteristic	Characteristic Min		Unit
G1	FB_CLK High to GPIO Output Valid	_	9	ns
G2	FB_CLK High to GPIO Output Invalid	1.5	_	ns
G3	GPIO Input Valid to FB_CLK High	9	_	ns
G4	FB_CLK High to GPIO Input Invalid	1.5	_	ns

These general purpose specifications apply to the following signals: \overline{IRQn} , all UART signals, all timer signals, \overline{DACKn} and \overline{DREQn} , and all signals configured as GPIO.

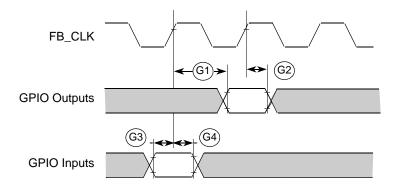


Figure 26. GPIO Timing

5.19 JTAG and Boundary Scan Timing

Table 29. JTAG and Boundary Scan Timing

Num	Characteristics ¹		Max	Unit
J1	TCLK Frequency of Operation	DC	20	MHz
J2	TCLK Cycle Period	50	_	ns
J3	TCLK Clock Pulse Width	20	30	ns
J4	TCLK Rise and Fall Times	_	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise		_	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	20	_	ns
J7	TCLK Low to Boundary Scan Output Data Valid	_	33	ns
J8	TCLK Low to Boundary Scan Output High Z	_	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	4	_	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	10	_	ns
J11	TCLK Low to TDO Data Valid	_	11	ns
J12	TCLK Low to TDO High Z	_	11	ns
J13	TRST Assert Time	50	_	ns
J14	TRST Setup Time (Negation) to TCLK High	10	_	ns

¹ JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

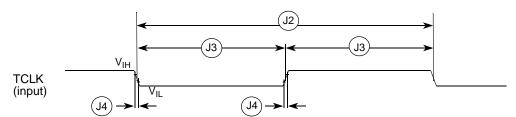


Figure 27. Test Clock Input Timing

Power Consumption

All current consumption data is lab data measured on a single device using an evaluation board. Table 32 shows the typical power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.

Table 32. Current Consumption in Low-Power Modes^{1,2}

Mode	Voltage Supply	System Frequency						
Wiode	Voltage Supply	166 (Typ) ³	200 (Typ) ³	233 (Typ) ³	266 (Typ) ³	266 (Peak) ⁴		
RUN	IV _{DD} (mA)	93.4	110.9	128.2	145.4	202.1		
KON	Power (mW)	140.1	166.3	192.4	218.1	303.2		
WAIT/DOZE	IV _{DD} (mA)	28.0	32.7	37.5	41.1	100.2		
WAIT/DOZE	Power (mW)	42.0	49.1	56.2	61.7	150.3		
STOP 0	IV _{DD} (mA)	17.1	19.8	22.5	25.2	25.2		
01010	Power (mW)	25.7	29.7	33.7	37.8	37.8		
STOP 1	IV _{DD} (mA)	17.9	19.8	22.4	25.1	25.1		
3101 1	Power (mW)	26.8	29.6	33.6	37.6	37.6		
STOP 2	IV _{DD} (mA)	5.7	5.7	5.7	5.7	5.7		
310F 2	Power (mW)	8.6	8.6	8.6	8.6	8.6		
STOP 3	IV _{DD} (mA)	1.8	1.8	1.8	1.8	1.8		
31013	Power (mW)	2.6	2.6	2.6	2.6	2.6		

All values are measured on an M54455EVB with 1.5V IV_{DD} power supply. Tests performed at room temperature.

² Refer to the Power Management chapter in the *MCF54455 Reference Manual* for more information on low-power modes.

All peripheral clocks are off except UARTO, INTCO, IACK, edge port, reset controller, CCM, PLL, and FlexBus prior to entering low-power mode.

⁴ All peripheral clocks on prior to entering low-power mode.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516

2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130

www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English)

+49 89 92103 559 (German) +33 1 69 35 48 48 (French)

www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF54455

Rev. 8 02/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2012. All rights reserved.

